TD 6: Nombres complexes.

₽ classique

demande réflexion

1 Manipulation de nombres complexes

Exercice 1.

Soit $z \in \mathbb{C}$, montrer que $z \in i\mathbb{R} \Leftrightarrow |z-1| = |z+1|$ en utilisant la conjugaison.

Exercice 2.

Pour tout $z \neq i$, on pose $h(z) = \frac{(z+i)}{z-i}$.

- 1. Montrer que (z est de module 1 et $z \neq i$) \Leftrightarrow ($h(z) \in i\mathbb{R}$).
- 2. Montrer que $|z| < 1 \Leftrightarrow \Re e(h(z)) < 0$.

Exercice 3.

Soit $a \in \mathbb{C}$, |a| < 1 et $f : \begin{cases} \mathbb{U} & \longrightarrow \mathbb{C} \\ z & \longmapsto \frac{z - a}{1 - \overline{a}z} \end{cases}$.

- 1. Montrer que f est bien définie.
- 2. Montrer que $f(\mathbb{U}) \subset \mathbb{U}$.
- 3. Montrer que $f|^{\mathbb{U}}$ est bijective et donner l'expression de sa réciproque.

Exercice 4.

Soit $z \in \mathbb{C}$ tel que $|z-1| < \frac{1}{2}$, montrer que $|z| > \frac{1}{2}$.

2 Géométrie

Exercice 5.

Déterminer l'ensemble des z tel que $\frac{z-1}{z+1} \in \mathbb{R}$.

Exercice 6.

Déterminer l'ensemble des z tels que |(1+i)z-2i|=2.

Exercice 7.

Soient a, b réels distincts, $n \in \mathbb{N}^*$, résoudre $(z-a)^n = (z-b)^n$. Montrer que les solutions sont les affixes de points appartenant à une même droite verticale.

Exercice 8.

On considère l'équation $\left(\frac{2z+1}{z+1}\right)^4 = 1$.

- 1. Donner les solutions de l'équation.
- 2. Placer les images des solutions sur un dessin.
- 3. Montrer que les images des solutions appartiennent à un même cercle dont on précisera le centre et le rayon.

3 Trigonométrie

Exercice 9.

Résoudre $\sin(5x) = \sin(\frac{2\pi}{3} + x)$.

Exercice 10.

Résoudre $\cos(2x) = \cos\left(x - \frac{\pi}{2}\right)$

Exercice 11.

Exercice 14.

Résoudre $\tan \left(3x - \frac{\pi}{5}\right) = \tan \left(x + \frac{4\pi}{5}\right)$

Exercice 15.

Soit $n \in \mathbb{N}$. Calculer $\sum_{k=0}^{n} \cos(kx)$.

Exercice 16.

Soit $n \in \mathbb{N}$. Calculer $\sum_{k=0}^{n} \cos^2(kx)$.

Résoudre $\cos^2(x) - \sin^2(x) = 0$.

Exercice 12.

Résoudre $\cos^2(x) + 3\cos(2x) = 4$.

Exercice 13.

Résoudre $0 \le \sin(x)$.

4 Résolution d'équations

Exercice 17.

Calculer les racines carrées des nombres suivants :

$$- z_1 = -2$$

 $- z_2 = i$

$$z_5 = 3 + 4i$$

$$z_6 = -3 + 4i$$

Exercice 18.

1

Résoudre $z^5 = 1 - i$ dans \mathbb{C} .

Exercice 19.

Soit
$$n \in \mathbb{N}^*$$
. Résoudre $\left(\frac{z+2i}{z-i}\right)^n = 1$.

Exercice 20.

Résoudre $z^4 + 8z^2 + 160 = 0$ dans \mathbb{C} .

Exercice 21.

Résoudre $z^2 - (3+4i)z - 1 + 5i = 0$ dans \mathbb{C} .

5 Si besoin de davantage d'entrainement

Exercice 22.

Soit $z \in \mathbb{C}$, montrer que $\Re e(z) = \Im m(z) \Leftrightarrow |z-1| = |z-i|$ en utilisant la conjugaison.

Exercice 23.

Soient z, z' deux complexes. Montrer que

 $|z+z'|^2 + |z-z'|^2 = 2(|z|^2 + |z'|^2).$

Exercice 24.

Déterminer l'ensemble des z tel que $\frac{z-i}{z-1} \in \mathbb{R}$.

Exercice 25.

Déterminer l'ensemble des z tels que |2iz-1+i|=1.

Exercice 26.

