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TD 6 : Nombres complexes.

& classique % demande réflexion

1 Manipulation de nombres complexes

Exercice 1.
Soit z € C, montrer que z € iR < |z— 1| = |z + 1] en utilisant la conjugaison.

Exercice 2.

(z+1)

z—i

1. Montrer que (z est de module 1 et z # i) © (h(z) € iR).

Pour tout z # i, on pose h(z) =

2. Montrer que |z| <1 & Ze(h(z)) <O0.

Exercice 3.
U — C
z—a

Z —

SoitaeC,|a|<1etf:{
1-az

1. Montrer que f est bien définie.

2. Montrer que f (U) cU.

3. Montrer que f|V est bijective et donner I'expression de sa réciproque.

Exercice 4. . .
Soitze Ctelque|z—1| < > montrer que |z| > 3

2 Géométrie

Exercice 5.

z
Déterminer 'ensemble des z tel que g} eR.
z

Exercice 6.
Déterminer I'’ensemble des z tels que |(1 + i)z —2i| = 2.

Exercice 7.
Soient a, b réels distincts, n € N*, résoudre (z— a)" = (z— b)". Montrer que les solutions
sont les affixes de points appartenant a une méme droite verticale.

Exercice 8.

22+1)4
=1
+1

1. Donner les solutions de I'équation.

On considére I'’équation (

2. Placer les images des solutions sur un dessin.

3. Montrer que les images des solutions appartiennent a un méme cercle dont on
précisera le centre et le rayon.

3 Trigonométrie

Exercice 9. Résoudre cos?(x) — sin?(x) = 0.

Résoudre sin (5x) = sin (&£ + x). Exercice 12.

Exercice 10. 3 9
Résoudre cos“(x) +3cos(2x) = 4.

b4
Résoudre cos(2x) = cos (x - —). .
3 Exercice 13.

Exercice 11.

Résoudre 0 < sin(x).
Exercice 14.

, b/ 47
Résoudre tan (Sx - E) =tan|x+ =/

Exercice 15.

n
Soit n € N. Calculer ) cos(kx).
k=0

Exercice 16. "
Soit n € N. Calculer Y. cos?(kx).

k=0
4 Résolution d’équations
Exercice 17.

Calculer les racines carrées des nombres suivants :

— 212—2
— ZgZi

— Zg=1+i
1
—Z4=5(1—i\/§)

— z5=3+4i
— ZGZ—3+4i

Exercice 18.

Résoudre z° =1 —i dans C.



Exercice 19.

Soit n € N*. Résoudre ( =1.

z+2i)”
z—1

Exercice 20.
Résoudre z* +8z% + 160 =0 dans C.

Exercice 21.
Résoudre z° — (3+4i)z—1+5i =0 dans C.

5 Sibesoin de davantage d’entrainement

Exercice 22.
Soit z € C, montrer que Ze(z) = . $m(z) © |z—1| =|z—i| en utilisant la conjugaison.

Exercice 23.
Soient z, z’ deux complexes. Montrer que

lz+ 2P +|z- 212 =2 (12 +12'?).

Exercice 24. .
. . , z—1
Déterminer I'ensemble des z tel que p— eR.
z—

Exercice 25.
Déterminer I'ensemble des z tels que [2iz—1+i| = 1.

Exercice 26.
Déterminer les nombres complexes z € C* tels que les points d’affixes z, % et (1—z) soient
sur un méme cercle de centre O.

Exercice 27.

Résoudre 4sin(x) cos(x) = 1.
Exercice 28.

Résoudre cos(2x) — 2sin®(x) = 0.

Exercice 29.
. . Y4 X
Résoudre sin (Zx - —) = CO0S (—)
3 3
Exercice 30.

Résoudre sin(x) <

ol

Exercice 31.

ol%

. 1
Résoudre -3 <sin(x) <

Exercice 32.

3
Résoudre \/7_ = cos(x).

Exercice 33.

