TD 8 : Droite réelle.

1 Détermination de bornes supérieures et inférieures

Exercice 1.

Déterminer le maximum de $A = \left\{ \frac{1}{n} \sqrt{1 - \frac{1}{n^2}}, n \in \mathbb{N}^* \right\}.$

Exercice 2.

Déterminer, s'ils existent, la borne supérieure, inférieure, le minimum et maximum des parties suivantes:

1.
$$\left\{ \frac{n - \frac{1}{n}}{n + \frac{1}{n}}, n \in \mathbb{N}^* \right\}$$
.
2. $\left\{ x \in \mathbb{R}, x^2 + x + 1 \ge 0 \right\}$.
3. $\left\{ x \in \mathbb{Q}, x^2 > 1 \right\}$.
4. $[0, 1] \cap \mathbb{Q}$.
5. $]0, 1[\cap \mathbb{Q}$.

3.
$$\{x \in \mathbb{Q}, x^2 > 1\}$$
.

4.
$$[0,1] \cap \mathbb{Q}$$
.

2.
$$\{x \in \mathbb{R}, x^2 + x + 1 \ge 0\}$$

Exercice 3.

Soit A un ensemble borné de \mathbb{R} .

- 1. Montrer que pour tout $\lambda \in \mathbb{R}$, $\sup \{\lambda + a, a \in A\} = \lambda + \sup(A)$.
- 2. Montrer que pour tout $\lambda \ge 0$, $\sup \{\lambda a, a \in A\} = \lambda \sup(A)$.
- 3. À quoi est égal sup $\{\lambda a, a \in A\}$ si $\lambda < 0$?

Exercice 4.

Soient A et B deux parties bornées de \mathbb{R} . Montrer que

- 1. $A \subset B \Rightarrow \sup A \leq \sup B$,
- 2. $B \subseteq A \Rightarrow \inf A \leq \inf B$.
- 3. $\sup(A \cup B) = \max(\sup A; \sup B)$,

Autour de la partie entière

Exercice 5.

Montrer que:

$$\forall (x, n) \in \mathbb{R} \times \mathbb{Z}, \lfloor x + n \rfloor = \lfloor x \rfloor + n,$$

Exercice 6.

Pour chacune des égalités, trouver un couple $(a, b) \in (\mathbb{R} \setminus \mathbb{Z})^2$ la vérifiant :

Exercice 7.

Montrer la relation:

$$\forall (x, y) \in \mathbb{R}^2 \lfloor x \rfloor + \lfloor y \rfloor \le \lfloor x + y \rfloor \le \lfloor x \rfloor + \lfloor y \rfloor + 1,$$

Exercice 8.

Déterminer la limite de $x \mapsto x \left| \frac{1}{x} \right|$ quand x tend vers $+\infty$.

Exercice 9.

Montrer que:

$$\forall (x, n) \in \mathbb{R} \times \mathbb{N}^{\star}, \ \left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor = \lfloor x \rfloor$$

Exercice 10.

Montrer que pour tout $x \in \mathbb{R}$, $\lfloor x^2 \rfloor = \lfloor x \rfloor^2 \Leftrightarrow x^2 - \lfloor x \rfloor^2 \in [0, 1[$.

Exercice 11.

Soit
$$(n, m) \in \mathbb{N}^2$$
. Calculer $\left\lfloor \frac{n+m}{2} \right\rfloor + \left\lfloor \frac{n-m+1}{2} \right\rfloor$.

3 Si besoin d'encore un peu d'entrainement

Exercice 12.

Montrer que l'ensemble $A = \left\{ (-1)^n + \frac{1}{n+1}, n \in \mathbb{N} \right\}$ est borné et déterminer sa borne supérieure et sa borne inférieure. Admet-il un maximum et un minimum?

Exercice 13.

Soient A et B deux parties bornées de \mathbb{R} , on note $A+B:=\{a+b,(a,b)\in A\times B\}$ et -A:= $\{-a, a \in A\}$. Montrer les assertions suivantes :

- 1. $\sup(A+B) = \sup A + \sup B$,
- 2. $\inf(-A) = -\sup A$,
- 3. $\sup A + \inf B \leq \sup (A + B)$.

Exercice 14.

