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TD 6 : Nombres complexes.

� classique 3 demande réflexion

1 Manipulation de nombres complexes

Exercice 1.
Soit z ∈C, montrer que z ∈ iR⇔|z −1| = |z +1| en utilisant la conjugaison.

Exercice 2.

Pour tout z 6= i , on pose h(z) = (z + i )

z − i
.

1. Montrer que (z est de module 1 et z 6= i ) ⇔ (h(z) ∈ iR).

2. Montrer que |z| < 1 ⇔ Re(h(z)) < 0.

Exercice 3.

Soit a ∈C, |a| < 1 et f :

{
U −→ C

z 7−→ z −a

1−az
.

1. Montrer que f est bien définie.

2. Montrer que f (U) ⊂U.

3. Montrer que f |U est bijective et donner l’expression de sa réciproque.

Exercice 4.

Soit z ∈C tel que |z −1| < 1

2
, montrer que |z| > 1

2
.

2 Géométrie
Exercice 5.

Déterminer l’ensemble des z tel que
z −1

z +1
∈R.

Exercice 6.
Déterminer l’ensemble des z tels que |(1+ i )z −2i | = 2.

Exercice 7.
Soient a,b réels distincts, n ∈N?, résoudre (z −a)n = (z −b)n . Montrer que les solutions
sont les affixes de points appartenant à une même droite verticale.

Exercice 8.

On considère l’équation

(
2z +1

z +1

)4

= 1.

1. Donner les solutions de l’équation.

2. Placer les images des solutions sur un dessin.

3. Montrer que les images des solutions appartiennent à un même cercle dont on
précisera le centre et le rayon.

3 Trigonométrie

Exercice 9.

Résoudre sin(5x) = sin
( 2π

3 +x
)
.

Exercice 10.

Résoudre cos(2x) = cos
(
x − π

3

)
.

Exercice 11.

Résoudre cos2(x)− sin2(x) = 0.

Exercice 12.

Résoudre cos2(x)+3cos(2x) = 4.

Exercice 13.

Résoudre 0 É sin(x).

Exercice 14.

Résoudre tan
(
3x − π

5

)
= tan

(
x + 4π

5

)
.

Exercice 15.

Soit n ∈N. Calculer
n∑

k=0
cos(kx).

Exercice 16.

Soit n ∈N. Calculer
n∑

k=0
cos2(kx).

4 Résolution d’équations

Exercice 17.

Calculer les racines carrées des nombres suivants :

— z1 =−2
— z2 = i

— z3 = 1+ i

— z4 = 1

2
(1− i

p
3)

— z5 = 3+4i
— z6 =−3+4i

Exercice 18.

Résoudre z5 = 1− i dans C.
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Exercice 19.

Soit n ∈N?. Résoudre

(
z +2i

z − i

)n

= 1.

Exercice 20.
Résoudre z4 +8z2 +160 = 0 dans C.

Exercice 21.
Résoudre z2 − (3+4i )z −1+5i = 0 dans C.

5 Si besoin de davantage d’entrainement

Exercice 22.
Soit z ∈C, montrer que Re(z) =I m(z) ⇔|z −1| = |z − i | en utilisant la conjugaison.

Exercice 23.
Soient z, z ′ deux complexes. Montrer que

|z + z ′|2 +|z − z ′|2 = 2
(|z|2 +|z ′|2) .

Exercice 24.

Déterminer l’ensemble des z tel que
z − i

z −1
∈R.

Exercice 25.
Déterminer l’ensemble des z tels que |2i z −1+ i | = 1.

Exercice 26.
Déterminer les nombres complexes z ∈C∗ tels que les points d’affixes z, 1

z et (1−z) soient
sur un même cercle de centre O.

Exercice 27.

Résoudre 4sin(x)cos(x) = 1.

Exercice 28.

Résoudre cos(2x)−2sin2(x) = 0.

Exercice 29.

Résoudre sin
(
2x − π

3

)
= cos

( x

3

)
.

Exercice 30.

Résoudre sin(x) É
p

2

2
.

Exercice 31.

Résoudre −1

2
É sin(x) É

p
3

2
.

Exercice 32.

Résoudre

p
3

2
Ê cos(x).

Exercice 33.

Résoudre −1

2
É cos(x) É 0.

Exercice 34.
Résoudre cos2(x)−2sin x cos x − sin2(x) = 0.

Exercice 35.
Résoudre z2 − (5−14i )z −2(5i +12) = 0 dans C.

Exercice 36.

Résoudre z5 =−2+2i dans C.