1
Résoudre —3 < cos(x) <0.

Exercice 34.
Résoudre cos?(x) —2sinxcos x — sin%(x) = 0.

Exercice 35.
Résoudre z2 — (5—14i)z —2(5i + 12) =0 dans C.

Exercice 36.

Résoudre z° = —2+2i dans C.

6 Une fois qu’'on est a 'aise

Exercice 37.
Soient a, b deux éléments distincts de U. Montrer que pour tout complexe z,

B z+abz—(a+Db)

e iR.
b—a

Exercice 38. 1 3
Soit ze Ctel que |z +1| < 5> montrer que |22 +1]| > T

Exercice 39. &%
Soit z € C, montrer que |z| < |z]® + |z —1].

Exercice 40.
Soit z € U, montrer quel'onalz+1| =1 ou |22 + 1’ = 1. Peut-on avoir les deux?

Exercice 41.

Résoudre z° =z dans C.



Exercice 42.
. 2ix 2, .4 3, .5, .6
Soitz=e7 etu=z+z°+z*,v=2"+2>+2z".

1. Calculer u+ v et u?.

27 4n 81
2. En déduire la valeur de sin - + sin - + sin -
Exercice 43.
Montrer que
b/ 3 51 n It 1
CO0S — + C0S — + COS — + COS — + CO0S — = —
11 11 11 11 11 2

Exercice 44.

Résoudre |cos(3x—1)| =

ol

Memo

— Comment déterminer la partie réelle/imaginaire ?

— Utiliser la forme exponentielle

— Se ramener a une forme algébrique (a + ib)

— Utiliser la factorisation par I’arc moitié

— Comment déterminer le module et I'argument? Se ramener a la forme exponen-
tielle pe’® en faisant bien attention au signe de p.

— Comment transformer une expression trigonométrique ? Cela dépend évidemment
deI'expression (de la forme e’” + !9, polynome en cos ou sin, cos ou sin d’'un angle
multiple etc).

— Utiliser la factorisation par 'arc moitié (permet de factoriser toute expression
dela forme e'? + €9, y compris le cas particulier e’” = 1).

— Utiliser 1a formule d’Euler pour transformer une puissance en un angle multiple

— Utiliser la formule de Moivre pour exprimer un cosinus ou sinus d'un angle
multiple comme un polynéme en cos ou sin.

— Utiliser les formules trigonométriques : a partir de cos(a + b) et sin(a + b), on
retrouve facilement la formule pour transformer une somme du type cosp +
cos g en un produit.

— Comment déterminer une racine carrée?

— Observer s’il n'y a pas de racine connue (évidente)

— Utiliser la forme exponentielle

— En dernier recours, poser z = x + iy et résoudre un systeme

— Comment résoudre une équation complexe?

— Appliquer la formule du cours dans le cas d’'une équation du type polynéme du
second degré, Z" = Aou e* = a.

— Se ramener a une équation qu’on sait résoudre (ie, du type ci-dessus) par un
changement de variable.



CorrectionduTD n 6

Correction1 On raisonne par équivalence. Soit z € C. Alors

lz—1|=|z+1|

& |z-1/? =|z+1/? par positivité du module
& (z-1)z-1=(z+1z+1

& zz-z—-z+1=zz+z+z+1

o 2(z+2)=0

& 4Re(z) =0

< zeiR

On a bien I’équivalence souhaitée.

Correction2 Soit z € C\ {1}. On met h(z) sous forme algébrique :

_(z+ D@+ 1zP-1+2iRe(2)

h
(2) P

|z —il?
1. Soit z € C\ {i}. On raisonne par équivalence :

zeUo ZRe(h(z)) =0< h(z) €iR.

|z -1
2. Ona%Ze(h(z)) = ——— donc
lz—il?

Re(h(z)<0o|z|< 1.