Soit $y \in \mathbb{R}$. Exprimer |-y| en fonction de |y|.

Exercice 15.

Montrer que l'application $x \mapsto \lfloor 2x \rfloor - 2 \lfloor x \rfloor$ prend ses valeurs dans $\{0, 1\}$.

Soit $x \le 0$. Montrer que $\lfloor x^2 \rfloor = \lfloor x \rfloor^2 \Leftrightarrow x \in \mathbb{Z}$. Le résultat est-il vrai si x > 0?

4 Une fois qu'on est à l'aise

Exercice 17.

Soient f et g deux fonctions bornées sur [a, b]. Montrer que

$$\sup_{t\in[a,b]}|f(t)+g(t)| \leq \sup_{t\in[a,b]}|f(t)| + \sup_{t\in[a,b]}|g(t)|.$$

Exercice 18. Qo Qo

Déterminer
$$\inf_{a \in \mathbb{R}} \left(\sup_{x \in [0,1]} |x^2 + ax - 1| \right).$$

Exercice 19. $\mathbf{Q}_{\mathbf{p}}^{\mathbf{p}} \; \mathbf{Q}_{\mathbf{p}}^{\mathbf{p}}$

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Montrer que $\sum_{j=0}^{n-1} \left\lfloor x + \frac{j}{n} \right\rfloor = \lfloor nx \rfloor$.

Exercice 20. $\mathbf{Q}_{\mathbf{a}}^{\mathbf{a}} \mathbf{Q}_{\mathbf{a}}^{\mathbf{a}}$

Montrer que:

$$\forall n \in \mathbb{N}^{\star}, \lfloor \sqrt{n} + \sqrt{n+1} \rfloor = \lfloor \sqrt{4n+2} \rfloor$$

Exercice 21. \mathbf{Q}_{0}^{0} \mathbf{Q}_{0}^{0}

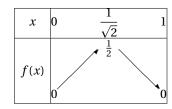
Soit $n \in \mathbb{N}^*$. Calculer la somme $\sum_{k=1}^{n^2-1} \lfloor \sqrt{k} \rfloor$.

Memo

- 1. Comment trouver un majorant/minorant?
 - (a) Utiliser l'inégalité triangulaire
 - (b) Étudier une fonction
- 2. Comment déterminer la borne sup/inf d'un ensemble borné?
 - (a) Trouver un majorant/minorant puis déterminer si c'est le plus petit/grand
 - (b) Étudier les variations d'une fonction
- 3. Comment majorer/minorer la borne supérieure/inférieure? Utiliser la définition c'est-à-dire le plus grand/petit des minorants/majorants.
- 4. Comment montrer des égalités/inégalités avec des parties entières? Revenir à la définition

Correction du TD n 8

Correction 1 On pose $f: \begin{cases} [0,1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x\sqrt{1-x^2} \end{cases}$. On a $A = \{f\left(\frac{1}{n}\right), n \in \mathbb{N}^*\}$. Elle est dérivable de dérivée $f'(x) = \frac{1-2x^2}{\sqrt{1-x^2}}$, son tableau de variations est donc :



On a $1 \ge \frac{1}{\sqrt{2}} \ge \frac{1}{2}$, donc, d'après le tableau de variations, la borne supérieure de l'ensemble est à chercher entre f(1) et $f\left(\frac{1}{2}\right)$. On a f(1) = 0 donc le maximum de notre ensemble est atteint pour n = 2 et vaut $\frac{\sqrt{3}}{4}$.

Correction 2

- 1. Soit $n \in \mathbb{N}^*$. On a $\frac{n-\frac{1}{n}}{n+\frac{1}{n}} \le 1$ donc l'ensemble est majoré. Il admet donc une borne supérieure. On a $\lim_{n \to +\infty} \frac{n-\frac{1}{n}}{n+\frac{1}{n}} = 1$ donc il ne peut y avoir de majorant plus petit et 1 est la borne supérieure de l'ensemble. Ce n'est pas un maximum car il n'existe pas d'entier $n \in \mathbb{N}^*$ tel que $n-\frac{1}{n}=n+\frac{1}{n}$.
 - Pour tout $n \in \mathbb{N}^*$, on a $\frac{n-\frac{1}{n}}{n+\frac{1}{n}} \ge 0$ et cette valeur est atteinte pour n=1, c'est donc le minimum de l'ensemble.
- 2. Soit $x \in \mathbb{R}$, on a $x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} > 0$, l'inégalité est donc vérifiée pour tout $x \in \mathbb{R}$ donc l'ensemble est égal à \mathbb{R} . Il n'admet ni borne supérieure, ni borne inférieure.

