Réponses du TD n7

Réponse 1
$$\frac{1}{4} \operatorname{sh}^4 t$$

Réponse 2
$$\frac{\pi}{2}$$

Réponse 3
$$\frac{1}{2\cos^2(x)}$$

Réponse 4
$$\frac{1}{2}\sin^2 x$$

Réponse 5
$$\frac{x}{2} - \frac{1}{4}\sin(2x)$$

Réponse 6
$$1 - 2 \ln(2)$$

Réponse 7
$$1 - 2 \ln(2)$$

Réponse 8
$$\frac{e^{\pi}+1}{2}$$

Réponse 9
$$(x+1)$$
sh x – ch x

Réponse 10
$$t \arcsin^2 t + 2 \arcsin t \sqrt{1-t^2} - 2t$$
.

Réponse 11 1.
$$I_n = \int_0^1 e^t t^n dt$$

- 2. elle converge vers 0.
- 3. $I_{n+1} = e (n+1)I_n$.
- 4. $\lim_{n\to+\infty} nI_n = e.$

Réponse 12
$$\ln \sqrt{\left|\frac{1+t}{1-t}\right|}$$
.

Réponse 13
$$\ln \left| \frac{x}{(x-1)^2} \right|$$

Réponse 14 $\ln |x| - \ln |x+1|$.

Réponse 15 $\arctan(t+1)$

Réponse 16
$$x \mapsto \frac{\lambda e^x + e^{2x} + xe^x + 2}{(1 - e^x)^2} + , \lambda \in \mathbb{R}.$$

Réponse 17
$$y_p(x) = e^{\frac{x^2}{2}} e^{\frac{x^2}{2}} = e^{x^2}$$

Réponse 18
$$x \mapsto (\lambda_i + x) \sin x, \lambda_i \in \mathbb{R}$$

Réponse 19
$$x \mapsto \lambda e^{-x}(1+x^2) + x + 1, \lambda \in \mathbb{R}$$

Réponse 20
$$\{x \mapsto \lambda \cos(x) + \sin(x) \cos(x), \lambda \in \mathbb{R}\}.$$

Réponse 21 1.
$$x \mapsto \frac{x^3}{3} + x \left\{ x \mapsto \lambda (1 + x^2)^{3/2} + \frac{2x^3}{3} + x, \lambda \in \mathbb{R} \right\}$$
.

Réponse 22 1.
$$x \mapsto \frac{1}{2} + \lambda e^x + \mu e^{2x}, (\lambda, \mu) \in \mathbb{R}^2$$
.

2.
$$x \mapsto \lambda e^x + \mu e^{2x} + \left(\frac{x}{6} - \frac{1}{36}\right) e^{-x}, (\lambda, \mu) \in \mathbb{R}^2$$
.

3.
$$x \mapsto \lambda e^x + \mu e^{2x} + \frac{x^2}{2} e^{2x}, (\lambda, \mu) \in \mathbb{R}^2$$
.

4.
$$x \mapsto \lambda e^x + \mu e^{2x} + \frac{3}{10}\cos(x) + \frac{1}{10}\sin(x), (\lambda, \mu) \in \mathbb{R}^2$$
.

Réponse 23 — Si a = 0, les solutions sont les fonctions $x \mapsto ax + b$, $(a, b) \in \mathbb{R}^2$.

- Si a < 0, les solutions sont les fonctions $x \mapsto \lambda e^{\sqrt{-a}x} + \mu e^{-\sqrt{-a}x}$, $(\lambda, \mu) \in \mathbb{R}^2$.
- Enfin, si a > 0, les solutions sont alors les fonctions $x \mapsto \lambda \cos(\sqrt{a}x) + \mu \sin(\sqrt{a}x), (\lambda, \mu) \in \mathbb{R}^2$.

Réponse 24
$$x \mapsto -\frac{3}{5}\sin x - \frac{1}{5}\cos x\lambda e^x + \mu e^{-2x}, (\lambda, \mu) \in \mathbb{R}^2.$$

Réponse 25
$$x \mapsto \frac{\alpha(1-x^2)}{1+x^2} + \frac{2\beta x}{1+x^2}, (\alpha, \beta) \in \mathbb{R}^2.$$

Réponse 26
$$x \mapsto \frac{1}{9}x^2 + \frac{x}{2} + 1 + \frac{(\alpha \ln x + \beta)}{x}, (\alpha, \beta) \in \mathbb{R}^2.$$

Réponse 27 1.
$$az''(t) + (b-a)z'(t) + cz(t) = 0$$
.

