1 Vrai/faux

Les affirmations suivantes sont-elles vraies ou fausses?	affirmation 5. Si $f \circ g = f \circ h$ et f est bijective, alors $g = h$.
affirmation 1. Soit $f: E \to F$ une fonction, alors $f ^{\text{Im}(f)}$ est surjective.	
	affirmation 6. Si $f \circ g = f \circ h$ et g, h sont bijectives, alors $g = h$.
affirmation 2. Si f est surjective, alors $f \circ g$ est surjective.	affirmation 7. Si $f \circ g$ est surjective et f est bijective, alors g est surjective.
affirmation 3. Si g est injective, alors $f \circ g$ est injective.	affirmation 8. Si $f \circ g$ est injective et f est bijective, alors g est inrjective.
affirmation 4. Si f est injective, alors tout élément de $\mathrm{Im}(f)$ admet un unique antécédent.	affirmation 9. Si $A \subset E$ et $B \cap E = \emptyset$ alors $A \cap B = \emptyset$

affirmation 10. Si $A \subset E$ et $B \subset E$, alors $A \cap B \neq \emptyset$.

affirmation 11. Si $A \cup \overline{B} = D$, alors $B \cap D = \emptyset$.

affirmation 12. Si $A \cup B = A \cup D$, alors B = D

affirmation 13. Si $A \cap B = A \cap D$, alors B = D.

2 Solutions du Vrai/Faux calculs algébriques

nition. Par injectivité, cet antécédent est unique.

Correction 1 Vrai car l'image de $f|^{\text{Im}(f)}$ est Im(f) et c'est également son espace

d'arrivée.

Correction 5 Vrai, il suffit de composer à gauche par f^{-1} .

Correction 2 Faux, prenez $f = id_{\mathbb{R}}$ et $g : \begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto x^2 \end{cases}$.

Correction 6 Faux, prenez $g = id_{\mathbb{R}}$, $h = -id_{\mathbb{R}}$ et $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$.

Correction 3 C'est faux, prenez $g = id_{\mathbb{R}}$ et $f : \begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto x^2 \end{cases}$.

Correction 7 Vrai car $g = f^{-1} \circ (f \circ g)$ est la composée de deux fonctions surjec-

tives.

Correction 4 C'est vrai, tout élément de l'image admet un antécédent par défi- Correction 8 Vrai car $g = f^{-1} \circ (f \circ g)$ est la composée de deux fonctions injec-

Correction 9 Vrai, car $A \cap B \subset E \cap B$.

Correction 13 Faux, prenez $A = B = \mathbb{R}_+$ et $D = \mathbb{R}$.

Correction 10 faux. Prenez $A = \mathbb{R}_+^*$, $B = \mathbb{R}_-^*$ et $E = \mathbb{R}$.

Correction 11 faux, si A n'est pas inclus dans \overline{B} . On peut alors trouver $x \in A$ et

 $x \notin \overline{B}$ et $x \in A \cap B$. En revanche, si $A \subset \overline{B}$, alors $D = \overline{B}$ et on a bien $D \cap B = \emptyset$.