- 3. L'ensemble n'est pas majoré puisqu'on peut prendre x aussi grand que possible. Il est minoré par 1 donc il admet une borne inférieure. Ce n'est pas un minimum car l'inégalité est stricte donc $1 \notin \{x \in \mathbb{Q}, x^2 > 1\}$.
- 4. L'ensemble est borné, il admet donc une borne supérieure et une borne inférieure. Pour tout $x \in [0,1] \cap \mathbb{Q}$, on a $0 \le x \le 1$ et 0 et 1 appartiennent à cet ensemble donc $\min([0,1] \cap \mathbb{Q}) = 0$ et $\max([0,1] \cap \mathbb{Q}) = 1$.
- 5. L'ensemble est à nouveau borné mais cette fois-ci, la borne inférieure, égale à 0, et la borne supérieure, égale à 1, n'appartiennent pas à l'ensemble, ce dernier n'admet donc pas de minimum ni de maximum.

Correction 3

1. Soit $x \in \{\lambda + a, a \in A\}$, alors $x = \lambda + a$ avec $a \in \mathbb{R}$; on a donc

$$x \le \lambda + \sup(A)$$
.

Ceci étant vrai pour tout $x \in \{\lambda + a, a \in A\}$, on a

$$\sup \{\lambda + a, a \in A\} \le \lambda + \sup(A).$$

Soit maintenant $a \in A$, alors $a + \lambda \in \{\lambda + a, a \in A\}$ donc

$$a + \lambda \le \sup \{\lambda + a, a \in A\}$$

soit encore

$$a \le \sup \{\lambda + a, a \in A\} - \lambda.$$

Ceci étant vrai pour tout $a \in A$, on a :

$$\sup(A) \leq \sup\{\lambda + a, a \in A\} - \lambda,$$

d'où $\sup(A) + \lambda \le \sup\{\lambda + a, a \in A\}$. Par double inégalité, on a montré l'égalité.

2. On suppose $\lambda \ge 0$. Si $\lambda = 0$, le résultat est vrai, on suppose donc $\lambda > 0$. On procède, à nouveau, par double inégalité. Soit $x \in \{\lambda a, a \in A\}$, alors $x = \lambda a$ avec $a \in \mathbb{R}$. On a :

$$a \leq \sup(A)$$

et $\lambda > 0$ donc

1

$$x \le \lambda \sup(A)$$
.

Soit maintenant $a \in A$, alors $\lambda a \in \{\lambda a, a \in A\}$ donc

$$\lambda a \leq \sup \{\lambda a, a \in A\}.$$

Comme $\lambda > 0$, on peut diviser l'inégalité par λ et on obtient :

$$a \le \frac{1}{\lambda} \sup \{\lambda a, a \in A\}.$$

Ceci étant valable pour tout $a \in A$, on a $\sup(A) \le \frac{1}{\lambda} \sup{\{\lambda a, a \in A\}}$. Par double inégalité, on a montré l'égalité.

3. Si $\lambda < 0$, on a sup $\{\lambda a, a \in A\} = \lambda \inf(A)$. En effet, si $x \in \{\lambda a, a \in A\}$, on a $x = \lambda a$ avec $a \in A$ donc $a \ge \inf(A)$. Comme $\lambda < 0$, multiplier par λ l'inégalité donne

$$x \leq \lambda \inf(A)$$
.