Correction 3

1. 11 suffit de montrer que Vz € U,1 —az # 0. On suppose par 'absurde qu'’il existe
zeUtel que 1 —az=0.0n aalors az =1 d’ol, en prenant le module, |a| = 1 ce qui
est absurde. On a montré que f est bien définie.

2. Soit z € U. On raisonne par équivalence :
z—a

f@I=1 e |i=1]=1

o lz—al=|1-az|

= (z—a)(z-a)=(1-az)(1-az)

s zz—az—adz+aa=1—-az—-az+aazz
< 1zI? +|al* = 1 +]zl?|al?

= 1+lal®>=1+|alcar |z| =1

La derniere égalité est vraie donc, par équivalence, la premiére 'est et f(z) € U.

3. Soit @ € U. On raisonne par équivalence :
-a

Z=ao —=q
1@ l1-az _
o (z—a)=a(l-az)
o zl+aa)=a+a
a _ . .
= z= car 1 +az # 0 d’apres la premiere question

l+aa

. . L at+a .
Par analogie avec la question précédente, on montre que )1+_ ‘ =1 ce qui
aa

montre que 'équation f(z) = @ admet une solution dans U donc f|V est bijective.
a+z

1+az

Sa bijection réciproque est définie par z —

1
Correction4 SoitzeC,onécritz=1—-(1—2z),onadoncl|z|=1-]1-2[.0r|l1-z|< X

1
on adonc |z| > >

Correction 5 Soit z € C\ {—1}.Notons M, P et P’ les points d’affixes respectives z, 1 et
—1. On raisonne par équivalence :

z—1

eR
z+1
M, P, P’ sont alignés

M appartient a I’axe des abscisses
z€eR

¢ 690

On peut aussi raisonner avec la conjugaison :



z—1
€

z+1

z—1 z-1
=% =

z+1 z+1
o (z-1DE+D)=Z-D(z+1)
& zz+z-z-1=Zz+z-2z-1
o 2(z-2)=0
< 4i¥m(z)=0
< z€eR

L'ensemble recherché est donc R\ {—1}.

Correction 6 On raisonne par équivalence :
|(1+i)z—-2i|=2
2i
= v/2En divisant I'égalité par |1 +i| = V2

z— —

lz—(1+i)=Vv2

On en déduit que I'’ensemble des solutions est I'’ensemble des affixes des points du cercle
de centre I'image de 1+ i, de rayon /2.

<

<

z—
Correction 7 Comme a et b sont distincts, z # b. On a ( b
Z—

ke [0,n—1]. Comme z—a # z— b, on exclut le cas k = 0.

On a alors :
z-a :ezikﬂ/n
z—-b )
S z—a= (Z_b)eZLkn/n
o z(l_e2’kﬂ/"):a_b621kn/n
a_beZikn/n o
T — - — 2ikn/n
@ A= iknin ,ke[l,n-1]carVke[l,n-1] donce #1

On remarque que les solutions correspondant a k = 1 et k = n— 1 sont conjuguées et
leurs affixes appartiennent donc a la droite verticale d’abscisses leur partie réelle com-
mune. Il suffit de montrer que toutes les racines de I’équation ont la méme partie réelle.

On utilise la factorisation par I’arc moitié au dénominateur :

. . o knm
1- eszn/n — —elk”/nZZSIH—,
n

donc )
1 ie—zkn/n

1-— eZikﬂ/n -

kn °

2s1n7

Ona: )
a_beZLkn/n

ie—ikﬂ/n(a_beZikn/n) i(ae—iknln_beikﬂ/n)

in kn
2sin m

1 — e2ikn/n ZSink—f

Pour un nombre complexe Z, la partie réelle de i Z est égale a I'opposé de la partie ima-
ginaire de Z donc

a_beZikn/n) P (ae—ikn/n_beikn/n) asink_:+bsink_: a+b
— m = =

_ p2iknin kn sk
l-e =z 2sin &% 2

Ze -

2sin

On en déduit que toutes les solutions ont méme partie réelle, elles sont donc les affixes
de points alignés, appartenant a une droite verticale.

