Nombres complexes

1 Rappels.

1.1 Conjugué et module

Définition 1. Un nombre complexe est un nombre qui s'écrit sous la forme z = a + ib où a et b sont des réels (forme algébrique du nombre complexe), a s'appelle la partie réelle de z et b la partie imaginaire de z. On les note : $a = \Re(z)$, $b = \Im(z)$.

Notations: On note \mathbb{C} l'ensemble des nombres complexes.

Définition 2. Si z = ib avec b réel, on dit que z est un imaginaire pur.

Définition 3. Pour $z \in \mathbb{C}$, on définit le conjugué de z, noté \overline{z} par : $\overline{z} = a - ib$.

L'application qui à z associe son conjugué est bijective et sa bijection réciproque est elle-même ($\overline{\overline{z}}=z$).

Proposition 1. $\forall (u, v) \in \mathbb{C}^2$,

- $\bullet \quad \overline{u+v} = \overline{u} + \overline{v}$
- $\overline{u.v} = \overline{u}.\overline{v}$,

• $\overline{\left(\frac{u}{v}\right)} = \frac{\overline{u}}{\overline{v}} \ si \ v \neq 0.$

Proposition 2. Soit $z \in \mathbb{C}$. On a:

$$\mathcal{R}e\left(z\right) = \frac{z + \overline{z}}{2} \ et \ \mathcal{I}m\left(z\right) = \frac{z - \overline{z}}{2i}.$$

Définition 4. Soit $z \in \mathbb{C}$. On appelle module de z, noté |z|, le réel positif $|z| = \sqrt{a^2 + b^2} = \sqrt{z \cdot \overline{z}}$.

Rappel: Si A et B sont d'affixes respectives z_A et z_B , $|z_B - z_A|$ est égal à la longueur AB. **Notations**: On note \mathbb{U} l'ensemble des nombres complexes de module 1. Cela correspond au cercle trigonométrique.

Proposition 3. Soit $z \in \mathbb{C}$ et $(u, v) \in \mathbb{C}^2$.

• $|z|^2 = z.\overline{z}$ et $|\overline{z}| = |z|$.

• $Si \ v \neq 0, \ \left| \frac{u}{v} \right| = \frac{|u|}{|v|}$

• $\forall (u, v) \in \mathbb{C}^2$, $|uv| = |u| \cdot |v|$

 $\bullet |z| = 1 \Leftrightarrow \overline{z} = \frac{1}{z}.$

Proposition 4. Soit $z \in \mathbb{C}$.

- $|\mathcal{R}e(z)| \leq |z| \ et \ |\mathcal{R}e(z)| = |z| \Leftrightarrow z \in \mathbb{R}$
- $|\mathcal{I}m(z)| \leq |z| \ et \ |\mathcal{I}m(z)| = |z| \Leftrightarrow z \in i\mathbb{R}$

Théorème 5 (Inégalité triangulaire). Soit $(u, v) \in \mathbb{C}^2$, alors

- $\bullet \quad |u+v| \leqslant |u| + |v| \text{ et}$
- |u+v| = |u| + |v| si et seulement si u et v sont positivement colinéaires.

Corollaire 6.

- Pour tout $(z, z') \in \mathbb{C}^2$, $|z z'| \leq |z| + |z'|$.
- Pour tout $n \in \mathbb{N}^*$ et $(z_1, \dots, z_n) \in \mathbb{C}^n$, on a $\left| \sum_{k=1}^n z_k \right| \leqslant \sum_{k=1}^n |z_k|$.

Exemples 1.

- 1. Montrer que pour tout $(a, b, c) \in \mathbb{C}^3$, $|1 + a| + |a + b| + |b + c| + |c| \ge 1$.
- 2. Montrer que pour tout $z \notin \mathbb{U}$, on $a \left| \frac{1-z^n}{1-z} \right| \leqslant \frac{1-|z|^n}{1-|z|}$

Corollaire 7.

$$\forall u, v \in \mathbb{C}, ||u| - |v|| \le |u - v|$$

1.2 Écriture exponentielle

Notation: Pour tout réel $\underline{\theta}$, on note $e^{i\theta}$ le nombre complexe : $e^{i\theta} = \cos \theta + i \sin \theta$. Ainsi, son conjugué s'écrit $\overline{e^{i\theta}} = \cos \theta - i \sin \theta = \cos (-\theta) + i \sin (-\theta) = e^{-i\theta}$.