De même, si $a \in A$, alors $\lambda a \in \{\lambda a, a \in A\}$ donc $\lambda a \le \sup\{\lambda a, a \in A\}$. On divise par λ ce qui inverse l'inégalité et on obtient $\frac{1}{\lambda}\sup\{\lambda a, a \in A\} \le a$. Ceci étant valable pour tout $a \in A$, on a :

$$\frac{1}{\lambda}\sup\{\lambda a, a\in A\} \leq \inf(A).$$

Par double inégalité, on a montré l'égalité suivante :

$$\sup \{\lambda a, a \in A\} = \lambda \inf(A).$$

Correction 4

- 1. On a : $\forall a \in A, a \leq \sup B$ donc $\sup(B)$ est un majorant de A et, par suite, $\sup A \leq \sup B$.
- 2. On a : $\forall a \in A, a \ge \inf B$ donc $\inf B$ est un minorant de A d'où $\inf(A) \ge \inf B$.
- 3. Soit $x \in A \cup B$, alors soit x est dans A et $x \le \sup A$, soit x est dans B et $x \le \sup B$ donc, dans les deux cas, $x \le \max(\sup A, \sup B)$. On en déduit que $\max(\sup A, \sup B)$ est un majorant de $A \cup B$ donc $\sup(A \cup B) \le \max(\sup A, \sup B)$.

Pour l'inégalité réciproque, on utilise la première implication : $A \subset A \cup B$ donc $\sup(A) \leq \sup(A \cup B)$ et $B \subset A \cup B$ donc $\sup(B) \leq \sup(A \cup B)$. Ces deux inégalités impliquent $\max(\sup A, \sup B) \leq \sup(A \cup B)$ d'où l'égalité.

Correction 5 Il suffit d'écrire

$$|x| \le x < |x| + 1$$
,

ce qui implique

$$\lfloor x \rfloor + n \le x + n < (\lfloor x \rfloor + n) + 1$$

on a alors montré que l'entier $\lfloor x \rfloor + n$ vérifie la caractérisation de la partie entière de x + n (comme l'unique entier N tel que $N \le x + n < N + 1$) donc $\lfloor x \rfloor + n = \lfloor x + n \rfloor$.

Correction 6

- 1. Pour $a = b = \frac{1}{2}$, on a a + b = 1 donc $\lfloor a + b \rfloor = 1$ et $\lfloor a \rfloor = \lfloor b \rfloor = 0$ d'où l'égalité souhaitée.
- 2. Pour $a = b = \frac{1}{3}$, on a $a + b = \frac{2}{3}$ donc $\lfloor a + b \rfloor = 0$ et $\lfloor a \rfloor = \lfloor b \rfloor = 0$ d'où l'égalité souhaitée.
- 3. Pour $a = b = \frac{1}{3}$, on a $ab = \frac{1}{9}$ donc $\lfloor ab \rfloor = 0$ et $\lfloor a \rfloor = \lfloor b \rfloor = 0$ d'où l'égalité souhaitée.
- 4. Pour $a=\frac{4}{5}$ et $b=\frac{3}{2}$, on a $ab=\frac{6}{5}$ donc $\lfloor ab \rfloor =1=\lfloor b \rfloor$ et $\lfloor a \rfloor =0$ d'où l'égalité souhaitée.
- 5. Pour $a = b = -\frac{1}{3}$, on a $ab = \frac{1}{9}$ donc $\lfloor ab \rfloor = 0$ et $\lfloor a \rfloor = \lfloor b \rfloor = -1$ d'où l'égalité souhaitée.
- 6. Pour $a = \frac{1}{2}$ et n = 2, on a $\lfloor a \rfloor = 0$ donc $n \lfloor a \rfloor = 0$ alors que na = 1 donc $\lfloor na \rfloor = 1$.
- 7. On a déjà traité le cas k=0, k=1 et k=-1. On prend $a=\frac{1}{k}$, $b=k^2+\frac{1}{2}$, on a $ab=k+\frac{1}{2k}$ donc $\lfloor ab\rfloor=k$ et $\lfloor a\rfloor=0$.

Correction 7 On sait que:

$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$$

et

$$\lfloor y \rfloor \le y < \lfloor y \rfloor + 1$$

donc

$$\lfloor x \rfloor + |y| \le x + y < \lfloor x \rfloor + |y| + 2 \tag{1}$$

D'autre part, par définition de |x + y|, on a :

$$|x+y| \le x+y < |x+y| + 1$$
 (2)

En combinant la première inégalité de (1) et la deuxième inégalité de (2), on obtient

$$\lfloor x \rfloor + \lfloor y \rfloor \le x + y < \lfloor x + y \rfloor + 1$$

et en combinant la deuxième inégalité de (1) et la première inégalité de (2), on obtient

$$\lfloor x + y \rfloor \le x + y < \lfloor x \rfloor + \lfloor y \rfloor + 2$$

donc

$$\lfloor x \rfloor + \lfloor y \rfloor < \lfloor x + y \rfloor + 1$$
 et $\lfloor x + y \rfloor < \lfloor x \rfloor + \lfloor y \rfloor + 2$.

