TD 8 : Droite réelle.

1 Détermination de bornes supérieures et inférieures

Exercice 1.

Déterminer le maximum de $A = \left\{ \frac{1}{n} \sqrt{1 - \frac{1}{n^2}}, n \in \mathbb{N}^* \right\}.$

Exercice 2.

Déterminer, s'ils existent, la borne supérieure, inférieure, le minimum et maximum des parties suivantes:

1.
$$\left\{ \frac{n - \frac{1}{n}}{n + \frac{1}{n}}, n \in \mathbb{N}^* \right\}$$
.
2. $\left\{ x \in \mathbb{R}, x^2 + x + 1 \ge 0 \right\}$.
3. $\left\{ x \in \mathbb{Q}, x^2 > 1 \right\}$.
4. $[0, 1] \cap \mathbb{Q}$.
5. $]0, 1[\cap \mathbb{Q}$.

3.
$$\{x \in \mathbb{Q}, x^2 > 1\}$$
.

4.
$$[0,1] \cap \mathbb{Q}$$
.

2.
$$\{x \in \mathbb{R}, x^2 + x + 1 \ge 0\}$$

Exercice 3.

Soit A un ensemble borné de \mathbb{R} .

- 1. Montrer que pour tout $\lambda \in \mathbb{R}$, $\sup \{\lambda + a, a \in A\} = \lambda + \sup(A)$.
- 2. Montrer que pour tout $\lambda \ge 0$, $\sup \{\lambda a, a \in A\} = \lambda \sup(A)$.
- 3. À quoi est égal sup $\{\lambda a, a \in A\}$ si $\lambda < 0$?

Exercice 4.

Soient A et B deux parties bornées de \mathbb{R} . Montrer que

- 1. $A \subset B \Rightarrow \sup A \leq \sup B$,
- 2. $B \subseteq A \Rightarrow \inf A \leq \inf B$.
- 3. $\sup(A \cup B) = \max(\sup A; \sup B)$,

Autour de la partie entière

Exercice 5.

Montrer que:

$$\forall (x, n) \in \mathbb{R} \times \mathbb{Z}, \lfloor x + n \rfloor = \lfloor x \rfloor + n,$$

Exercice 6.

Pour chacune des égalités, trouver un couple $(a, b) \in (\mathbb{R} \setminus \mathbb{Z})^2$ la vérifiant :

$$- \lfloor a+b\rfloor = \lfloor a\rfloor + \lfloor b\rfloor + 1.$$

$$- \lfloor a+b\rfloor = \lfloor a\rfloor + \lfloor b\rfloor.$$

$$- \lfloor ab\rfloor = \lfloor a\rfloor \lfloor b\rfloor.$$

$$- \lfloor ab\rfloor = \lfloor a\rfloor \lfloor b\rfloor + 1$$

$$- \lfloor ab\rfloor = \lfloor a\rfloor \lfloor b\rfloor + 1$$

$$- \lfloor ab\rfloor = \lfloor a\rfloor \lfloor b\rfloor + k.$$

$$- Soit k \in \mathbb{Z}, \lfloor ab\rfloor = \lfloor a\rfloor \lfloor b\rfloor + k.$$

Exercice 7.

Montrer la relation:

$$\forall (x, y) \in \mathbb{R}^2 \lfloor x \rfloor + \lfloor y \rfloor \le \lfloor x + y \rfloor \le \lfloor x \rfloor + \lfloor y \rfloor + 1,$$

Exercice 8.

Déterminer la limite de $x \mapsto x \left| \frac{1}{x} \right|$ quand x tend vers $+\infty$.

Exercice 9.

Montrer que:

$$\forall (x, n) \in \mathbb{R} \times \mathbb{N}^{\star}, \ \left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor = \lfloor x \rfloor$$

Exercice 10.

