Lycée du Parc
PCSI 842 Année 2025-2026
DS5 Durée : 4h

Devoir d’entrainement 5.

Exercice 1.
Dans tout ce probleme, A désigne la matrice carrée d’ordre 3 a coefficients réels définie par

S N O

3 1
A=]|1 1
1 3

Partie I - Une premiére méthode pour le calcul des puissances de A
On pose

J=A-2I
1. Calculer J2. En déduire J" pour tout 7 € N (on distinguera deux cas).
2. Soit n € N*. Montrer qu'il existe (an,ﬁn) € R?, que 'on déterminera, tel que A" = a,,J + Bnls.
3. Calculer I'inverse de A.
4. Laformule trouvée pour A" est-elle encore valable pour n=—-1?
Partie II - Une autre méthode de calcul des puissances de A
5. On pose

1 -1
P=|1
1

(=R ]

Montrer que P est inversible et déterminer P~1.

4 00
6. Montrer que AP=PDjouDy=| 0 2 0
0 0 2

7. Calculer, pour tout n € N, D’;.
8. En déduire une écriture matricielle de A” ne dépendant que de 'entier n.

9. Comparée |'expression trouvée a celle de la partie I.



Exercice 2.
Soit a un réel positif ou nul. On considére la suite (u,),>1 définie par récurrence par u; = a et Vn €
2
u
N*) Up+1 = _n

vn

1. Montrer qu’il existe une unique valeur de a telle que (u,) =1 Soit constante et la déterminer.

2. On suppose que (u,),>1 converge. Montrer que sa limite est nulle en utilisant I'unicité de la li-
mite.

3. Onsuppose que pour tout entier n € N*, u,, > v/n. Montrer que (u,) ,>1 est croissante et tend vers
+00.

4. On suppose maintenant qu’il existe un entier k tel que uy < v'k.
(a) Montrer que pour tout entier n strictement supérieur a k, u, < v/n.

(b) En déduire la nature de (u,,) ;=1 et sa limite si elle existe?
" Ink
On introduit maintenant la suite (v,,) ;=1 définie de la manieére suivante: Vne N*, v, = Z

k=1

2k+1"

n
5. Soit 8 €]0;1[. Montrer que la suite (8,) ,en définie par B, = Y. B* converge et donner sa limite.
k=1

. nuy . .
6. Exprimer ——- en fonction de a et v, pour tout entier n.
Indication : On pourra chercher une formule valable pour uy, us, u, et us puis la montrer par ré-

currence.

7. Montrer qu’il existe M € R* tel que pour tout entier k, on ait

<
2k+1

Ink (2)’<
3

Indication : utiliser les croissances comparées.

8. En déduire que la suite (v,) =1 est majorée puis qu’elle converge.

Soit ¢ 1a limite de (v,,) ;>1.
9. Enoncer la définition avec des € de nliIP v,="¢.
—+00
10. On supposelna < ¢

(a) montrer que
IA>0,AINeN*, n=2N=>Ina-v,<-1

(b) En déduire que u,, — 0 quand n — +oo.
11. On suppose désormais que Ina > ¢.

(a) Montrer qu'il existe A > 0 tel que
VneN*Ina-v,>A

(b) En déduire que u, — +oo quand n — +oo.



Exercice 3.
1. Soit f:R — R la fonction définie par: Vx € [0,1], f(x) = (x — 1)2. On pose g = fof.

(a) Dresser le tableau de variation de f.

(b) Montrer que f admet un unique point fixe sur [0, 1] que 'on notera a.
(c) Dresser le tableaux de variations de g sur R.

(d) Déterminer les points fixes de g.

(e) En déduire le signe de g(x) — x sur R.

Soit a € R. Soit (1) nen la suite réelle définie par : { o =a, et )
Upe1=(uy,—-1)7, VneN

Pour tout entier n € N, on pose v, = Uy, et Wy, = Uzp41.-

2. On suppose tout d’abord a € [0, .
(@) Pour tout n € N, exprimer v,; en fonction de v,, puis w;, en fonction de v,,.
(b) Montrer que VneN, v, € [0, al.
(c) Montrer que la suite (v,,) ,en €st décroissante et déterminer sa limite.
(d) En déduire que la suite (wj) ,en converge et calculer sa limite.
(e) La suite (uy,)en est-elle convergente ?