Comme ce sont des inégalités strictes entre entiers, on en déduit que :

$$|x| + |y| \le |x + y|$$
 et $|x + y| \le |x| + |y| + 1$

et on a montré l'encadrement souhaité.

Correction 8 On sait que, $\forall x > 1$, $\left| \frac{1}{x} \right| = 0$, donc

$$\forall x > 1, \ x \left| \frac{1}{x} \right| = 0,$$

on en déduit que la limite en $+\infty$ est nulle.

Correction 9 On suppose, tout d'abord, $x \in [0, 1[$. On a alors $\lfloor x \rfloor = 0$. De plus, $nx \in [0, n[$ donc $\lfloor nx \rfloor \in [0, n-1]$ et $\frac{\lfloor nx \rfloor}{n} \in [0, 1[$. On a donc $\left| \frac{\lfloor nx \rfloor}{n} \right| = 0$ d'où l'égalité souhaitée. Supposons maintenant $x \in \mathbb{R}$. On écrit x = a + |x| avec $a \in [0, 1]$. On a alors nx = na + n|x|puis $\lfloor nx \rfloor = \lfloor na \rfloor + n \lfloor x \rfloor$ en utilisant l'exercice 5. On divise par n et on applique la partie

 $\begin{bmatrix} \frac{\lfloor nx \rfloor}{n} \end{bmatrix} = \begin{bmatrix} \frac{\lfloor na \rfloor}{n} + \lfloor x \rfloor \end{bmatrix}$ $= \begin{bmatrix} \frac{\lfloor na \rfloor}{n} \\ + \lfloor x \rfloor \end{bmatrix} = n \text{ appliquant l'exercice 5}$ D'après le cas traité ci-dessus, on a $\left| \frac{\lfloor na \rfloor}{n} \right| = 0$ donc $\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor$. On a bien l'égalité souhaitée.

Correction 10 On raisonne par équivalence :

$$\lfloor x^2 \rfloor = \lfloor x \rfloor^2$$

$$\Leftrightarrow \quad \lfloor x^2 \rfloor - \lfloor x \rfloor^2 = 0$$

$$\Leftrightarrow [x^2 - [x]^2] = 0 \operatorname{car} [x]^2 \in \mathbb{Z}$$

$$\Leftrightarrow x^2 - |x|^2 \in [0,1]$$

On a bien l'équivalence souhaitée.

Correction 11 On procède par disjonction de cas

Si n + m = 2p, alors $\left\lfloor \frac{n+m}{2} \right\rfloor = p$ et $\left\lfloor \frac{n-m+1}{2} \right\rfloor = \left\lfloor \frac{2n-2p+1}{2} \right\rfloor = n-p$ donc la somme vaut n.

Si n+m=2p+1, alors $\left|\frac{n+m}{2}\right|=p$ et $\left|\frac{n-m+1}{2}\right|=\left|\frac{2n-2p}{2}\right|=n-p$ et la somme vaut, à nouveau, n.

Correction 12 On pose $u_n = (-1)^n + \frac{1}{n+1}$. On a $-1 \le u_n \le 2$ donc A est un ensemble borné. Pour n = 0, on a $u_0 = 2$ donc 2 est le maximum de A.

On remarque que, pour n=2p+1, on a $\lim_{n\to+\infty}u_{2p+1}=-1$, cela montre qu'il ne peut exister de minorant de A strictement supérieur à -1. On a donc

$$\inf(A) = -1$$
.