6 Une fois qu’on est à l’aise

Exercice 37.
Soient a,b deux éléments distincts de U. Montrer que pour tout complexe z,

u = z +abz − (a +b)

b −a
∈ iR.

Exercice 38.

Soit z ∈C tel que |z +1| < 1

2
, montrer que

∣∣z2 +1
∣∣> 3

4
.

Exercice 39. 3
Soit z ∈C, montrer que |z| É |z|2 +|z −1|.
Exercice 40.
Soit z ∈U, montrer que l’on a |z +1| Ê 1 ou

∣∣z2 +1
∣∣Ê 1. Peut-on avoir les deux?

Exercice 41.

Résoudre z5 = z dans C.
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Exercice 42.
Soit z = e

2iπ
7 et u = z + z2 + z4, v = z3 + z5 + z6.

1. Calculer u + v et u2.

2. En déduire la valeur de sin
2π

7
+ sin

4π

7
+ sin

8π

7
.

Exercice 43.
Montrer que

cos
π

11
+cos

3π

11
+cos

5π

11
+cos

7π

11
+cos

9π

11
= 1

2

Exercice 44.

Résoudre |cos(3x −1)| Ê
p

2

2
.

Memo

— Comment déterminer la partie réelle/imaginaire?
— Utiliser la forme exponentielle
— Se ramener à une forme algébrique (a + i b)
— Utiliser la factorisation par l’arc moitié

— Comment déterminer le module et l’argument? Se ramener à la forme exponen-
tielle ρe iθ en faisant bien attention au signe de ρ.

— Comment transformer une expression trigonométrique ? Cela dépend évidemment
de l’expression (de la forme e i p +e i q , polynôme en cos ou sin, cos ou sin d’un angle
multiple etc).
— Utiliser la factorisation par l’arc moitié (permet de factoriser toute expression

de la forme e i p ±e i q , y compris le cas particulier e i p = 1).
— Utiliser la formule d’Euler pour transformer une puissance en un angle multiple
— Utiliser la formule de Moivre pour exprimer un cosinus ou sinus d’un angle

multiple comme un polynôme en cos ou sin.
— Utiliser les formules trigonométriques : à partir de cos(a +b) et sin(a +b), on

retrouve facilement la formule pour transformer une somme du type cos p +
cos q en un produit.

— Comment déterminer une racine carrée ?
— Observer s’il n’y a pas de racine connue (évidente)
— Utiliser la forme exponentielle
— En dernier recours, poser z = x + i y et résoudre un système

— Comment résoudre une équation complexe ?
— Appliquer la formule du cours dans le cas d’une équation du type polynôme du

second degré, Z n = A ou ez = a.
— Se ramener à une équation qu’on sait résoudre (ie, du type ci-dessus) par un

changement de variable.
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Correction du TD n 6

Correction 1 On raisonne par équivalence. Soit z ∈C. Alors

|z −1| = |z +1|
⇔ |z −1|2 = |z +1|2 par positivité du module
⇔ (z −1)z −1 = (z +1)z +1
⇔ zz − z − z +1 = zz + z + z +1
⇔ 2(z + z) = 0
⇔ 4Re(z) = 0
⇔ z ∈ iR

On a bien l’équivalence souhaitée.

Correction 2 Soit z ∈C\ {1}. On met h(z) sous forme algébrique :

h(z) = (z + i )(z + i )

|z − i |2 = |z|2 −1+2iRe(z)

|z − i |2 .

1. Soit z ∈C\ {i }. On raisonne par équivalence :

z ∈U⇔Re(h(z)) = 0 ⇔ h(z) ∈ iR.

2. On a Re(h(z)) = |z|2 −1

|z − i |2 donc

Re(h(z)) < 0 ⇔|z| < 1.

Correction 3

1. Il suffit de montrer que ∀z ∈ U,1− az 6= 0. On suppose par l’absurde qu’il existe
z ∈U tel que 1−az = 0. On a alors az = 1 d’où, en prenant le module, |a| = 1 ce qui
est absurde. On a montré que f est bien définie.

2. Soit z ∈U. On raisonne par équivalence :

| f (z)| = 1 ⇔
∣∣∣ z −a

1−az

∣∣∣= 1

⇔ |z −a| = ∣∣1−az
∣∣

⇔ (z −a)(z −a) = (1−az)(1−az)
⇔ zz −az −az +aa = 1−az −az +aazz
⇔ |z|2 +|a|2 = 1+|z|2|a|2
⇔ 1+|a|2 = 1+|a|2car |z| = 1

La dernière égalité est vraie donc, par équivalence, la première l’est et f (z) ∈U.