Correction 8

4 . . , . 2ikn
= 1. Les racines quatrleme de l'unité sonte ¢ =

2z
1. On cherche a résoudre (
z+1

ik . s
ez pour k variantde 0 2 3. On a donc:

2z+1\* 2z+1 ikr
( = )zez,ke[[o,sﬂ
z+1 z+1 N
Sz=- 1*95), ke [0,3]
2—e 2
En calculant explicitement ces valeurs pour k =0, 1,2 puis 3, on trouve zy =0, z; =
3 i 2 3 i
——+—-,zp=——etzzg=————.
5 5 3 5 5

2. Onnote My, ..., M3 les points d’affixes zy, ..., z3. On a la figure suivante :




3. Siles quatre points sont cocycliques, le centre du cercle est sur la médiatrice des

deux points M) et M3 donc sur I'axe réel car leurs affixes sont conjuguées. Le
centre doit également étre sur la médiatrice de My et M, c’est-a-dire sur la droite

1 1
y = -3 Cela implique que le rayon est 3 Pour montrer que les quatre points

appartiennent bien au cercle de centre (—%, 0) et de rayon %, il suffit de vérifier que
les modules des nombres complexes z; — (—3) = z; + %, pour i € [0,3] valent 1. On
calculedonc zg+31 =1, z1+1=-%+1, zz+1=-letz+1=-2 -1 Onvérifie
facilement que |z; + 11* = § pour tout i € [0,3] donc les points sont cocycliques et
ils appartiennent au centre d’affixe —% et de rayon %

On peut aussi remarquer, que le triangle MyM; M3 est isocele donc le centre du
cercle circonscrit au triangle appartient a la médiane de M; M3 qui est 'axe réel
puisque z; et z3 sont conjugués. On cherche un réel w tel que [0 —w| = |- % + é —-w|.
Ontrouve w = —% doncle cercle circonscrit a MyM; M3 est le cercle de centre (— % ,0)
et de rayon % On vérifie ensuite que M, appartient a ce cercle.

Remarque. il est également possible de résoudre le systéme

en cherchant zq sous la forme a + ib, a, b réels. les deux premieres égalités (au
carré) donnent a = —%. On injecte la valeur de a dans I'égalité | zq|?> = |- % + % -zal,
on trouve b = 0 donc zq = —%. Onadoncl—%+ % —zal=1-%— g —zq| etles quatre
modules sont donc bien égaux.

Correction9 On raisonne par équivalence :

sin (5x) = sin (2% + x)

3
o 5x=% +x+2kmoubx=m— (% +x)+2kn, avec ke Z
T km T kn
= x:—+?oux:—8+?,aveckez
g JT] T} [ﬂ]
x=—|=|oux=—|—=
612 1813

Correction 10  On raisonne par équivalence :

cos(2x) = cos (x - g)

o 2x:x—§+2knou2x:—x+—+2kn,aveck€Z

b4 n  2knm
& x=—-—+2kmoux=—+—,avecke”Z

3
b4 |27
= =-—[2nloux=—|—
3 913

Lensemble des solutions est :

2k
{—z+2kn,kez}u{z+—n,kez}.
3 9 3

Correction 11

lence:
cos(x) = sin(x)
b1
< cos(x) =cos (E - x)
o x:i(z—x)+2kﬂ,k€Z
o in-(——X) [27]
b4 2 b4
o Xx= g — x[2m]car on ne peut avoir x = x — 0 (2]
& x=-—-(n
1 [7]
Pour la deuxiéme égalité, on a cos(x) = —sin(x) < cos(—x) = sin(—x) donc, d’apres ce

. 2z N 71:
qui précede, x = — 1 [n].

Lensemble des solutions est donc {i% +kn, ke Z}.