3. Quelle est la nature de (u;,) nen Si Up €], 1] 2

4. (a) Montrer qu’il existe a; <0 et a, > 2 tels que g(a;) = glap) = 1.

(b) Montrer que I'on connait la nature de la suite (u,) ,en lorsque ug € [ay, az].

. . In(4vy,)
5. On suppose ici ug € [0, a[. Pour tout entier 7 € N on pose x;, = o
(a) Montrer que pour tout entier ne Non a:

In(1 - )
Vni1 = V22— Up)” et Xpa1 — Xy = ———

211

Un
In(1 - )

(b) Soit (1, p) e N?, n < p. Démontrer I'inégalité suivante : < Xp—xp <0.

n—-1
(c) En déduire que la suite (x,) ,en converge vers un réel L strictement négatif.

2n

1
(d) Démontrer que x,=L+0 ( )

(e) En déduire un équivalent de la suite (v,) nen.



Correction du DS d’entrainement n 5

Correctionl On pose

3 01
A=11 2 1
1 0 3
Partie I - Une premiére méthode pour le calcul des puissances de A
On pose
J=A-2I,
On a donc
1 01
J=]|1 0 1
1 01
2 0 2
1. OnaJj?=[2 0 2|.On en déduit, par une récurrence immédiate, que /" =2""'Jpour n>1 et
2 0 2

J" = I3 pour n=0.

2. Soit n € N*. On écrit A = J+2I3. On sait que J et I3 commutent, on peut donc appliquer le binome

de Newton : ;
> (k-
k=0

2" I3 + (Z (’;)zn—kzk—l)]
k=1

2t 23 @)

k=1
n
=2"I5+2""! (kz (0 - 1)]
=0
=2"L+2" 12" -1)]
— 271]3 + (2211—1 _2”—1)]
221’1 _21’1

:2”13+T]

An

2n _on
Onadonc A" =a,J+ B,13 avec a;, = — et B, =2".

La, ma question n'était pas suffisamment précise, certains l'ont fait par récurrence et ¢a répondait
a la question, j'ai donc compté tous les points. Certains encore ne sont pas allés jusqu’au bout de
la simplification de a;, mais comme ¢a répondait aussi a la question, je n'ai pas pénalisé. Assurez-
vous toutefois de savoir appliquer Newton et simplifier la somme qui commence a 1, c’est du grand

classique.
! 3.0 -1 11
3.OnaA™" =—-(-1 4 -1 :5(413_]):53_51_
-1 0 3



272427t 3 272271 1, , ) "
4. Ona — - 3’ 27 = 3 et — = s Lexpression trouvée pour A” est donc encore va-

lable pour n = —1.

Pour ceux qui navait pas explicité a,, et B, il suffisait de montrer que A™" était bien une combi-
naison linéaire de I3 et J.

Partie II - Une autre méthode de calcul des puissances de A

5. On pose
1 0 -1
P=111 0
1 0 1
X1 N
Soit X=|x2]etY=])2].0Ona
X3 V3
X1—X3 =)
PX=Y o©{xi+x =)
X1+X3 =3
L +1 L 1(L + L3)
X = — —_ — —
1 2)’1 2)’3 15+ ls
1 1 1 1
SAX  =—cyitYe—S)3 Ly—Ly—-L1— L3
% 1 2 2 2
-X] =—=-)Nn+- Ly ——-(L3s—L
1 SV1t 5y 3 2(3 1)
1 0 1
On en déduit que P estinversibleet P! =~ -1 2 -1
-1 0 1

4 0 -2 4 0 -2 4 00
.OnaAP=\|4 2 0 |puisPDy=(4 2 0 |doncPDy=APavecDy=| 0 2 0
4 0 2 4 0 2 0 0 2

Question sympa que vous pouviez faire méme avec un P~ faux (alors que ce qui nous intéresse est
que A=P~'AP