3. Soit α ∈U. On raisonne par équivalence :

f (z) =α⇔ z −a

1−az
=α

⇔ (z −a) =α(1−az)
⇔ z(1+aα) = a +α
⇔ z = a +α

1+aα
car 1+az 6= 0 d’après la première question

Par analogie avec la question précédente, on montre que
∣∣∣ a +α

1+aα

∣∣∣ = 1 ce qui

montre que l’équation f (z) = α admet une solution dans U donc f |U est bijective.

Sa bijection réciproque est définie par z 7→ a + z

1+az
.

Correction 4 Soit z ∈C, on écrit z = 1− (1− z), on a donc |z| Ê 1−|1− z|. Or |1− z| < 1

2
,

on a donc |z| > 1

2
.

Correction 5 Soit z ∈ C \ {−1}.Notons M , P et P ′ les points d’affixes respectives z, 1 et
−1. On raisonne par équivalence :

z −1

z +1
∈R

⇔ M ,P,P ′ sont alignés
⇔ M appartient à l’axe des abscisses
⇔ z ∈R

On peut aussi raisonner avec la conjugaison :
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z −1

z +1
∈R

⇔ z −1

z +1
= z −1

z +1
⇔ (z −1)(z +1) = (z −1)(z +1)
⇔ zz + z − z −1 = zz + z − z −1
⇔ 2(z − z) = 0
⇔ 4iI m(z) = 0
⇔ z ∈R

L’ensemble recherché est donc R\ {−1}.

Correction 6 On raisonne par équivalence :

|(1+ i )z −2i | = 2

⇔
∣∣∣∣z − 2i

1+ i

∣∣∣∣=p
2En divisant l’égalité par |1+ i | =p

2

⇔ |z − (1+ i )| =p
2

On en déduit que l’ensemble des solutions est l’ensemble des affixes des points du cercle
de centre l’image de 1+ i , de rayon

p
2.

Correction 7 Comme a et b sont distincts, z 6= b. On a
( z −a

z −b

)n
= 1 ⇔ z −a

z −b
= e2i kπ/n ,

k ∈ J0,n −1K. Comme z −a 6= z −b, on exclut le cas k = 0.
On a alors :

z −a

z −b
= e2i kπ/n

⇔ z −a = (z −b)e2i kπ/n

⇔ z(1−e2i kπ/n) = a −be2i kπ/n

⇔ z = a −be2i kπ/n

1−e2i kπ/n
, k ∈ J1,n −1Kcar ∀k ∈ J1,n −1K donc e2i kπ/n 6= 1

On remarque que les solutions correspondant à k = 1 et k = n −1 sont conjuguées et
leurs affixes appartiennent donc à la droite verticale d’abscisses leur partie réelle com-
mune. Il suffit de montrer que toutes les racines de l’équation ont la même partie réelle.

On utilise la factorisation par l’arc moitié au dénominateur :

1−e2i kπ/n =−e i kπ/n2i sin
kπ

n
,

donc
1

1−e2i kπ/n
= i e−i kπ/n

2sin kπ
n

.

On a :
a −be2i kπ/n

1−e2i kπ/n
= i e−i kπ/n(a −be2i kπ/n)

2sin kπ
n

= i (ae−i kπ/n −be i kπ/n)

2sin kπ
n

.

Pour un nombre complexe Z , la partie réelle de i Z est égale à l’opposé de la partie ima-
ginaire de Z donc

Re

(
a −be2i kπ/n

1−e2i kπ/n

)
=−I m

(
ae−i kπ/n −be i kπ/n

2sin kπ
n

)
= a sin kπ

n +b sin kπ
n

2sin kπ
n

= a +b

2
.

On en déduit que toutes les solutions ont même partie réelle, elles sont donc les affixes
de points alignés, appartenant à une droite verticale.

Correction 8

1. On cherche à résoudre

(
2z +1

z +1

)4

= 1. Les racines quatrième de l’unité sont e
2i kπ

4 =
e

i kπ
2 pour k variant de 0 à 3. On a donc :(
2z +1

z +1

)4

= 1 ⇔
(

2z +1

z +1

)
= e

i kπ
2 , k ∈ J0,3K

⇔ z =−
(

1−e
kiπ

2

2−e
kiπ

2

)
, k ∈ J0,3K

En calculant explicitement ces valeurs pour k = 0,1,2 puis 3, on trouve z0 = 0, z1 =
−3

5
+ i

5
, z2 =−2

3
et z3 =−3

5
− i

5
.