L'ensemble A n'admet pas de minimum car il n'existe pas d'entier n tel que $(-1)^n$ +

Correction 13

- 1. Soit $x \in A + B$, alors x = a + b avec $(a, b) \in A \times B$. Comme $a \le \sup(A)$ et $b \le \sup(B)$, on a donc $a+b \le \sup(A) + \sup(B)$. Ainsi, $\sup(A) + \sup(B)$ est un majorant de A+B donc $\sup(A+B) \leq \sup(A) + \sup(B)$. Montrons l'autre inégalité. Soit $a \in A$. Alors il existe une suite $(b_n)_{n\in\mathbb{N}}$ de B qui tend vers $\sup(B)$. Pour tout $n\in\mathbb{N}$, on a $a+b_n\in A+B$ donc $a + b_n \le \sup(A + B)$. On a donc, pour tout $n \in \mathbb{N}$, $a \le \sup(A + B) - b_n$. On fait tendre $n \text{ vers } +\infty$, on obtient $a \leq \sup(A+B) - \sup(B)$ donc $\sup(A+B) - \sup(B)$ est un majorant de A, on en déduit que $\sup(A) \leq \sup(A+B) - \sup(B)$ ce qui montre l'autre inégalité.
- 2. Soit $a \in A$, alors $-a \in -A$ donc $-a \ge \inf(-A)$ puis $a \le -\inf(-A)$ donc $-\inf(-A)$ est un majorant de A. On en déduit que $\sup(A) \leq -\inf(-A)$. Montrons l'autre inégalité. Soit $a \in A$, alors $a \le \sup(A)$ donc $-\sup(A) \le -a$. Comme $-a \in -A$, $-\sup(A)$ est un minorant de -A donc $\inf(-A) \le -\sup(A)$. Par double inégalité, on a $\inf(-A) =$ $-\sup(A)$.
- 3. Soit $b \in B$, alors $\inf(B) \le b$. Pour tout $a \in A$, on a donc $\inf(B) + a \le a + b$. Comme $a+b \in A+B$, on a $\inf(B)+a \le \sup(A+B)$. Ainsi, $\sup(A+B)-\inf(B)$ est un majorant de A, on a donc $\sup(A) \le \sup(A+B) - \inf(B)$ d'où l'inégalité souhaitée.

Correction 14 Soit $y \in \mathbb{R}$, alors par définition

$$\lfloor y \rfloor \leq y < \lfloor y \rfloor + 1,$$

donc

$$-\lfloor y \rfloor - 1 < -y \le -\lfloor y \rfloor$$

— Si $y \in \mathbb{Z}$, alors $-y \in \mathbb{Z}$ donc $\lfloor -y \rfloor = -y = -\lfloor y \rfloor$. — Sinon, on $a - \lfloor y \rfloor - 1 < -y < - \lfloor y \rfloor$ donc $\lfloor -y \rfloor = - \lfloor y \rfloor - 1$.

Correction 15 Par définition de la partie entière, on a $x-1 < \lfloor x \rfloor \le x$ donc $-2x \le x$ $-2 \lfloor x \rfloor \le 2 - 2x$ et $2x - 1 < \lfloor 2x \rfloor \le 2x$. On en déduit que :

$$-1 < \lfloor 2x \rfloor - 2\lfloor x \rfloor < 2.$$

Comme $\lfloor 2x \rfloor - 2 \lfloor x \rfloor$ est un entier, il ne peut être égal qu'à 0 ou 1.

Correction 16 On raisonne par double implication. \Leftarrow Si $x \in \mathbb{Z}$, $x^2 \in \mathbb{Z}$, alors $\lfloor x \rfloor = x$ et $\lfloor x^2 \rfloor = x^2$ donc l'égalité est vraie.

 \Rightarrow On suppose maintenant $\lfloor x^2 \rfloor = \lfloor x \rfloor^2$. Par définition de la partie entière, on a :

$$x^2 - 1 < \lfloor x^2 \rfloor \le x^2$$

et

$$x-1 < |x| \le x$$
.

Comme *x* est négatif, en élevant au carré la dernière inégalité, on obtient :

$$x^2 \le |x|^2 \le (x-1)^2$$
.

Or $\lfloor x^2 \rfloor = \lfloor x \rfloor^2$ par hypothèse et comme $\lfloor x^2 \rfloor \le x^2$, on a $\lfloor x^2 \rfloor = x^2$ par double inégalité. Ceci montre que x^2 , et donc x, est entier.

Si x est positif, l'implication \Leftarrow reste vraie. En revanche, on a l'égalité $\lfloor x^2 \rfloor = \lfloor x \rfloor^2$ pour $x = \frac{3}{2}$ avec $x \notin \mathbb{N}$.