1

- 2. Si on note S l'ensemble des solutions de cette équation à coefficients constants, l'ensemble des solutions sur \mathbb{R}^{+*} est $\{z(\ln x), z \in S\}$ et y solution sur \mathbb{R}^{-*} si et seulement si $x \mapsto y(-x)$ est solution sur \mathbb{R}^{+*} .
- 3. On applique ce qu'on vient de faire à $x^2y''-xy'+y=0$. D'après ce qui précède, y est une solution sur \mathbb{R}^{+*} si et seulement si z est solution de l'équation z''-2z'+z=0. Les solutions sont les fonctions

$$t \mapsto (\alpha t + \beta)e^t, (\alpha, \beta) \in \mathbb{R}^2.$$

On en déduit que les solutions de l'équation, sur \mathbb{R}^{+*} et \mathbb{R}^{-*} sont :

$$x \mapsto (\alpha \ln |x| + \beta)x, (\alpha, \beta) \in \mathbb{R}^2.$$

Réponse 28 $x \mapsto \mu e^{x/\mu^2}, \mu \in \mathbb{R}$

Réponse 29 $x \mapsto \frac{m}{\sqrt{m^2 + 2}} \sin\left(2mx\sqrt{m^2 + 2}\right) + \cos(mx) - 2m\sin(mx)$

Réponse 30 1. $x \mapsto \sqrt{x} \left(\alpha \cos \frac{\sqrt{3}}{2} \ln x + \beta \sin \frac{\sqrt{3}}{2} \ln x \right), \ (\alpha, \beta) \in \mathbb{R}^2.$

2. $x \mapsto \beta \sqrt{x} \left(\sqrt{3} \cos \frac{\sqrt{3}}{2} \ln x + \sin \frac{\sqrt{3}}{2} \ln x \right), \ \beta \in \mathbb{R}.$

Réponse 31 $\frac{\pi}{4}$

Réponse 32 $\frac{1}{2}$

Réponse 33 $\ln\left(\frac{2}{\sqrt{2}}\right)$

Réponse 34 $\frac{1}{4} \sin^4 t$.

Réponse 35 $\frac{2\sin^2 t - 1}{4\sin^4 t}$.

Réponse 36 $\frac{1}{3}\sin^3 t - \frac{1}{5}\sin^5 t$

Réponse 37 π

Réponse 38 $2-4\ln(3)+4\ln(2)$

Réponse 39 $\frac{x}{2} - \frac{1}{4} \ln|1 + 2x|$.

Réponse 40 $-2\ln|e^t-1|+t$.

Réponse 41 $\frac{x^2}{2} \arctan x + \frac{1}{2} \arctan x - \frac{x}{2}$.

Réponse 42 $\frac{\pi}{4} - \frac{\ln 2}{2}$.

Réponse 43 $t - \arctan(t) + \ln(1 + t^2)$

Réponse 44 $\frac{1}{4} \ln \left| \frac{x-3}{x+1} \right|$.

Réponse 45 $-\frac{1}{x-2}$

Réponse 46 $\frac{\arctan(t/\sqrt{3})}{\sqrt{3}}$.

Réponse 47 $t \mapsto \lambda e^t - (t^2 + 2t + 2), \lambda \in \mathbb{R}$.

Réponse 48 $x \mapsto \lambda (1 + x^2)^{-\frac{3}{2}}, \lambda \in \mathbb{R}$

Réponse 49 $x \mapsto \frac{\lambda x}{(x-1)^2} + \frac{x}{2}, \lambda \in \mathbb{R}.$

Réponse 50 $x \mapsto \frac{\lambda x}{(x-1)^2} + \frac{x}{2}, \lambda \in \mathbb{R}.$

Réponse 51 Les solutions sur I_i sont alors : $x \mapsto \frac{\lambda_i x}{\sqrt{1+x^2}}$, $\lambda_i \in \mathbb{R}$.

Réponse 52 Les solutions sur I_i sont $x \mapsto \frac{\lambda_i + \sin(x)}{x}$, $\lambda_i \in \mathbb{R}$

Réponse 53 $x \mapsto \frac{1+x}{\cos(x)}$.