2. On note M0, . . . , M3 les points d’affixes z0, . . . , z3. On a la figure suivante :

•M2

M1

M3

M0
•

•
•
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3. Si les quatre points sont cocycliques, le centre du cercle est sur la médiatrice des
deux points M1 et M3 donc sur l’axe réel car leurs affixes sont conjuguées. Le
centre doit également être sur la médiatrice de M0 et M2 c’est-à-dire sur la droite

y = −1

3
. Cela implique que le rayon est

1

3
. Pour montrer que les quatre points

appartiennent bien au cercle de centre (− 1
3 ,0) et de rayon 1

3 , il suffit de vérifier que

les modules des nombres complexes zi − (− 1
3 ) = zi + 1

3 , pour i ∈ J0,3K valent 1
3 . On

calcule donc z0 + 1
3 = 1

3 , z1 +1 = − 4
15 + i

5 , z3 + 1
3 = − 1

3 et z4 +1 = − 4
5 − i

5 . On vérifie
facilement que |zi +1|2 = 1

9 pour tout i ∈ J0,3K donc les points sont cocycliques et

ils appartiennent au centre d’affixe − 1
3 et de rayon 1

3 .

On peut aussi remarquer, que le triangle M0M1M3 est isocèle donc le centre du
cercle circonscrit au triangle appartient à la médiane de M1M3 qui est l’axe réel
puisque z1 et z3 sont conjugués. On cherche un réelω tel que |0−ω| = |− 3

5 + i
5 −ω|.

On trouveω=− 1
3 donc le cercle circonscrit à M0M1M3 est le cercle de centre (− 1

3 ,0)

et de rayon 1
3 . On vérifie ensuite que M2 appartient à ce cercle.

Remarque. il est également possible de résoudre le système

|zΩ| = |− 2

3
− zΩ| = |− 3

5
+ i

3
− zΩ| = |− 3

5
− i

3
− zΩ|

en cherchant zΩ sous la forme a + i b, a,b réels. les deux premières égalités (au
carré) donnent a =− 1

3 . On injecte la valeur de a dans l’égalité |zΩ|2 = |− 3
5 + i

3 −zΩ|2,

on trouve b = 0 donc zΩ =− 1
3 . On a donc |− 3

5 + i
3 −zΩ| = |− 3

5 − i
3 −zΩ| et les quatre

modules sont donc bien égaux.

Correction 9 On raisonne par équivalence :

sin(5x) = sin
( 2π

3 +x
)

⇔ 5x = 2π
3 +x +2kπ ou 5x =π− ( 2π

3 +x
)+2kπ, avec k ∈Z

⇔ x = π

6
+ kπ

2
ou x = π

18
+ kπ

3
, avec k ∈Z

⇔ x ≡ π

6

[π
2

]
ou x ≡ π

18

[π
3

]
L’ensemble des solutions est :{

π

6
+ kπ

2
,k ∈Z

}
∪

{
π

18
+ kπ

3
,k ∈Z

}
.

Correction 10 On raisonne par équivalence :

cos(2x) = cos
(
x − π

3

)
⇔ 2x = x − π

3
+2kπ ou 2x =−x + π

3
+2kπ, avec k ∈Z

⇔ x =−π
3
+2kπ ou x = π

9
+ 2kπ

3
, avec k ∈Z

⇔ x ≡−π
3

[2π] ou x ≡ π

9

[
2π

3

] .

L’ensemble des solutions est :{
−π

3
+2kπ,k ∈Z

}
∪

{
π

9
+ 2kπ

3
,k ∈Z

}
.

Correction 11 On a cos2(x)− sin2(x) = 0 ⇔ cos(x) = ±sin(x). On raisonne par équiva-
lence :

cos(x) = sin(x)

⇔ cos(x) = cos
(π

2
−x

)
⇔ x =±

(π
2
−x

)
+2kπ,k ∈Z

⇔ x ≡±
(π

2
−x

)
[2π]

⇔ x ≡ π

2
−x[2π]car on ne peut avoir x ≡ x − π

2
[2π]

⇔ x ≡ π

4
[π]

Pour la deuxième égalité, on a cos(x) = −sin(x) ⇔ cos(−x) = sin(−x) donc, d’après ce

qui précède, x =−π
4

[π].

L’ensemble des solutions est donc
{
±π

4
+kπ,k ∈Z

}
.

Correction 12 On raisonne par équivalence :

cos2(x)+3cos(2x) = 4

⇔ cos(2x)+1

2
+3cos(2x) = 4

⇔ cos(2x) = 1
⇔ 2x ≡ 0[2π]
⇔ x ≡ 0[π]
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L’ensemble des solutions est donc {kπ,k ∈Z}.

Correction 13 On a la figure suivante :

Si x ∈ [0,2π], on a sin(x) Ê 0 ⇔ x ∈ [0,π], on en déduit donc que l’ensemble des solu-
tions est

⋃
k∈Z

[2kπ, (2k +1)π].