Correction 17 Soit $t \in [a, b]$, alors, d'après l'inégalité triangulaire, on a

$$|f(t) + g(t)| \le |f(t)| + |g(t)|.$$

On sait que $|f(t)| \le \sup_{t \in [a,b]} |f(t)|$ et $|g(t)| \le \sup_{t \in [a,b]} |g(t)|$. On a donc :

$$|f(t) + g(t)| \le \sup_{t \in [a,b]} |f(t)| + \sup_{t \in [a,b]} |g(t)|.$$

Ceci étant valable pour tout $t \in [a, b]$, on a donc :

$$\sup_{t\in[a,b]}|f(t)+g(t)| \leq \sup_{t\in[a,b]}|f(t)| + \sup_{t\in[a,b]}|g(t)|.$$

Remarque. L'égalité est fausse, on peut s'en convaincre en prenant g=-f et f non identiquement nulle.

Correction 18 Pour tout $a \in \mathbb{R}$, la fonction $f_a : x \mapsto x^2 + ax - 1$ est dérivable, de dérivée $x \mapsto 2x + a$.

— Si $-\frac{a}{2}$ < 0 c'est-à-dire a > 0 alors f_a est croissante, on a le tableau de variations

suivant :							
X	0	1					
f_a	-1	a					

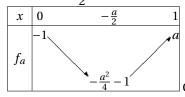
 $|\operatorname{et} \sup_{x \in [0,1]} |f_a(x)| = \max(1, a).$

— Si $-\frac{a}{2} > 1$, c'est-à-dire a < -2, f_a est décroissante, on a le tableau de variations

Suive	1111	• •	
x	0		1
f_a	-1		a

et $\sup_{x \in A} |f_a(x)| = |a|$

— Si $-\frac{a}{2} \in [0,1]$, c'est-à-dire $a \in [-2,0]$, elle atteint son maximum en 0 ou 1 et son minimum en $-\frac{a}{2}$. On a le tableau de variations suivant :



Comme a < 0, le maximum de $|f_a|$ est $\frac{a^2}{4} + 1$.

On a montré :									
a	$-\infty$ -	2 ()	1	$+\infty$				
$\sup f_a $	a	$\frac{a^2}{4} + 1$	1	a					

Comme pour tout $a \in \mathbb{R}$, on a $\sup_{x \in [0,1]} |f_a(x)| \ge 1$ et $\sup_{x \in [0,1]} |f_0(x)| = 1$, on en déduit que $\inf_{a \in \mathbb{R}} \sup_{x \in [0,1]} |f_a(x)| = 1.$

Correction 19 Pour $x \in [0,1[$, on pose $k = \lfloor nx \rfloor$. On a $k \in [0,n-1]$ et $x = a + \frac{k}{n}$ avec $a \in \left[0,\frac{1}{n}\right[$. Pour tout $j \in [0,n-1]$, on a $\left\lfloor x + \frac{j}{n} \right\rfloor = \left\lfloor a + \frac{j+k}{n} \right\rfloor$ donc

$$\left| x + \frac{j}{n} \right| = \begin{cases} 0 & \text{si } j + k < n \\ 1 & \text{si } j + k \ge n \end{cases}$$

On a donc
$$\sum_{j=0}^{n-1} \left\lfloor x + \frac{j}{n} \right\rfloor = \sum_{j=0}^{n-k-1} \left\lfloor x + \frac{j}{n} \right\rfloor + \sum_{j=n-k}^{n-1} \left\lfloor x + \frac{j}{n} \right\rfloor = k \text{ car il y a } k \text{ termes entre}$$

n-k et n-1. Comme $k=\lfloor nx \rfloor$, on a le résultat pour $x \in [0,1[$.