4% 0 0
.SoitneN,onaDZ: 0 2" 0
0O 0 27

Aucune justification attendue, c'est dans les propriétés du calcul matriciel
. OnaA"=(PD,P")"=PD"P '.Ona

4" 0 =2"
PDL=[4" 2" 0
4" 0 2"
puis
4" 4+ 2n 0 4 —2n
2 2
nZon n<on
ppipt=| 2 22 on 2 22
4" 42"
dfraca"-2"2 0 5

On est sur du TRES classique!!!! & savoir faire les yeux fermés donc



9. On écrit
4qn _n qn_on

0
2 2
n~on n-on qn _on
4n 2" 0 4”g2”
2 2

On retrouve bien |'expression trouvée a la partie I.

Correction 2  Soit a un réel positif ou nul. On considere la suite (u,),>; définie par récurrence par
uy,
vn

a2
1. On suppose que VneN, u, =a,onaalors VneN,a = 7 On a donc, pour n = 1, a*> = a donc

n
a=0oua=1.Pourn=2,v2a=a? ce quiimpose a = 0. Réciproquement, si a = 0, la suite nulle

2

up=aetvneN u, =

Un

Vvn

vérifie bien u; =aetVneN, u, = . Il y a donc bien une unique valeur de a pour laquelle

() nen* €St constante.

La plupart d’entre vous est partie de u, alors que l'on vous demande une condition sur u;. Ceux
qui ont pensé a mettre des quantificateurs sont arrivés a

(Up,) nen constante > VneN*, a=0oua=+vn

et ont conclu en me disant que la suite (/n) n,en Wétait pas constante donc que l'on n'avait jamais
Vn e N*, u, = v/n. Cette assertion est juste. Probleme, vous n'avez pas montré que cette assertion
était un des cas. En effet, Yn € N*, u,, = 0 ou u, = \/n n'est pas la méme chose que¥n € N*, u, =
OouVneN*, u,=vn
12
2. On suppose que (u,) =1 converge vers une limite L. Alors u,+; — L. Or \/—"ﬁ — 0 donc, par unicité

de la limite, L = 0.

2
22 personnes m'ont écrit upy+) — ? (ou l'équivalent). C'est vraiment une erreur lourde : la limite
n

ne peut dépendre de n puisque vous avez fait tendre n vers +oo.

3. On suppose que pour tout entier n € N*, u,, > \/n. En particulier, pour tout n € N*, u,, > 0 Alors

pour tout n € N*,
Up+1  Up

Uy vn

et u, > 0 donc la suite (u,),en* est croissante. On a u; > 1 donc la suite ne peut converger en
croissant vers 0, elle diverge donc vers +oo.

>1,

Si vous faites le quotient, il est indispensable de préciser AVANT que l'on ne divise pas par une

quantité qui peut s‘annuler. Pour conclure sur la monotonie de la suite, il faut préciser que (u)
Ap+1

an

est positive (scoop : La suite de terme général a,, = — 1 vérifie < 1 et elle est pourtant
n
croissante)

On pouvait aussi faire la différence. Soit n € N*, alors

— un
Ltn+l_un—un __]. .

vn



u
On sait que u, > v/n donc \/—i —1>0et u, >+/n>0.0n en déduit que la suite (u,),en* €st
n

croissante.
Par le théoreme de minoration, la limite de la suite est +oo.

Beaucoup d’entre vous oublient de parler du deuxieme facteur.
4. On suppose maintenant qu’il existe un entier k € N* tel que u; < Vk.

(a) On va montrer que pour tout entier n supérieur a k, u, < /n par récurrence sur n. Pour tout
n >k, on pose donc HR(n) : "u, <+/n". Initialisation : Aurang k+1,ona:

U+l =

Sk
| U] |=™

AN

+1

La propriété est donc vraie au premier rang. On suppose maintenant qu’elle est vraie pour un
certain entier n > k. On a alors

S

u -
n+l
+ \/_

< /n par hypothese de récurrence
<vn+l

et la propriété est vraie au rang n + 1. Par le principe de récurrence, elle est vraie pour tout
entier n > k.