Correction 14 On raisonne par équivalence :

tan
(
3x − π

5

)
= tan

(
x + 4π

5

)
⇔ 3x − π

5
= x + 4π

5
+kπ, avec k ∈Z

⇔ x = kπ

2
, avec k ∈Z

.

L’ensemble des solutions est {
kπ

2
,k ∈Z

}
.

Correction 15 On a

n∑
k=0

cos(kx) =
n∑

k=0
Re

(
e i kx

)
=Re

(
n∑

k=0
e i kx

)
.

On reconnaît une somme géométrique :

n∑
k=0

e i kx = e(n+1)i x −1

e i x −1
.

On factorise par l’arc moitié pour déterminer sa partie réelle :

e(n+1)i x −1

e i x −1
=

e
i (n+1)x

2 2i sin
(

(n+1)x
2

)
e

i x
2 2i sin

( x
2

) =
e

i nx
2 sin

(
(n+1)x

2

)
sin

( x
2

) ,

on a donc :

n∑
k=0

cos(kx) =
cos

( nx
2

)
sin

(
(n+1)x

2

)
sin

( x
2

) .

Correction 16 On écrit :

∀k ∈ [|0,n|], cos2(kx) = 1

2
cos(2kx)+ 1

2

d’où :
n∑

k=0
cos2(kx) =

n∑
k=0

( 1
2 cos(2kx)+ 1

2

)
= 1

2

n∑
k=0

cos(2kx)+ 1

2

n∑
k=1

= 1

2

cos(nx)sin((n +1)x)

sin(x)
+ n +1

2
en utilisant l’exercice 15 avec 2x dans le rôle de x.

.

Correction 17

1. Les racines carrées de −2 sont ±i
p

2.

2. Les racines carrées de i = e
iπ
2 sont ±e

iπ
4 .

3. On écrit 1+ i =p
2e

iπ
4 donc les racines carrées sont ± 4p2e

iπ
8 .

4. On écrit
1− i

p
3

2
= e−

iπ
3 donc les racines carrées sont ±e−

iπ
6 .

5. Il n’y a pas de forme trigonométrique simple de 3+4i , on cherche donc ses racines
carrées sous la forme a + i b avec (a,b) ∈ R2. On a a2 +b2 = |3+ 4i | = 5, a2 −b2 =
Re(3+4i ) = 3 et 2ab = I m(3+4i ) = 4 d’où a = ±2 et b = ±1. Comme ab > 0, les
racines carrées de 3+4i sont ±(2+ i ).
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6. Il n’y a pas de forme trigonométrique simple de−3+4i , on cherche donc ses racines
carrées sous la forme a + i b avec (a,b) ∈ R2. On a a2 +b2 = |−3+4i | = 5, a2 −b2 =
Re(−3+4i ) =−3 et 2ab =I m(−3+4i ) = 4 d’où a =±1 et b =±2. Comme ab > 0,
les racines carrées de 1+2i sont ±(1+2i ).

Correction 18 On commence par mettre 1− i sous forme exponentielle :

1− i =p
2e−

iπ
4 .

Les racines 5-ièmes de 1− i sont donc
5
√p

2e−
iπ
20 + 2i kπ

5 = 10p2e−
iπ
20 + 2i kπ

5 pour k variant de 0
à 4.

Correction 19 On raisonne par équivalence :(
z +2i

z − i

)n

= 1 ⇔ ∃k ∈ [|0,n −1|], z +2i

z − i
= e

2i kπ
n

⇔ ∃k ∈ [|0,n −1|], z +2i = (z − i )e
2i kπ

n

⇔ ∃k ∈ [|0,n −1|], (1−e
2i kπ

n )z =−i
(
2+e

2i kπ
n

)
Si k = 0, il n’y a pas de solution. On a donc k ∈ [|1,n −1|] :

(
z +2i

z − i

)n

= 1 ⇔∃k ∈ [|1,n −1|], z =
−i

(
2+e

2i kπ
n

)
1−e

2i kπ
n

Les solutions sont donc les complexes de la forme
i
(
2+e

2i kπ
n

)
e

2i kπ
n −1

pour k variant de 1 à

n −1.

Correction 20 On pose Z = z2, il faut alors résoudre l’équation Z 2 +8Z +160 = 0 dont
le discriminant vaut (24i )2 et les solutions sont −4±12i . On doit maintenant chercher les
racines carrées de ces deux solutions. On cherche les racines carrées de −4+12i sous la
forme a + i b avec (a,b) ∈R2. On a :

a2 +b2 = 4
p

10
a2 −b2 = −4 et
2ab = 12

,

Cela implique a =±
√

2
p

10−2 et b =±
√

2
p

10+2. Comme ab > 0, les racines carrées de
−4+12i sont

±
(√

2
p

10−2+ i

√
2
p

10+2

)
.

