Devoir maison 4.

à rendre le 1er décembre pour les trinômes impairs.

Exercice 1.

Soit n un entier supérieur ou égal à 2. On pose $\omega = \exp \frac{2i\pi}{n}$.

- 1. (a) Exprimer l'ensemble de toutes les solutions complexes de l'équation $z^n = 1$ en fonction de ω . On les note ω_k pour k variant de 0 à n-1.
 - (b) Montrer que la somme de ces racines est nulle.
 - (c) Déterminer $\sum_{k=0}^{n-1} (-1)^k \omega_k$
 - (d) Soit $a \in \mathbb{C}^*$, montrer que la somme des racines de l'équation $z^n = a$ est nulle.
- 2. (a) Démontrer que pour tout nombre complexe z_1, z_2 , on a $|z_1+z_2|^2=|z_1|^2+|z_2|^2+2\mathcal{R}e(z_1\overline{z_2})$.
 - (b) En déduire que $|1 \omega_k|^2 = 2 2\mathcal{R}e(\omega_k)$.
 - (c) Calculer $\sum_{k=0}^{n-1} |1 \omega_k|^2$
- 3. On suppose jusqu'à la fin de l'exercice que pour tout $k \in [[0, n]], \omega_k = \exp \frac{2ik\pi}{n}$.
 - (a) Calculer $\sum_{k=0}^{n-1} \sin \frac{k\pi}{n}$.
 - (b) Calculer $|1 \omega_k|$ en fonction de $\sin \frac{k\pi}{n}$.
 - (c) En déduire la somme suivante: $\sum_{k=0}^{n-1} |1 \omega_k|$.
- 4. Calculer $W_n = \sum_{k=0}^{n-1} |\omega_{k+1} \omega_k|$.
- 5. Déterminer $\lim_{n\to +\infty} W_n$. Interpréter géométriquement ce résultat.