(b) D’apres la question précédente, on a, pour tout n > k, u, < v/n donc, u, étant positif, u? <
Uy /N PUIS Uy < Uy

Comme vous écrivez des inégalités sans préciser pour quelles valeurs de n, beaucoup ont écrit
Up+1 — Uy <0 et en on déduit que (u,) ,en* €tait décroissante ce qui est faux. La suite (Up) pen*
est seulement décroissante a partir du rang k

On en déduit que la suite est décroissante a partir du rang k. Comme elle est minorée par 0,
elle converge et on a vu qu’elle ne pouvait converger que vers 0.

n
On introduit maintenant la suite (v,),,>1 définie de la maniere suivante : v, = Y. 215;’3 .
k=1
n v ,6 ﬁn+l ﬁ
5. Soit f €]0;1[. PourtoutneN,ona ) p*= 1—p carﬁ;éld’ou hm Z,B 1 ﬁcarﬁ”“—»
k=1 -

0 puisque S €]0,1]

nuy,
6. Exprimer —— en fonction de a et v,_; pour tout entier n.

Indication : On pourra chercher une formule valable pour uy, us, us et us puis la montrer par ré-
currence. On a
— In(uy) =2In(a),

— In(us) =2In(uy) — %m(z) =22In(a) - %m(z)
— In(us) =2In(ug) — %ln(?») =23In(a) - In(2) - %ln(S).
— In(us) = 2In(uy) — %ln(4) =2%In(a) - 2In(2) - In(3) - %ln(4)

On adonc
ln(ug)

=In(a).



ln(u3

1
In(a) - 2—3111(2)

2z -
In(uy) 1 1
— 3 =In(a) — 2—31n(2) - gln(S)
1 1 i 1
n;fff’) = In(@) - 3 In(2) - 55 In(3) - > In(4)

On intuite donc que pour tout 7 € N, In(u,,) = 2! (In(a) — v,,_1). On le montre par récurrence sur
n. Pour tout n € N*, on pose HR(n) : "In(u,,) = 2" ! (In(a) — v,,_1) ". La propriété est vraie au rang
2 (et méme aux rangs 3,4 et 5!). Soit n un entier tel que HR(n) est vraie. On a alors

In(u,+1) =2In(u,) - %ln(n)

1
=2(2" 1 (In(a) - vy-1)) - 5
par hypothése de récurrence

1
=2"In(a) -2"v,—-1 — =In(n)
=2"1In(a) - 2" (vn_l +—
=2"In(a) -2"v,

La propriété est vraie au rang n + 1. Par le principe de récurrence, elle est vraie pour tout entier
neN*.

2
u
L'énoncé vous suggere de calculer les premiers termes. Premier écueil : j'ai vu beaucoup de uy = —

V2

ce qui est faux car uy correspondan = 1.

In(u,)
Ensuite, I'énoncé vous demande une formule pour ——— ce qui signifie, sauf a croire le concepteur
on-1

sadique, que c’est plus simple que de trouver une expression de u,, (et donc pourquoi certains ont
cherché une expression de u,, avec des produits???2?)

7. Montrer qu’il existe M € R* tel que pour tout entier k, on ait
Ink 2\*
— <
2k+1 3

Indication : utiliser les croissances comparées.
Ona

In(k) (Z)k In(k)

<M|[-| © ——< .
2k+1 3 2% (4/3)k
In(k)

na———
2 x (4/3)k
est bornée. Il existe donc M tel que

4 In(k
— 0 par croissances comparées car — > 1. On en déduit que la suite (#)
3 2x (413)F ) ken

vken, —2K
2 x (4/3)k

k
En multipliant I'inégalité par (5) , on obtient I'inégalité souhaitée.

Certains ont pensé a diviser pour montrer que le quotient tendait vers 0 mais conclure " donc elle
est majorée" ne peut suffire! Dites-moi qu'une suite convergente est majorée! ou bien preneze =1
et vous appliquez la définition de limite nulle.