De la même manière, on trouve que les racines carrées de −4−12i sont

±
(√

2
p

10−2− i

√
2
p

10+2

)
.

On en déduit que les solutions de l’équation sont

±
(√

2
p

10−2+ i

√
2
p

10+2

)
et ±

(√
2
p

10−2− i

√
2
p

10+2

)
.

Correction 21 Le discriminant vaut −3+4i dont une racine carrée est 1+2i (d’après
l’exercice 17). Les solutions sont donc, après simplification, 1+ i et 2+3i .

Correction 22 On raisonne par équivalence. Soit z ∈C. Alors

|z −1| = |z − i |
⇔ |z −1|2 = |z − i |2 par positivité du module
⇔ (z −1)(z −1) = (z − i )(z − i )
⇔ zz − z − z +1 = zz + i z − i z +1
⇔ −(z + z) = i (z − z)
⇔ −2Re(z) = i (2iI m(z)
⇔ Re(z) =I m(z)

On a bien l’équivalence souhaitée.

Correction 23 On écrit :

|z + z ′|2 +|z − z ′|2 = (z + z ′)(z + z ′)+ (z − z ′)(z − z ′)
= (z + z ′)(z + z ′)+ (z − z ′)(z − z ′)
= |z|2 + z ′z + zz ′+|z ′|2 +|z|2 − z ′z − zz ′+|z ′|2
= 2

(|z|2 +|z ′|2) .

On a bien l’équivalence souhaitée.

Correction 24 Soit z ∈ R \ {1}. Notons M , P et P ′ les points d’affixes respectives z, i et
1. On raisonne par équivalence :

z − i

z −1
∈R

⇔ M ,P,P ′ sont alignés
⇔ M appartient à la droite (PP ′)
⇔ M appartient à la droite y =−x +1
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L’ensemble recherché est donc l’ensemble des complexes z 6= 1 dont l’image appartient
à la droite y =−x +1.

Correction 25 On divise l’équation par |2i |, on obtient

∣∣∣∣z + i −1

2i

∣∣∣∣ = 1

2
, que l’on peut

réécrire

∣∣∣∣z + 1+ i

2

∣∣∣∣ = 1

2
. On en déduire que l’ensemble des solutions est l’ensemble des

affixes des points du cercle de centre l’image de −
(

1+ i

2

)
et de rayon

1

2
.

Correction 26 On doit avoir |z| =| 1
z |=| 1− z | on a donc |z| = 1. Posons z = x + i y , on a

alors |1− z| = 1 ce qui implique (x −1)2 + y2 = 1 et comme x2 + y2 = |z|2 = 1, on a x = 1
2 et

y =±
p

3
2 . Les complexes recherchés sont donc e±

iπ
3 .

Correction 27
On raisonne par équivalence :

4sin(x)cos(x) = 1
⇔ 2sin(2x) = 1

⇔ sin(2x) = 1

2
⇔ 2x ≡ π

6
[2π] ou x ≡π− π

6
[2π]

⇔ x ≡ π

12
[π] ou

5π

12
[π]

L’ensemble des solutions est donc
{ π

12
+kπ,k ∈Z

}
∪

{
5π

12
+kπ,k ∈Z

}
.

Correction 28 On raisonne par équivalence :

cos(2x)−2sin2(x) = 0
⇔ 1−2sin2 x −2sin2 x = 0

⇔ sin2(x) = 1

4
⇔ sin(x) =±1

2
⇔ x ≡±π

6
[π]

L’ensemble des solutions est donc
{
±π

6
+kπ,k ∈Z

}
.

Correction 29 On raisonne par équivalence :

sin
(
2x − π

3

)= cos
( x

3

)
⇔ cos

(
2x − 5π

6

)
= cos

( x
3

)
car cos

(
a − π

2

)
= sin(a)

⇔ 2x − 5π

6
= x

3
+2kπ ou 2x − 5π

6
=−x

3
+2kπ, avec k ∈Z

⇔ x = π

2
+ 6kπ

5
ou x = 5π

14
+ 6kπ

7
, avec k ∈Z

L’ensemble des solutions est donc{
π

2
+ 6kπ

5
,k ∈Z

}
∪

{
5π

14
+ 6kπ

7
,k ∈Z

}
.