Réponse 54 1. $x \mapsto 1 + e^{-x/2} \left(\alpha \cos \left(\frac{\sqrt{3}x}{2} \right) + \beta \sin \left(\frac{\sqrt{3}x}{2} \right) \right), (\alpha, \beta) \in \mathbb{R}^2.$

2.
$$x \mapsto \frac{1}{3}(x+1)e^{-2x} + e^{-x/2}\left(\alpha\cos\left(\frac{\sqrt{3}x}{2}\right) + \beta\sin\left(\frac{\sqrt{3}x}{2}\right)\right), (\alpha,\beta) \in \mathbb{R}^2.$$

3.
$$x \mapsto x^2 + x + 1 + e^{-x/2} \left(\alpha \cos \left(\frac{\sqrt{3}x}{2} \right) + \beta \sin \left(\frac{\sqrt{3}x}{2} \right) \right), (\alpha, \beta) \in \mathbb{R}^2.$$

4.
$$x \mapsto \frac{x}{\sqrt{3}} \cos\left(\frac{\sqrt{3}x}{2}\right) e^{-x/2} + e^{-x/2} \left(\alpha \cos\left(\frac{\sqrt{3}x}{2}\right) + \beta \sin\left(\frac{\sqrt{3}x}{2}\right)\right), (\alpha, \beta) \in \mathbb{R}^2.$$

Réponse 55 $x \mapsto x - \frac{2}{5} + e^{-x} \left(\alpha \cos(2x) + \beta \sin(2x) \right), (\alpha, \beta) \in \mathbb{R}^2.$

Réponse 57 $x \mapsto -\frac{x^2}{3} - \frac{4x}{9} - \frac{14}{27} + \lambda e^x + \mu e^{-3x}, (\lambda, \mu) \in \mathbb{R}^2.$

Réponse 58 $x \mapsto \frac{2}{5}\cos x - \frac{1}{5}\sin x + \lambda e^x + \mu e^{2x}, (\lambda, \mu) \in \mathbb{R}^2.$

Réponse 59 $x \mapsto \left(x - \frac{3}{2}\right)e^x + \lambda + \mu e^{-x}, (\lambda, \mu) \in \mathbb{R}^2.$

Réponse 60 1. $x \mapsto \frac{(a \ln x + b)}{x}$, $(a, b) \in \mathbb{R}^2$.

2.
$$\frac{x^2}{3} + x + 1$$

3.
$$x \mapsto \frac{(a \ln x + b)}{x} + \frac{x^2}{3} + x + 1, (a, b) \in \mathbb{R}^2.$$

Réponse 61 1

$$I_n = n \left(\frac{\pi}{2}\right)^{n-1} - n(n-1)I_{n-2}.$$

2.

$$I_{2p} = \sum_{k=0}^{p-1} (-1)^k \left(\frac{\pi}{2}\right)^{2p - (2k+1)} \frac{(2p)!}{(2p - (2k+1))!} + (-1)^p (2p)! I_0,$$

et

$$I_{2p} = \sum_{k=0}^{p-1} (-1)^k \left(\frac{\pi}{2}\right)^{2p-2k} \frac{(2p+1)!}{(2p-2k)!} + (-1)^p (2p+1)! I_1,$$

avec $I_0 = I_1 = 1$.

Réponse 62 1. $I(p,q) = \frac{q}{p+1}I(p+1,q-1)$

2.
$$I(p,q) = \frac{p!q!}{(p+q+1)!}$$
.

3.
$$\sum_{k=0}^{q} \frac{(-1)^k}{p+k+1} {q \choose k} = I(p,q) = \frac{p!q!}{(p+q+1)!}.$$

Réponse 63 $x \mapsto \frac{\lambda_i x^2 + x^2 \ln |x|}{x^2 - 1}, \lambda_i \in \mathbb{R}.$

Réponse 64 $x \mapsto \frac{1}{x} (a\cos(\sqrt{3}\ln x) + b\sin(\sqrt{3}\ln x)) + x(\ln x - \frac{4}{7}), (a, b) \in \mathbb{R}^2.$

Réponse 65 $x \mapsto 3x - \frac{6x}{1 + 6\lambda e^{-3x^2}}$ avec $\lambda \in \left] -\frac{1}{6}, +\infty \right[$.

Réponse 66 $y: x \mapsto \begin{cases} \left(\frac{x-c}{2}\right)^2 & \text{si } x > c \\ 0 & \text{sinon} \end{cases}$ avec $c \in \mathbb{R}$.

Réponse 67 $x \mapsto \cosh(ax), \alpha > 0$ et $x \mapsto \cos(ax)$, avec a > 0.