Proposition 8 (Formules d'Euler). Soit $\theta \in \mathbb{R}$, alors

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} et \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

Proposition 9 (Formule de Moivre). $\forall n \in \mathbb{N} \ et \ \forall \theta \in \mathbb{R}$,

ce qui s'écrit encore

$$(e^{i\theta})^n = e^{in\theta},$$

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$$

2

Exemples 2.

1. $Linéariser \cos^2 x$, $\sin^3 x$.

2. $Linéariser \cos^n x$.

1.3 Argument

Définition 5. Tout complexe z de module 1 admet une écriture $z = e^{i\theta}$.

Le réel θ n'est pas unique. Cela signifie que l'application $\begin{vmatrix} \mathbb{R} \longrightarrow U \\ \theta \longmapsto e^{i\theta} \end{vmatrix}$ est surjective mais non injective.

Définition 6. Tout nombre complexe non nul s'écrit sous la forme $z = r e^{i\theta}$ où r > 0 désigne le module de z. On dit que θ est un argument de z: θ est définit à 2π près. On le choisit souvent entre $-\pi$ et π ou entre 0 et 2π .

On a donc : $\cos \theta = \frac{a}{r}$ et $\sin \theta = \frac{b}{r}$, avec z = a + ib.

Proposition 10.

Soit $z \in \mathbb{C}^*$. On a

- $z \in \mathbb{R} \Leftrightarrow \mathcal{I}m(z) = 0 \Leftrightarrow \overline{z} = z \Leftrightarrow \arg(z) \equiv 0[\pi].$
- $z \in i\mathbb{R} \Leftrightarrow \mathcal{R}e(z) = 0 \Leftrightarrow \overline{z} = -z \Leftrightarrow \arg(z) \equiv \frac{\pi}{2} [\pi].$

Remarque. Comment traduire $z \in \mathbb{R}^+$?

Proposition 11.

Soit $z, z' \in \mathbb{C}^*$,

•
$$\arg\left(\frac{z}{z'}\right) \equiv \arg(z) - \arg(z')[2\pi],$$

- $\arg(z.z') \equiv \arg(z) + \arg(z')[2\pi],$
- $\forall n \in \mathbb{Z} \arg(z^n) \equiv n\arg(z)[2\pi].$

1.4 Géométrie

Définition 7. A tout point M(x,y) du plan, on associe le nombre complexe z = x + iy appelé affixe du point M. Le point M est appelé image du complexe z.

On a alors $\left\|\overrightarrow{OM}\right\| = |z| = r$ et une mesure de l'angle $\left(\overrightarrow{i}, \overrightarrow{OM}\right)$ est l'argument de z. Cela implique $x = r \cos \theta$ et $y = r \sin \theta$.

Définition 8. Si M(u) et N(v) sont deux points du plan, l'affixe du vecteur \overrightarrow{MN} est égale à v-u.

Remarque: Si A, B, C, D sont quatre points distincts du plan d'affixes respectives z_A, z_B, z_C et z_D , alors

$$\left(\overrightarrow{AB}, \overrightarrow{CD}\right) \equiv \arg\left(\frac{z_D - z_C}{z_B - z_A}\right) [2\pi]$$

Exemples 3.

1. L'ensemble des points $M\left(z\right)$ tels que : |z-a|=|z-b| est la médiatrice du segment $\left[A\left(a\right),B\left(b\right)\right]$.

3

2. L'ensemble des points M(z) tels que : |z-a|=r>0 est le cercle de centre A(a) et de rayon r.

Proposition 12.