Montrer que pour tout $x \in \mathbb{R}$, $\lfloor x^2 \rfloor = \lfloor x \rfloor^2 \Leftrightarrow x^2 - \lfloor x \rfloor^2 \in [0, 1[$.

Exercice 11.

Soit
$$(n, m) \in \mathbb{N}^2$$
. Calculer $\left\lfloor \frac{n+m}{2} \right\rfloor + \left\lfloor \frac{n-m+1}{2} \right\rfloor$.

3 Si besoin d'encore un peu d'entrainement

Exercice 12.

Montrer que l'ensemble $A = \left\{ (-1)^n + \frac{1}{n+1}, n \in \mathbb{N} \right\}$ est borné et déterminer sa borne supérieure et sa borne inférieure. Admet-il un maximum et un minimum?

Exercice 13.

Soient A et B deux parties bornées de \mathbb{R} , on note $A+B:=\{a+b,(a,b)\in A\times B\}$ et -A:= $\{-a, a \in A\}$. Montrer les assertions suivantes :

- 1. $\sup(A+B) = \sup A + \sup B$,
- 2. $\inf(-A) = -\sup A$,
- 3. $\sup A + \inf B \leq \sup (A + B)$.

Exercice 14.

Soit $y \in \mathbb{R}$. Exprimer |-y| en fonction de |y|.

Exercice 15.

Montrer que l'application $x \mapsto \lfloor 2x \rfloor - 2 \lfloor x \rfloor$ prend ses valeurs dans $\{0, 1\}$.

Soit $x \le 0$. Montrer que $\lfloor x^2 \rfloor = \lfloor x \rfloor^2 \Leftrightarrow x \in \mathbb{Z}$. Le résultat est-il vrai si x > 0?

4 Une fois qu'on est à l'aise

Exercice 17.

Soient f et g deux fonctions bornées sur [a, b]. Montrer que

$$\sup_{t\in[a,b]}|f(t)+g(t)| \leq \sup_{t\in[a,b]}|f(t)| + \sup_{t\in[a,b]}|g(t)|.$$

Exercice 18. Qo Qo

Déterminer
$$\inf_{a \in \mathbb{R}} \left(\sup_{x \in [0,1]} |x^2 + ax - 1| \right).$$

Exercice 19. $\mathbf{Q}_{\mathbf{p}}^{\mathbf{p}} \; \mathbf{Q}_{\mathbf{p}}^{\mathbf{p}}$

Soit
$$x \in \mathbb{R}$$
 et $n \in \mathbb{N}^*$. Montrer que $\sum_{j=0}^{n-1} \left\lfloor x + \frac{j}{n} \right\rfloor = \lfloor nx \rfloor$.

Exercice 20. $\mathbf{Q}_{\mathbf{a}}^{\mathbf{a}} \mathbf{Q}_{\mathbf{a}}^{\mathbf{a}}$

Montrer que:

$$\forall n \in \mathbb{N}^{\star}, \lfloor \sqrt{n} + \sqrt{n+1} \rfloor = \lfloor \sqrt{4n+2} \rfloor$$

Exercice 21. \mathbf{Q}_{0}^{0} \mathbf{Q}_{0}^{0}

Soit $n \in \mathbb{N}^*$. Calculer la somme $\sum_{k=1}^{n^2-1} \lfloor \sqrt{k} \rfloor$.

Memo

- 1. Comment trouver un majorant/minorant?
 - (a) Utiliser l'inégalité triangulaire
 - (b) Étudier une fonction
- 2. Comment déterminer la borne sup/inf d'un ensemble borné?
 - (a) Trouver un majorant/minorant puis déterminer si c'est le plus petit/grand
 - (b) Étudier les variations d'une fonction
- 3. Comment majorer/minorer la borne supérieure/inférieure? Utiliser la définition c'est-à-dire le plus grand/petit des minorants/majorants.
- 4. Comment montrer des égalités/inégalités avec des parties entières? Revenir à la définition