Correction 12 On raisonne par équivalence :

cos?(x) +3cos(2x) =4

cos(2x)+1
——— +3cos(2x) =4

cos(2x) =1
2x=0[2m]
x =0[n]

t 006 ¢

On a cos?(x) — sin?(x) = 0 © cos(x) = +sin(x). On raisonne par équiva-



L'ensemble des solutions est donc {k7, k € Z}.

Correction 13  On a la figure suivante :

1N
NI

Si x € [0,27], on a sin(x) = 0 & x € [0, 7], on en déduit donc que 'ensemble des solu-

tionsest U [2km, 2k + 1)x].
kez

Correction 14 On raisonne par équivalence :

T 4w
tan(3x——)=tan X+ —
5 5
T Y4
< 3x—-—=x+—+kmn,aveckeZ .

T
= x:7,aveck€Z

{M,kez}.
2

Lensemble des solutions est

Correction15 Ona

n n ) n o
cos(kx) =) _ @e(e’kx) = @e(z elkx).

k=0 k=0 k=0

On reconnait une somme géométrique :

n o e(n+1)ix_ 1

Z elkx —

= eix _1

On factorise par I'arc moitié pour déterminer sa partie réelle :

i(n+tDx inx |
entlix _1 e 2z 2isin (@) e'? sin (_(”*21”‘)
i - L .. - . X ’
et -1 e 2isin () sin(3)
onadonc:
n cos (4%) sin(—(’“zl)x)
Y cos(kx) = —
k=0 sin ()

Correction 16 On écrit :
) 1 1
Yke[|0,n|], cos“(kx) = 3 cos(2kx) + >

d’
n

cos?(kx) =) (3cos(2kx)+3)
k=0

n

12 1
==Y cos(2kx)+=)_

2i20 =
_ l cos(nx)sin((n+1)x) n+1

2 sin (x) 2
en utilisant I'exercice 15 avec 2x dans le réle de x.

M=Q,

bl
Il
o

Correction 17
1. Les racines carrées de —2 sont +i+/2.
2. Lesracines carrées de i = ei7” sont ie%.
3. Onécrit1+i=+v2eT donc les racines carrées sont +/2e s .
1-iV3
2

in
6

L. _ix . . _
4. On écrit = e~ 3 donc les racines carrées sont +e

5. Iln’y a pas de forme trigonométrique simple de 3 +41i, on cherche donc ses racines
carrées sous la forme a + ib avec (a,b) € R%. On a a® + b®> = |3+4i| =5,a%> - b® =
Re(3+4i)=3et2ab=Fm@B+4i)=4doua=+2etb=+1. Comme ab >0, les
racines carrées de 3 + 4i sont +(2 + i).



6. Iln'y a pas de forme trigonométrique simple de —3+41, on cherche donc ses racines
carrées sous la forme a+ ib avec (a,b) e R2. Ona a®+ b?> = |-3+4i| =5,a® - b? =
Re(-3+4i)=-3et2ab=Fm(-3+4i)=4dotta=+1et b==+2. Comme ab >0,
les racines carrées de 1 +2i sont +(1 +21i).

Correction 18 On commence par mettre 1 — i sous forme exponentielle :

_in
1-i=V2e t.
. .s . 5 _im , 2ikn 10 _im 2ikm .
Les racines 5-iemes de 1 — i sont donc v/ v2e~ 20+ 5 = Y/2e~20+"5 pour k variant de 0

ad.
Correction 19 On raisonne par équivalence :

(z+2i)"
- =1 <
z—1i

z+2i 2ikn

E]k € [|0)’1'_ 1|]) - =en

z- . . 2iknm
< 3dke[lo,n—-1|l,z+2i=(z—1i)e n

o Tkel0,n—1|l,1-e")z= —i(2+e%)

Si k=0,iln'y a pas de solution. Onadonc k€ [|1,n—1]] :

2ikn
z+2i n —'1(2'+ e n )
( ) =1 <3kel|l,n-1|l,z= S
z—1i
l-en
2ikm
i[2+en )
Les solutions sont donc les complexes de la forme ———— pour k variant de 1 a
en —1

n-1.