Soit A, B, C trois points distincts du plan d'affixes respectives a, b et c. Les assertions suivantes sont équivalentes:

- 1. A, B et C sont alignés.
- 2. les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires
- $3. \ \frac{c-a}{b-a} \in \mathbb{R}$

2 Trigonométrie

2.1 égalité des $\cos/\sin/\tan$

Proposition 13.

Soit $x, y \in \mathbb{R}$, on a

- $cos(x) = cos(y) \Leftrightarrow x \equiv y[2\pi] \text{ ou } x \equiv -y[2\pi].$
- $\sin(x) = \sin(y) \Leftrightarrow x \equiv y[2\pi]$ ou $x \equiv \pi y[2\pi]$
- $tan(x) = tan(y) \Leftrightarrow x \equiv y[\pi]$

2.2 Factorisation par l'arc moitié

Proposition 14.

Soit p, q deux réels, on a :

$$e^{ip} + e^{iq} = 2e^{i\frac{p+q}{2}}\cos\left(\frac{p-q}{2}\right)$$
 et $e^{ip} - e^{iq} = 2ie^{i\frac{p+q}{2}}\sin\left(\frac{p-q}{2}\right)$.

En particulier, on a:

$$1 + e^{iq} = 2e^{\frac{iq}{2}}\cos\left(\frac{q}{2}\right) \text{ et } 1 - e^{iq} = -2ie^{\frac{iq}{2}}\sin\left(\frac{q}{2}\right).$$

4

Exemples 4.

- 1. Calcular $\sum_{k=0}^{n} \cos(kx)$
- 2. Calcular $\sum_{k=0}^{n} \frac{\cos(kx)}{\cos^{k}(x)}$ avec $x \not\equiv \frac{\pi}{2}[\pi]$.

2.3 Formules de trigonométrie

Proposition 15.

Soit a, b réels, on a :

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$
 et $\sin(a+b) = \sin a \cos b + \sin b \cos a$,

on en déduit

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$
 et $\sin(a-b) = \sin a \cos b - \sin b \cos a$.

Proposition 16.

Soit p, q deux réels, on a :

$$cos(p) + cos(q) = 2 cos\left(\frac{p+q}{2}\right) cos\left(\frac{p-q}{2}\right)$$

et

$$\sin(p) + \sin(q) = 2\cos\left(\frac{p-q}{2}\right)\sin\left(\frac{p+q}{2}\right).$$

3 Équations complexes

3.1 Racines carrées d'un nombre complexe

La fonction réelle notée par $\sqrt{\ }$ n'existe pas sur $\mathbb{C},$ néanmoins:

Théorème 17.

tout nombre complexe Z admet deux "racines carrées", opposées, $z_1 \in \mathbb{C}$ et $z_2 \in \mathbb{C}$ telles que $z_1^2 = z_2^2 = Z$ et $z_1 = -z_2$.

Remarque. Si $Z \in \mathbb{R}^+$ alors $z_1 = \sqrt{Z}$ et $z_2 = -\sqrt{Z}$.

Pour les trouver:

- 1. si Z peut se mettre sous forme exponentielle, alors $Z=re^{i\theta}$ et ses racines carrées sont $\pm \sqrt{r}e^{i\frac{\theta}{2}}$.
- 2. Sinon, on cherche z = x + iy tel que $z^2 = Z = a + ib$. Cela revient à résoudre le système :

5

$$\begin{cases} x^2 - y^2 = a \\ x^2 + y^2 = \sqrt{a^2 + b^2} \\ xy \text{ du signe de } b \end{cases}$$

Exemples 5.

- 1. Déterminer les racines carrées de $i\sqrt{3}$,
- 2. Déterminer les racines carrées de 1-i,
- 3. Déterminer les racines carrées de 4 + 3i.

3.2 Polynômes

Proposition 18.

Soit P un polynôme à coefficients complexes, alors $\alpha \in \mathbb{C}$ est racine de P si et seulement si P peut s'écrire $P(X) = (X - \alpha)Q(X)$ avec Q(X) un polynôme à coefficients complexes.

Exemple 6. Résoudre $x^3 - 7x^2 + 14x - 8 = 0$.