Correction 30 On a la figure suivante :

•
π

4•
3π

4

Si x ∈ [0,2π], on a sin(x) É
p

2
2 ⇔ x ∈

[
0,
π

4

]
∪

[
3π

4
,2π

]
, on en déduit que l’ensemble des

solutions est
⋃

k∈Z

([
2kπ,

π

4
+2kπ

]
∪

[
3π

4
+2kπ,2(k +1)π

])
.

Correction 31 On a la figure suivante :
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••

• •

−π
6

7π

6

2π

3

π

3

Si x ∈
[
−π

2
,

3π

2

]
, on a − 1

2 É sin(x) É
p

3
2 ⇔ x ∈

[
−π

6
,
π

3

]
∪

[
2π

3
,

7π

6

]
, on en déduit que

l’ensemble des solutions est :⋃
k∈Z

([
−π

6
+2kπ,

π

3
+2kπ

]
∪

[
2π

3
+2kπ,

7π

6
+2kπ

])
.

Correction 32 On a la figure suivante :

•
−π

6

π

6•

Si x ∈ [0,2π], on a

p
3

2
Ê cos(x) ⇔ x ∈

[
π

6
,

11π

6

]
donc l’ensemble des solutions est⋃

k∈Z

[
π

6
+2kπ,

11π

6
+2kπ

]
.

Correction 33

•
π

2
•

2π

3

•
−2π

3

•
−π

2

Si x ∈ [−π,π], on a −1

2
É cos(x) É 0 ⇔ x ∈

[
−2π

3
,−π

2

]
∪

[
π

2
,

2π

3

]
donc l’ensemble des

solutions est
⋃

k∈Z

[
−2π

3
+2kπ,−π

2
+2kπ

]
∪

[
π

2
+2kπ,

2π

3
+2kπ

]
.

Correction 34 On a cos2(x)−sin2(x) = cos(2x) et 2sin x cos x = sin(2x) donc l’équation
est équivalente à :

cos(2x) = sin(2x),

soit encore

cos(2x) = cos
(
2x − π

2

)
.

On ne peut avoir 2x = 2x − π

2
+2kπ, on en déduit que 2x = −

(
2x − π

2

)
+2kπ, avec k ∈ Z

ce qui se réécrit :

x = π

8
+kπ,k ∈Z.
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Correction 35 Le discriminant vaut −75−100i =−25(3+4i ). Pour en trouver une racine
carrée, nous allons chercher une racine carrée de 3+4i . D’après l’exercice 17, une racine
carrée de 3+4i est 2+ i . On a alors 5i (2+ i ) =−5+10i une racine carrée du discriminant.
Les solutions sont donc, après simplification, −2i et 5−12i .

Correction 36 On écrit −2+2i sous forme exponentielle :

−2+2i = 2
p

2e
3iπ

4 .

Les racines 5-ièmes de −2+2i sont donc
5
√

2
p

2e
3iπ
20 + 2i kπ

5 = 10p8e
3iπ
20 + 2i kπ

5 pour k variant
de 0 à 4.

Correction 37 On calcule le conjugué de u :

z +abz − (a +b)

b −a

= z +abz − (a +b)

b −a

= z +abz − (a +b)

b −a

= z + z
ab − ( 1

a + 1
b )

1
b − 1

a

car,∀c ∈U,
1

c
= c

= ab
(
z + z

ab − ( 1
a + 1

b )
)

ab
( 1

b − 1
a

)
= abz + z − (a +b)

a −b
=−u

On a donc montré que u est un imaginaire pur.
On peut aussi écrire :

z +abz − (a +b)

b −a

=
(
z +abz − (a +b)

)
(b −a)

|b −a|2
puis développer le numérateur :(

z +abz − (a +b)
)

(b −a)

= z(b −a)+ab(b −a)z − (a +b)(b −a)

= z(b −a)+ (a|b|2 −b|a|2)z − (ab −|a|2 +|b|2 −ba)

= z(b −a)+ (a −b)z − (ab −ba) car |a| = 1 = |b|
= z(b −a)− z(b −a)− (ab −ab)

= 2iI m
(
z(b −a)

)
−2iI m

(
ab

)
.

On retrouve que u est un imaginaire pur mais avouez que c’est moins joli !

Correction 38 On sait que |z +1|2 < 1

4
et |z| = |z +1−1| Ê 1−|z +1| donc |z| > 1

2
. On en

déduit que ∣∣z2 +1
∣∣= ∣∣(z +1)2 −2z

∣∣Ê 2 |z|− |z +1|2 Ê 3

4

Correction 39
— Si |z| Ê 1, alors |z| É |z|2 donc l’inégalité est vraie.
— Si |z| < 1, on écrit |z| = ∣∣z − z2 + z2

∣∣ < |z| |1− z|+ |z|2 et l’inégalité est vraie puisque
|z| < 1.