Correction 20  On pose Z = z2, il faut alors résoudre 1'équation Z2 +8Z + 160 = 0 dont
le discriminant vaut (241)2 et les solutions sont —4 +12i. On doit maintenant chercher les
racines carrées de ces deux solutions. On cherche les racines carrées de —4 + 12i sous la
forme a+ib avec (a,b) eR%.Ona:

a?+b* = 4V10
a?-b®> = -—det ,
2ab = 12

Celaimplique a=+VvV2v10-2et b= +Vv2v10+2. Comme ab > 0, les racines carrées de
—4+12i sont

i(\/Z\/E—zﬂ'\/z\/ﬁm).

De la méme maniére, on trouve que les racines carrées de —4 — 12i sont

i(\/Z\/E—z—i\/Z\/Eu

On en déduit que les solutions de I'équation sont

i(\/Z\/ﬁ—zn\/z\/Eu) et + \/Zx/ﬁ—Z—i\/Z\/ﬁ+2).

Correction 21 Le discriminant vaut —3 + 4i dont une racine carrée est 1+ 2i (d’apres
I'exercice 17). Les solutions sont donc, apres simplification, 1+ i et 2 + 3i.

Correction 22 On raisonne par équivalence. Soit z € C. Alors

lz—1=lz—il

|z—1|? = |z - i|? par positivité du module
(z=1D(z-1=(z—-i)(z—1)
z2z—z—z+1=zz+iz—iz+1
—(z+2)=i(z—2)

—2%e(z) =i(2iFm(z)

Ze(z) = . m(z)

[ G

On a bien I'équivalence souhaitée.

Correction 23 On écrit :

lz+Z P +1z=-Z12P=(z+2)z+2) +(z-2)(z-2)
(z+2)zZ+Z)+(z-2)zZ-Z)

lzI2+ 22+ 22 + |2 >+ |z12 - 22— 22 +|Z|?
2(lz1> +12'1?).

On a bien I'équivalence souhaitée.

Correction 24  Soit z € R\ {1}. Notons M, P et P’ les points d’affixes respectives z, i et
1. On raisonne par équivalence :

z—1

eR
z—1
M, P, P! sont alignés
M appartient a la droite (PP’)
M appartient a la droite y = —x +1

¢ 690



Lensemble recherché est donc I'ensemble des complexes z # 1 dont I'image appartient
aladroite y=-x+1.

Correction 25 On divise I'équation par |2i|, on obtient

+ i-1 ! r t
Z+——| = —, que 1 on peu
2 |24 P

1+ 1
réécrire |z + =3 On en déduire que 'ensemble des solutions est I'ensemble des

1+i 1
affixes des points du cercle de centre I'image de — (Tl) et de rayon >

Correction 26  On doit avoir |z| =| % |=I1-z]onadonc|z|=1.Posons z=x+iy,ona
alors |1 - z| = 1 ce qui implique (x—1)?+ y® =1 et comme x* + y* = |z[* = 1,0ona x = § et

. in
y== ‘/7§ Les complexes recherchés sont donc e* 3 .

Correction 27
On raisonne par équivalence :

4sin(x)cos(x) =1

< 2sin2x)=1
1
©  sin(2x) = 3
/4 b/

o 2x= g[Zn] OUX=T— 6[271]

T 51
o x=—|[n]ou—[n]

1 12

T 51
L'ensemble des solutions est donc {E +km, ke Z} U { D) +km, ke Z}.

Correction 28 On raisonne par équivalence :

cos(2x) — 2sin®(x) =0

& 1-2sin?x-2sin?x=0
. 9 1
< sin (x):Zl
sin(x) = +—
. 2
& x=zx—[n]

6

T
Lensemble des solutions est donc {J_rg +km, ke Z}.

