Réponses du TD n6

Réponse 3
$$z \mapsto \frac{a+z}{1+\overline{a}z}$$
.

Réponse 5 $\mathbb{R} \setminus \{-1\}$

Réponse 6 $\mathbb{R} \setminus \{-1\}$

Réponse 7
$$z = \frac{a - be^{2ik\pi/n}}{1 - e^{2ik\pi/n}}, k \in [1, n-1]$$

Réponse 8 $z_0 = 0$, $z_1 = -\frac{3}{5} + \frac{i}{5}$, $z_2 = -\frac{2}{3}$ et $z_3 = -\frac{3}{5} - \frac{i}{5}$. Leurs images appartiennent au cercle de centre $(-\frac{1}{3}, 0)$ et de rayon $\frac{1}{3}$

Réponse 9
$$\left\{\frac{\pi}{6} + \frac{k\pi}{2}, k \in \mathbb{Z}\right\} \cup \left\{\frac{\pi}{18} + \frac{k\pi}{3}, k \in \mathbb{Z}\right\}.$$

Réponse 10
$$\left\{-\frac{\pi}{3} + 2k\pi, k \in \mathbb{Z}\right\} \cup \left\{\frac{\pi}{9} + \frac{2k\pi}{3}, k \in \mathbb{Z}\right\}.$$

Réponse 11
$$\left\{\pm \frac{\pi}{4} + k\pi, k \in \mathbb{Z}\right\}$$

Réponse 12
$$\{k\pi, k \in \mathbb{Z}\}$$

Réponse 13
$$\bigcup_{k\in\mathbb{Z}} [2k\pi, (2k+1)\pi].$$

Réponse 14
$$\left\{\frac{k\pi}{2}, k \in \mathbb{Z}\right\}$$
.

Réponse 15
$$\frac{\cos\left(\frac{nx}{2}\right)\sin\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)}.$$

Réponse 16
$$\frac{1}{2} \frac{\cos{(nx)}\sin{((n+1)x)}}{\sin{(x)}} + \frac{n+1}{2}$$

Réponse 17 1. $\pm i\sqrt{2}$.

2.
$$\pm e^{\frac{i\pi}{4}}$$
.

3.
$$\pm \sqrt[4]{2}e^{\frac{i\pi}{8}}$$
.

4.
$$\pm e^{-\frac{i\pi}{6}}$$
.

5.
$$\pm (2+i)$$
.

6.
$$\pm (1+2i)$$
.

Réponse 18 $\sqrt[10]{2}e^{-\frac{i\pi}{20} + \frac{2ik\pi}{5}}$ pour *k* variant de 0 à 4.

Réponse 19
$$\frac{i\left(2+e^{\frac{2ik\pi}{n}}\right)}{e^{\frac{2ik\pi}{n}}-1} \text{ pour } k \text{ variant de 1 à } n-1.$$

Réponse 20
$$\pm \left(\sqrt{2\sqrt{10}-2} + i\sqrt{2\sqrt{10}+2}\right)$$
 et $\pm \left(\sqrt{2\sqrt{10}-2} - i\sqrt{2\sqrt{10}+2}\right)$

Réponse 21
$$1+i$$
 et $2+3i$

Réponse 24 les $z \neq 1$ dont l'image appartient à la droite y = -x + 1.

Réponse 25 Les affixes des points du cercle de centre l'image de
$$-\left(\frac{1+i}{2}\right)$$
 et de rayon $\frac{1}{2}$.

Réponse 26 Les complexes recherchés sont donc $e^{\pm \frac{i\pi}{3}}$.

Réponse 27
$$\left\{\frac{\pi}{12} + k\pi, k \in \mathbb{Z}\right\} \cup \left\{\frac{5\pi}{12} + k\pi, k \in \mathbb{Z}\right\}$$

Réponse 28
$$\left\{\pm \frac{\pi}{6} + k\pi, k \in \mathbb{Z}\right\}$$

Réponse 29
$$\left\{\frac{\pi}{2} + \frac{6k\pi}{5}, k \in \mathbb{Z}\right\} \cup \left\{\frac{5\pi}{14} + \frac{6k\pi}{7}, k \in \mathbb{Z}\right\}.$$

Réponse 30
$$\bigcup_{k \in \mathbb{Z}} \left(\left[2k\pi, \frac{\pi}{4} + 2k\pi \right] \cup \left[\frac{3\pi}{4} + 2k\pi, 2(k+1)\pi \right] \right)$$

Réponse 31
$$\bigcup_{k \in \mathbb{Z}} \left(\left[-\frac{\pi}{6} + 2k\pi, \frac{\pi}{3} + 2k\pi \right] \cup \left[\frac{2\pi}{3} + 2k\pi, \frac{7\pi}{6} + 2k\pi \right] \right)$$

Réponse 32
$$\bigcup_{k\in\mathbb{Z}} \left[\frac{\pi}{6} + 2k\pi, \frac{11\pi}{6} + 2k\pi \right]$$

Réponse 33
$$\bigcup_{k \in \mathbb{Z}} \left[-\frac{2\pi}{3} + 2k\pi, -\frac{\pi}{2} + 2k\pi \right] \cup \left[\frac{\pi}{2} + 2k\pi, \frac{2\pi}{3} + 2k\pi \right]$$

Réponse 34
$$x = \frac{\pi}{8} + k\pi, k \in \mathbb{Z}.$$

Réponse 35
$$-2i$$
 et $5-12i$.

Réponse 36
$$\sqrt[10]{8}e^{\frac{3i\pi}{20} + \frac{2ik\pi}{5}}$$
 pour k variant de 0 à 4.

Réponse 40 oui, pour
$$z = i$$
 ou $z = i^2$.

Réponse 41
$$\left\{e^{\frac{ik\pi}{3}}, k \in [0,5]\right\} \cup \{0\}.$$

Réponse 42
$$\sin \frac{2\pi}{7} + \sin \frac{4\pi}{7} + \sin \frac{8\pi}{7} = \frac{\sqrt{7}}{2}$$

Réponse 44
$$\bigcup_{k \in \mathbb{Z}} \left(\left[\frac{1}{3} - \frac{\pi}{12} + \frac{2k\pi}{3}, \frac{1}{3} + \frac{\pi}{12} + \frac{2k\pi}{3} \right] \cup \left[\frac{1}{3} + \frac{\pi}{4} + \frac{2k\pi}{3}, \frac{1}{3} + \frac{5\pi}{12} + \frac{2k\pi}{3} \right] \right).$$