Correction 40 On écrit z = e iθ avec θ ∈ [−π,π], on a alors |z +1| = 2

∣∣∣∣cos
θ

2

∣∣∣∣ et
∣∣z2 +1

∣∣=
2 |cosθ| en factorisant par l’arc moitié. Si

∣∣z2 +1
∣∣< 1, alors θ ∈

]
−2π

3
,−π

3

[
∪

]
π

3
,

2π

3

[
. On

a alors
θ

2
∈

]
−π

3
,−π

6

[
∪

]π
6

,
π

3

[
donc

∣∣∣∣cos
θ

2

∣∣∣∣> 1

2
et |z +1| > 1. On a donc bien montré que

l’on a toujours l’une des deux quantités |z +1| et
∣∣z2 +1

∣∣ qui est supérieur à 1.

Si on a égalité, on a cosθ = ±1

2
et cos

θ

2
= ±1

2
ce qui n’est possible que pour θ ≡

±2π

2
[2π] autrement dit pour z = j ou z = j 2.

Correction 41 Analyse : Soit z une solution. Si z 6= 0, l’égalité des modules |z|5 = |z|
impose |z| = 1. On a donc :

z5 = z
⇔ z6 = zz
⇔ z6 = |z|2
⇔ z6 = 1car |z| = 1

On sait que les racines 6-ièmes de l’unité sont e
2i kπ

6 = e
i kπ

3 , k ∈ J0,5K.
Synthèse : z = 0 et solution et si z6 = 1, on a |z| = 1 et z5 = z.
On en déduit que l’ensemble des solutions est :{

e
i kπ

3 ,k ∈ J0,5K
}
∪ {0}.
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Autre méthode :
z = 0 est solution. Soit z 6= 0, on écrit z = r e iθ avec θ ∈R et r > 0. On a

z5 = z ⇔ r 5e5iθ = r e−iθ

⇔
{

r 5 = r

5θ ≡−θ[2π]

⇔
r = 1

θ ≡ 0
[π

6

]
On en déduit que l’ensemble des solutions est :{

e
i kπ

3 ,k ∈ J0,5K
}
∪ {0}.

Correction 42

1. On a u + v =−1 car la somme des racines 7ièmes de l’unité vaut 0 et u2 = u +2v .

2. On en déduit que u vérifie u2 +u +2 = 0. On cherche les racines de cette équation,

on trouve
−1± i

p
7

2
. Reste à encadrer la partie imaginaire de u pour savoir si elle

est positive ou non. On a −
p

3

2
É sin

8π

7
É 0 et

p
3

2
É sin

4π

7
É 1 donc la somme des

deux sinus est positive, on en déduit que

sin
2π

7
+ sin

4π

7
+ sin

8π

7
=

p
7

2

Correction 43 On pose z = e
2iπ
11 et on écrit

10∑
k=1

zk =−1 puis, comme zk = z11−k , on a

5∑
k=1

2cos
2kπ

11
=−1

On remarque enfin que cos
2π

11
=−cos

9π

11
,cos

4π

11
=−cos

7π

11
, . . . ,cos

10π

11
=−cos

π

11
.

On obtient

−2
4∑

k=0
cos

(k +1)π

11
=−1,

puis le résultat souhaité en divisant par −2.

Correction 44 On commence par résoudre |cos(y)| Ê
p

2

2
.

•

•

•

•

−3π

4

3π

4

−π
4

π

4

Si y ∈
[
−π

2
,
π

2

]
, on a |cos(y)| Ê

p
2

2
⇔ y ∈

[
−π

4
,
π

4

]
∪

[
3π

4
,

3π

4

]
donc pour y ∈R, on a :

cos(y) Ê
p

2

2
⇔ y ∈ ⋃

k∈Z

([
−π

4
+2kπ,

π

4
+2kπ

]
∪

[
3π

4
+2kπ,

5π

4
+2kπ

])
.

On a donc :

|cos(3x −1)| Ê
p

2

2

⇔ (3x −1) ∈ ⋃
k∈Z

([
−π

4
+2kπ,

π

4
+2kπ

]
∪

[
3π

4
+2kπ,

5π

4
+2kπ

])
donc l’ensemble des solutions est :⋃

k∈Z

([
1

3
− π

12
+ 2kπ

3
,

1

3
+ π

12
+ 2kπ

3

]
∪

[
1

3
+ π

4
+ 2kπ

3
,

1

3
+ 5π

12
+ 2kπ

3

])
.
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