On se ramène au cas précédent pour le cas général : Soit $x \in \mathbb{R}$, alors $x = a + \lfloor x \rfloor$ avec $a \in [0,1[$. On a donc :

$$\sum_{j=0}^{n-1} \left\lfloor x + \frac{j}{n} \right\rfloor = \sum_{j=0}^{n-1} \left\lfloor a + \lfloor x \rfloor + \frac{j}{n} \right\rfloor$$
$$= \sum_{j=0}^{n-1} \left(\lfloor x \rfloor + \left\lfloor a + \frac{j}{n} \right\rfloor \right) \operatorname{car} \left\lfloor x \rfloor \in \mathbb{Z}$$
$$= n \lfloor x \rfloor + \sum_{j=0}^{n-1} \left\lfloor a + \frac{j}{n} \right\rfloor$$

 $= n \lfloor x \rfloor + \lfloor na \rfloor$ d'après le cas traité précédemment

Comme $n[x] \in \mathbb{Z}$, on applique encore l'exercice 5 pour écrire

$$n|x| + |na| = |n|x| + na$$

et comme n[x] + na = n(a + [x]) = nx, on a bien le résultat pour $x \in \mathbb{R}$.

Correction 20 On commence par trouver une inégalité entre $\sqrt{n+1} + \sqrt{n}$ et $\sqrt{4n+2}$ en raisonnant (par exemple) par équivalence :

$$\sqrt{n+1} + \sqrt{n} < \sqrt{4n+2} \Leftrightarrow n+1+2\sqrt{n(n+1)} + n \le 4n+2$$

$$\Leftrightarrow 2\sqrt{n(n+1)} \le 2n+1$$

La dernière inégalité est vraie donc, par équivalence, la première l'est aussi. Par croissance de la partie entière, on en déduit que

$$\left|\sqrt{n+1} + \sqrt{n}\right| \leqslant \left|\sqrt{4n+2}\right|.$$

On remarque que $\sqrt{4n+2}$ n'est jamais entier. En effet, si m est entier, alors $m^2 = 4r^2$ ou $4r^2 + 4r + 1$ selon que m est pair ou non. On n'a donc jamais un carré de la forme 4n + 2. Pour conclure, on suppose par l'absurde qu'il existe $m \in \mathbb{N}$ tel que

$$\sqrt{n+1} + \sqrt{n} < m < \sqrt{4n+2}$$
,

et on raisonne par équivalence :

$$\sqrt{n+1} + \sqrt{n} < m < \sqrt{4n+2}$$

- $\Rightarrow n+1+2\sqrt{n(n+1)}+n < m^2 < 4n+2$ par positivité des deux membres
- $\Leftrightarrow 2n+1+2\sqrt{n(n+1)} < m^2 < 4n+2$
- $\Rightarrow 2\sqrt{n(n+1)} < m^2 2n 1 < 2n + 1$
- \Leftrightarrow $4n(n+1) < (m^2 2n 1)^2 < 4n^2 + 4n + 1$ par positivité des deux membres

Ce dernier encadrement est absurde car $(m^2 - 2n - 1)^2$ est un entier et il ne peut être strictement compris entre deux entiers consécutifs. On en déduit que

$$\left|\sqrt{4n+2}\right|<\sqrt{n+1}+\sqrt{n}<\sqrt{4n+2}$$

donc $|\sqrt{4n+2}| \le |\sqrt{n+1} + \sqrt{n}|$ et par double inégalité, on a montré l'égalité.

Correction 21 Pour tout entier k tel que $j^2 \le k < (j+1)^2$ c'est-à-dire pour $k \in [j^2, (j+1)^2 - 1]$, on a $\lfloor \sqrt{k} \rfloor = j$. On peut réécrire la somme en groupant les termes identiques :

$$\sum_{k=1}^{n^2-1} \sqrt{k} = \sum_{j=1}^{n-1} \sum_{j^2 \leqslant k < (j+1)^2} \left\lfloor \sqrt{k} \right\rfloor = \sum_{j=1}^{n-1} \sum_{j^2 \leqslant k < (j+1)^2} j.$$

Il y a $(j+1)^2 - j^2 = 2j+1$ entiers entre j^2 et $(j+1)^2 - 1$. La somme est donc égale à :

$$\sum_{k=1}^{n^2-1} \lfloor \sqrt{k} \rfloor$$

$$= \sum_{j=1}^{n-1} j(2j+1)$$

$$= \frac{n(n-1)(2n-1)}{3} + \frac{n(n-1)}{2} \text{ en utilisant la formule de la somme des carrés}$$

$$= \frac{n(n-1)(4n+1)}{6}.$$