Correction 29 On raisonne par équivalence :

sin(2x - %) =cos(3)

57 X JT .
e cos(2x— =cos (%) car cos(a—z) =sin(a)

57 x 51 X
o 2x—-—=—+4+2knou2x——=——+2knm,aveckeZ
6 3 6 3
T 6kn
X=—+—ou
2 5
Lensemble des solutions est donc

T 6km 5nm 6km
—+—,k€ZyuU—+—,keZ;.
2 5 14 7

5nm 6km
x:ﬁ+—,aveck€Z

<

Correction 30  On a la figure suivante :

3n

jan
N,

T 3
Six€[0,27],onasin(x) < ‘/75 < XE€ [0, Z] U T,Zn , on en déduit que I'ensemble des

solutions est

b4
([an, —+2km|U
kezZ 4

% +2km,2(k+ l)n] )

Correction 31 On ala figure suivante :
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Sixe [—5,7 R ona—% < sin(x) < \/Tg S Xx€E [_E’g] u 35 , on en déduit que

I’ensemble des solutions est :

kezZ
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Correction 32 On a la figure suivante :

2n 7
— +2km, o +2kn
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donc '’ensemble des solutions est

)

3
Si x € [0,27], on a % = cos(x) © x €

6
T 11n
U |=+2kn,— +2km]|.
kez 6
Correction 33

-~
NV

. 1 T T 27 ,
Sixe[-mnl,ona——-—<cos(x) <0 x€|——,—— —,— | donc ’ensemble des
2 3 2 2 3
27 7T T 27
solutionsest J |—— +2kn,—— +2kn|U | = +2kn, — +2kn]|.
kez 3 2 2 3

Correction 34 On a cos?(x) — sin?(x) = cos(2x) et 2sin xcos x = sin(2x) donc I'équation
est équivalente a :

cos(2x) =sin(2x),

soit encore
b4
cos(2x) = cos (Zx - 5) .

. T P 2
On ne peut avoir 2x = 2x — 5 +2km, on en déduit que 2x = — (2x - —) +2kn,avec ke ”Z
ce qui se réécrit :

/4
x=§+kn,k€Z.



Correction35 Le discriminant vaut —75—1007 = —25(3+41i). Pour en trouver une racine
carrée, nous allons chercher une racine carrée de 3 +4i. D’apres |'exercice 17, une racine
carrée de 3+4i est2+i.0naalors 5i(2+ i) = =5+ 10i une racine carrée du discriminant.
Les solutions sont donc, aprés simplification, —2i et 5 —12i.

Correction 36  On écrit —2 + 2i sous forme exponentielle :

3in
—242i=2V2e" .
. s . 5 3in Ztkn 3in , 2ikn .
Les racines 5-iemes de —2 +2i sont donc v/2y2e2 * = V8e 75 pour k variant

de0ad4.

Correction 37 On calcule le conjugué de u :

z+abz—(a+Db)

b—a
_z+ab2—(a+b)

_b-a _
_z+abz—(a+b)

E ib_g b) 1 —
= 1 car,VcelU,—-=¢
1_1 c

b a

ab(z+ 25— (G +3))
ab(; —%)

z—
a—b

S

S

abz +

s
G‘

)

=-u

On a donc montré que u est un imaginaire pur.
On peut aussi €crire :

z+abz—(a+Db)
b—a _
(z+abz—-(a+Db))(b—a)
|b—al?

puis développer le numérateur :
(z+ab2—(a+b))(E—E
= Z(E—ﬁ)+ab(l_7—m2—(a+b)(_5—ﬁ)
= z(b-a)+(albl®-bla®)z- (ab-|al® +|b® -
= z(E—a)+(a—b)z—(aE—@)car|a|=1=|b|
= z(b-a) -z(b-a) - (ab-ab)
- zmm(z(E—a))—zmm(aE).

ba)

On retrouve que u est un imaginaire pur mais avouez que c’est moins joli!