8. En déduire que la suite (v,),>1 est majorée puis qu’elle converge.



Ink
2k+1

k
2 .
<M (— donc, en sommant ces in-

Soit n € N. D’apres la question précédente, pour tout k € N, 3

2 k
Or, d’apres la question 5, comme 3 €]0, 1[, on sait que hrP Z (—) converge donc elle est bornée. On
k=1

égalités, on obtient

In(n+1)

en déduit que (v,) ,en €st majorée. Par ailleurs, pour tout n €N, v, — vy, = —onia = 0 donc la suite

est croissante. Par le thm de convergence monotone, on en déduit qu’elle converge.

J'ai encore vu le passage a la somme avec une équivalence... mais ce qui ma fait le plus mal, c’est le
nombre effarant de personnes qui me disent que la suite est majorée apres une inégalité dont le membre
de droite dépend de n!!!

Soit ¢ la limite de (v,,) ;1.

9. Enoncer la définition avec des € de hm v, =¢.
Ve >0,iAN telque Vn= N, |v, —¢| <e
10. On supposelna<¥¢

il existe € au lieu de Ve, c'est faux et ne pas préciser Ve AVANT, c’est faux aussi. En effet, le rang N
dépend dece, il est donc impératif de le fixer avant de parler de U'existence de N.

(a) Montrons que
IA>0,INeN,n=N=>Ina-v,<-1

€
On pose € = ¢ —In(a) > 0 et on applique la définition de limite avec > on sait alors qu'il existe

€ €
NeNtelqueVn=N,|v,—-¥¢|< 2 Ainsi, pourtoutn=N, ¢ —v, < 2 En écrivant In(a) — v, =

In(a)-¥¢+¥¢—-v,=-€+¢—v,, on obtient
€
In(a) — v, <—-€+ 3

donc c
In(a)— v, < =3
€
En posant A = 3 > 0, on a bien le résultat souhaité.

(b) En déduire que u, — 0 quand n — +oo.

D’apres la question précédente, on sait qu’il existe A >0et Ne Ntelque Vn= N, In(a) - v, < -1
donc
Vn>N,n—1= Ndonc In(a)—v,_.1 <—-A,

et comme In(u,,) =2" ! (In(a) - v,,—;), on a donc
Vn> N,In(u,) < -2""1A.
Par le thm de majoration, In(%,) — —oco donc u,, — 0

11. On suppose désormais que lna > ¢.
(@) Montrer qu'’il existe A > 0 tel que

VneN,Ina-v,> A1

. . L o In(a) -
On sait que (V) ,en* €st croissante, elle est donc majorée par salimite £. On pose A = 5

On a alors, pour tout n € N*, In(a) — v, = In(a) — € > A.

9



(b)

En déduire que u;, — +o0o quand n — +oo.

D’apres la question précédente, on sait qu'’il existe A >0 et NeNtel que Vn = N, In(a) — v, > A donc

Vn= N, In(u,) >2" 1.

Par le thm de minoration, In(u#,) — co donc u;, — +oo

Correction 3
1. Soit f:[0,1] — [0,1] la fonction définie par : ¥V x € [0,1], f(x) = (x—1)%2. On pose g = fof.

(a)

(b)

(©

(d)

(e)

Dresser le tableau de variation de f surR
La fonction f est dérivable et pour tout x € [0,1], f'(x) = 2(x— 1) donc f est décroissante sur

X 0 1

fl(x) —

1

f T
[0,1].0n a

Montrer que [ admet un unique point fixe sur [0,1]. On le notera «
Ona f(x) - x = x*>—3x+1, c’est un polynome de degré 2, de coefficient dominant positif et

3++v5 3-v5 3+
\/_.Ona0< \/_<1<

0

5
admettant pour racines . Attention, certains m'ont parlé

d’injectivité de f pour justifier 'existence ou I'unicité de point fixe, cela n’a pas de sens! Une
fonction injective peut (ou pas) admettre un ou plusieurs points fixes

Dresser le tableau de variations de g surR

Ona g(x) = (x(x—2))? donc g'(x) = 2(2x — 2)x(x — 2) = 4x(x — 1)(x — 2). On en déduit que

X —00 0 a 1 2 +00
g' ) - 0 + 0 - 0 +
+00 1 00
/ \

Lerreur classique a été de me donner le tableau de variations sur [0,1] et pas sur R. J'en ai
vu quelques uns échouer a me trouver le signe de la dérivée (pourquoi avoir développé?!?!).
Pensez a toujours regarder si 0, 1 ou —1 sont racines d'un polyndome lorsque vous cherchez a
le factoriser.