Déterminer les nombres complexes $z \in \mathbb{C}^*$ tels que les points d'affixes $z, \frac{1}{z}$ et (1-z) soient sur un même cercle de centre O.

Exercice 27.

Résoudre $4\sin(x)\cos(x) = 1$.

Exercice 28.

Résoudre $cos(2x) - 2sin^2(x) = 0$.

Exercice 29.

Résoudre $\sin\left(2x - \frac{\pi}{3}\right) = \cos\left(\frac{x}{3}\right)$.

Exercice 30.

Résoudre $\sin(x) \le \frac{\sqrt{2}}{2}$.

Exercice 31.

Résoudre $-\frac{1}{2} \le \sin(x) \le \frac{\sqrt{3}}{2}$.

Exercice 32.

Résoudre $\frac{\sqrt{3}}{2} \ge \cos(x)$.

Exercice 33.

Résoudre $-\frac{1}{2} \le \cos(x) \le 0$.

Exercice 34.

Résoudre $\cos^2(x) - 2\sin x \cos x - \sin^2(x) = 0$.

Exercice 35.

Résoudre $z^2 - (5 - 14i)z - 2(5i + 12) = 0$ dans \mathbb{C} .

Exercice 36.

Résoudre $z^5 = -2 + 2i$ dans \mathbb{C} .

6 Une fois qu'on est à l'aise

Exercice 37.

Soient a, b deux éléments distincts de $\mathbb U$. Montrer que pour tout complexe z,

 $u = \frac{z + ab\overline{z} - (a+b)}{b-a} \in i\mathbb{R}.$

Exercice 38.

Soit $z \in \mathbb{C}$ tel que $|z+1| < \frac{1}{2}$, montrer que $|z^2+1| > \frac{3}{4}$.

Exercice 39. Q_8^8

Soit $z \in \mathbb{C}$, montrer que $|z| \le |z|^2 + |z - 1|$.

Exercice 40.

Soit $z \in \mathbb{U}$, montrer que l'on a $|z+1| \ge 1$ ou $|z^2+1| \ge 1$. Peut-on avoir les deux?

Exercice 41.

2

Résoudre $z^5 = \overline{z}$ dans \mathbb{C} .

Exercice 42.

Soit
$$z = e^{\frac{2i\pi}{7}}$$
 et $u = z + z^2 + z^4$, $v = z^3 + z^5 + z^6$.

- 1. Calculer u + v et u^2 .
- 2. En déduire la valeur de $\sin \frac{2\pi}{7} + \sin \frac{4\pi}{7} + \sin \frac{8\pi}{7}$.

Exercice 43.

Montrer que

$$\cos\frac{\pi}{11} + \cos\frac{3\pi}{11} + \cos\frac{5\pi}{11} + \cos\frac{7\pi}{11} + \cos\frac{9\pi}{11} = \frac{1}{2}$$

Exercice 44.

Résoudre
$$|\cos(3x-1)| \ge \frac{\sqrt{2}}{2}$$
.

Memo

- Comment déterminer la partie réelle/imaginaire?
 - Utiliser la forme exponentielle
 - Se ramener à une forme algébrique (a+ib)
 - Utiliser la factorisation par l'arc moitié
- Comment déterminer le module et l'argument? Se ramener à la forme exponentielle $\rho e^{i\theta}$ en faisant bien attention au signe de ρ .
- Comment transformer une expression trigonométrique? Cela dépend évidemment de l'expression (de la forme $e^{ip} + e^{iq}$, polynôme en cos ou sin, cos ou sin d'un angle multiple etc).
 - Utiliser la factorisation par l'arc moitié (permet de factoriser toute expression de la forme $e^{ip} \pm e^{iq}$, y compris le cas particulier $e^{ip} = 1$).
 - Utiliser la formule d'Euler pour transformer une puissance en un angle multiple
 - Utiliser la formule de Moivre pour exprimer un cosinus ou sinus d'un angle multiple comme un polynôme en cos ou sin.
 - Utiliser les formules trigonométriques : à partir de cos(a+b) et sin(a+b), on retrouve facilement la formule pour transformer une somme du type cos p + cos q en un produit.
- Comment déterminer une racine carrée?
 - Observer s'il n'y a pas de racine connue (évidente)
 - Utiliser la forme exponentielle
 - En dernier recours, poser z = x + iy et résoudre un système
- Comment résoudre une équation complexe?
 - Appliquer la formule du cours dans le cas d'une équation du type polynôme du second degré, $Z^n = A$ ou $e^z = a$.
 - Se ramener à une équation qu'on sait résoudre (ie, du type ci-dessus) par un changement de variable.