1 1
Correction38 Onsait que [z+1|* < 1 et|zl]=]z+1-1]=21-]|z+ 1| donc |z| > E.Onen

déduit que

|22 +1] = |(z+ 1D* -2z >2|z|—|z+1|2>§1

Correction 39
— Si|z| =1, alors |z] <
— Si|z| <1, on écrit |z|
|z| < 1.

|z|> donc I'inégalité est vraie.
= |z —-zZ2+ zz| <lzlll1 - z| +|z|* et I'inégalité est vraie puisque

9 avec 0 € [-7, 7], on a alors |z + 1]

i __[ ]E n

0
Correction 40 On écritz=e =2|cos 5' et|z®+1| =

2|cos0| en factorisant par I’arc moitié. Si |z + 1| <1,alorsf € .On

3

0 T T T T 1 . 3
aalorsze]——,——[u]g — | donc Eet|z+1|>1.Onad0ncb1enm0ntreque

36 3
I'on a toujours 'une des deux quantités |z + 1] et |z2 + 1| qui est supérieur a 1.

cos —
2

Si on a égalité, on a cosf = ig et cosz = iz ce qui n'est possible que pour 6 =

/4 . . .2
+—[27] autrement dit pour z = j ou z = j°.

Correction 41  Analyse : Soit z une solution. Si z # 0, 'égalité des modules |zI5 = |z|
impose |z] =1. Onadonc:

=z
o Z8=2zz
o 8=z
o zZ8=1car|zl=1
On sait que les racines 6-iemes de l’unité sont e*¢” = %, ke[o,5].
Syntheése : z = 0 et solution et si Z=1,onalzl=1e =z.

On en déduit que 'ensemble des solutions est :

{e"F keo,5]}uio).



Autre méthode :

z =0 est solution. Soit z # 0, on écrit z = re'? avecO e Ret r >0.0On a
=7 or’e’il=re 0
5 3n
r’=r —
< 4
{59 =-0[2n)
r=1

NS

"l N

. . 7
On en déduit que I'ensemble des solutions est : - 1
tor 4
{e¥ ke [o,5]}uio).
Correction 42
1. Ona u+ v = -1 car la somme des racines 7iemes de 'unité vaut 0 et u? = u+2v.
. T \/Z T T 3n 37
2. On en déduit que u vérifie u? + u +2 = 0. On cherche les racines de cette équation, Siye [—5, 5], onacos(y)| = - CVE [—Z, 1 T donc pour yeR, ona:
-1+iv7
on trouve T\/_ Reste a encadrer la partie imaginaire de u pour savoir si elle /2 s
7 /2 /5
3 87 3 A cos(y) = - ©yE U ([——+2kn,—+2kﬂ]u —+2kn]).
est positive ou non. On a —— <sin — < 0et 5 < sin — < 1 donc la somme des rez\t 4 4 4
deux sinus est positive, on en déduit que On a donc :
. 2n  Am 8w V7
sin — +sin — +sin— = —
7 7 7 2

|[cos(3x—1)| =

[

b4 b/ 3 51
o o (3x—1)eu([——+2kn,—+2kn]u —+2kn,—+2kn])
. 2in - k . k_ Tk kez\l 4 4 4 4
Correction43 Onposez=ell etonécrit ) z"=-1 puis, comme z* = z11"¥, ona
k=1 donc '’ensemble des solutions est :
iZ 2km (anknankn][ n 2km 1 57 an)
cos — =-1 U o= AN kiR
=1 11 ez\U3 12 373 3’3 12 3
21 97 47 7 107 b/
On remarque enfin que cos — = —c0s —, C0S — = —C0S —, ...,CO0S —— = — COS —.
11 11 11 11 11 11

On obtient
-2 Z =-1,

puis le résultat souhaité en div1sant par —2.

Correction 44 On commence par résoudre |cos(y)| =
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