Déterminer les points fixesdeg Ona g(x) = x © x*—4x3+4x>—x =0 o= x(x3-4x*+4x-1) =0
et comme les points fixes de f sont points fixes de g, on sait que x*> —3x + 1 divise g donc
g(x) = x(x—1(x*>-3x+1).

On pouvait aussi remarquer que 0 et 1 sont racines évidentes du polyndme g(x) — x et retrou-

3+5

ver ainsi la factorisation. Les points fixes de g sont 0, 1, >

En déduire le signe de g(x) — x surR.

Ona
gx)—x=x(x-2)(x*-3x+ D) =x(x-D(x—a)(x—a)

3++v5

avec a’' = .
2

On dresse le tableau de signe :

10



X —00 0 a 1 a

gx)—x + 0 - 0 + 0 - 0 +

Soit a € [0,1]. Soit () nen la suite réelle définie par : ug = a €10, a[ et U, = (u, — 1)%. Pour tout
entier n € N on pose v, = Uy, et Wy = Upp41.

2. On suppose tout d'abord a € [0, al.
(@) Exprimer v, en fonction de v, puis w, en fonction de v,,.

Ona
Unt1 = Upps2 = f(Uaps1) = fo fuzn) = gluzy) = g(vy)
et
Wy = Upps+1 = f(U2n) = f(vn)

Beaucoup d’erreurs sur cette question. Impossible de faire correctement le reste si on n’a pas
vu que g va étre la fonction qui définit v. Pour info, la réponse était donnée question 5a)

(b) Montrer que v, € [0,a[,VneN.
On remarque, d’apres le tableau de variations de g, que [0, a[ est un intervalle stable par g.
On a vy = uyp €]0, a[ par hypothese, on suppose donc que v, appartient a cet intervalle; alors
Vn+1 = g(vy,) et comme v, €]0, a[ par hypothése de récurrence, on sait que g(v,) €10, a[. Ainsi,
on a montré le résultat par récurrence.
J’ai accepté ceux qui m’'ont dit ug € [0, af et [0, a[ est stable par g donc car la récurrence est
immédiate..

(c) Montrer que la suite (v,,) nen et décroissante et déterminer sa limite.
On utilise maintenant la question ?2. On sait que v, €]0, @[ pour tout n et x — g(x) — x est
négative sur |0, ¢[ donc v,+; = g(v,) < v, et la suite (v,), est décroissante.
La suite (v,) sen €st décroissante et bornée puisque son support est inclus dans [0, a|, elle est
donc convergente. De plus, comme elle est décroissante, sa limite ¢ ne peut étre égale a a
donc ¢ € [0, a[. On sait que nl_lgloo Un+1 = ¢ or v,y = g(v,) dong, par continuité de g, on a
également v, — g(¥¢). Par unicité de la limite, on a g(¢) = ¢ et comme g(x) < x,Vx €]0,al,
on a nécessairement ¢ = 0.
Attention, certains m’'ont dit v, € [0, [ donc sa limite appartient a [0, a[ ce qui est faux, en
général. SivneN, v, € [0, «], alors nl_lgloo v, €10, al.