Proposition 19.

Le polynôme $aX^2 + bX + c$, $(a, b, c) \in \mathbb{C}^* \times \mathbb{C}^2$ possède dans \mathbb{C} deux racines (qui peuvent être confondues). Elles s'écrivent : $z_1 = \frac{-b + \delta}{2a}$ et $z_2 = \frac{-b - \delta}{2a}$ où δ est l'un des deux nombres complexes vérifiant : $\delta^2 = \Delta = b^2 - 4ac$.

Remarque: On appliquera donc l'une des deux techniques développées dans la section précédente pour déterminer δ .

Exemples 7.

- 1. Résoudre $2x^2 3x + 4 = 0$, puis factoriser $2X^2 3X + 4$.
- 2. Résoudre $x^2 + (1-i)x i = 0$

Proposition 20 (Les formules de François Viète).

 x_1 et x_2 sont solutions de $x^2 - Sx + P = 0$ ssi $x_1 + x_2 = S$ et $x_1 \cdot x_2 = P$.

Exemples 8.

- 1. Résoudre $x^2 9x + 8 = 0$ sans calculer le discriminant.
- 2. Résoudre $\begin{cases} x+y = 5 \\ xy = 3 \end{cases}$

3.3 Racines n-ièmes de l'unité

Dans tout ce paragraphe n désigne un entier naturel non nul.

Définition 9. Soit a un complexe. On dit qu'un complexe z est une racine n-ième de a si $z^n = a$.

Définition 10. On dit que c'est une racine n-ième de l'unité si $z^n = 1$. L'ensemble des racines n-ièmes de l'unité \mathbb{U}_n noté \mathbb{U}_n .

Exemples 9. 2. Determinons \mathbb{U}_2 .

Théorème 21 (Description des racines n-ièmes de l'unité). Soit n un entier naturel non nul. Il existe exactement n racines n-ièmes de l'unité qui sont les complexes ω_k définis par

$$\omega_k = e^{i\frac{2k\pi}{n}}$$
, avec $k \in [0, n-1]$.

De plus, ω_1 est un "générateur" de ces nombres au sens où

$$\forall k \in [0, n-1], \, \omega_k = \left(e^{i\frac{2\pi}{n}}\right)^k = \omega_1^k.$$

6

Exemples 10.

- 1. Explicitons \mathbb{U}_3 . Notations: On note j le complexe $e^{\frac{2i\pi}{3}}$ Question: Que vaut arg(1+j)?
- 2. Explicitons \mathbb{U}_4 .

Proposition 22.

Pour $n \ge 2$, la somme des éléments de \mathbb{U}_n vaut 0. Autrement dit,

$$\sum_{k=0}^{n-1} \omega_k = 0.$$

Exemple 11. Calculer le produit des racines n-ièmes de l'unité.

3.4 Racines n-ièmes d'un complexe non nul.

Théorème 23.

[Description des racines n-ièmes d'un complexe non nul]

Soit z_0 un complexe non nul. Il existe exactement n racines n-ièmes de z_0 . En outre, si $z_0 = r_0 e^{i\theta_0}$ avec $r_0 > 0$ et $\theta_0 \in \mathbb{R}$, alors les $z \in \mathbb{C}$ tels que $z^n = z_0$ sont les :

$$\omega_k(z_0) = \underbrace{\left(\sqrt[n]{r_0}\,e^{i\theta_0/n}\right)}_{\text{une racine n-ième}} \times \underbrace{\omega_k}_{\text{racines n-ièmes}} \quad \text{avec } k \in \llbracket 0, n-1 \rrbracket$$

$$\stackrel{\text{evidente de } z_0}{} \stackrel{\text{de l'unit\'e}}{}$$

Exemples 12.

- 1. Déterminer et dessiner les complexes z tels que $z^4 = \frac{9\sqrt{3}}{2} + \frac{9}{2}i$.
- 2. soit $n \in \mathbb{N}^*$. Déterminer les complexes z tels que

$$(i+z)^n = (i-z)^n$$

7