(d) Endéduire que la suite (wy) ,en converge et calculer sa limite.
On aremarqué que w, = f(v,) et f est continue donc w, — f(I) = f(0) = 1. Il était inutile de
montrer que (w;,) converge.
(e) La suite (uy)nen est-elle convergente?
Les suites (v,) et (w,) sont deux suites extraites de (u,) et elles convergent vers des limites
différentes, la suite (u,) ne peut donc pas étre convergente.
Inutile de me dire que les indices des deux suites recouvrent les entiers! J’aurais la divergence
de (u,) méme si ce n’était pas le cas.
3. Quelle est la nature de (u,,) nen Si Ug €]a, 1] 2
Si up €]a, 1], alors u; € [0, a[ donc, d’apres I'étude précédente, on a (u,,) divergente. Seule Clara E
aremarqué qu'’il était inutile de refaire toute I’étude.
4. (a) Montrer qu'il existe a; <0 et ay > 2 tels que g(ay) = g(ax) = 1.
On a g(R*) = R} donc 1 admet un antécédent a; par g dans | —oo,0[. De méme g(]2, +oo[) =
10, +oo[ donc il existe un antécédent ay €]2, +oo[ de 1 par g.
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(b)

Montrer que l'on connait la nature de la suite (u,) nen lOTsque ug € [ay, az].

Si ug € [ay, ay], alors g(uy) = uy € [0,1]. On sait que (u,) € diverge si uy € [0,1] et uy # a. Ce
sera donc le cas chaque fois que u, € [0, 1], u, # a. Pour u; = a, la suite est constante a partir
du rang 2, elle est donc convergente.

. In(4v,)
5. Pour tout entier n € N on pose x,, = o
_ ) ) In(1-=2)
(@) Montrer que pour toutentiern€Nona: vy = 0;,2—0,)%, Xpy1—Xn = 2—”
On a déja montré que v, = g(vy) = v%(2 — v,)?. Par ailleurs, x,11 — X, = T ——In(dv,.;) -
1 1 vav 1 2v,2-v 1 v
—In(4v,) = —ln(—"“) = —IH(M) = —ln(l - —n)
21 21 205, 21 20, 21 2
: 2 ) . In(1-4)
(b) Soit (n, p) €N, n < p. Démontrer l'inégalité suivante : ———"— < Xp— X, <0
Vk
p-1 p-1 ln(l—?)
On remarque tout d’abord que x, — X, = ¥ Xp41— X = X oF . Comme vy > 0, tous
=n k=n

(9]

(d)

les termes de la somme sont strictement négatifs donc x, — x;, < 0. De plus, In est croissante
v
et (v,) décroissante donc ln(l - 7]6) >1n (1 — 7) Vk=n...p—1dou

-1 ln((l—@)

Xp—Xn> ) o
k=n

1
-m(1-2)% 2
-11 1 1-(1/2)P~" 1-(1/2)P7" 1
= < .
W2k 20 1-1/2 2n-1 2n-1
Enfin, on n'oublie pas que le In est négatif donc la multiplication inverse les inégalités et on
In(1-v,/2)

2n—1
On ne va pas se mentir, ¢’était un massacre.

On explicite maintenant la suite géométrique Z

se retrouve avec Xp—Xn >

En déduire que la suite (x,) nen converge vers un réel L strictement négatif.

La question précédente, appliquée a p = n+ 1 montre que (x,) est décroissante. De plus, en

v 1
I'appliquanta n =0 et p >0, on en déduit que 2In (1 — ?0) < Xp—Xp donc xp+2In (1 — ?0) <Xp
et la suite est minorée donc convergente. On a vu que la suite (v,) tend vers 0, donc, a partir
d’'un certain rang, elle est strictement inférieure a 1 ce qui implique que x, < 0 a partir d'un
certain rang. Comme (x,) est, de plus, décroissante, sa limite ne peut étre que strictement
négative.

1
Démontrer que x, = L+ o(z—n) et en déduire un équivalent de la suite (vy,) nen-
On revient a I'inégalité trouvée a la question a). On a la réécrit sous la forme

v
21n(1 —7”) <2™(xp—x,) <0

v
On fixe n et on fait tendre p vers +oo. On obtient alors 21n (1 - 7") < 2™(L - xp) <0 On peut
maintenant faire tendre n vers +oo et par le théoréeme des gendarmes, on a 2" (L — x,) — 0 ce

1
qui est équivalenta x, =L+ o0 (2”)
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n n

1 e?'l e?'l

,onav,=-e> o) = = g0 o~
4 4 4

1 ,n
(e) Comme v, = Zez *n

Attention, j’ai vu des a ~ b implique e® ~ e?!!!!
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