
Lycée du Parc
PCSI 842 Année 2025-2026
DS 5 Durée : 4h

Devoir d’entrainement 5.

Exercice 1.
Dans tout ce problème, A désigne la matrice carrée d’ordre 3 à coefficients réels définie par

A =
 3 0 1

1 2 1
1 0 3


Partie I - Une première méthode pour le calcul des puissances de A

On pose

J = A−2I3

1. Calculer J 2. En déduire J n pour tout n ∈N (on distinguera deux cas).

2. Soit n ∈N∗. Montrer qu’il existe
(
αn ,βn

) ∈R2, que l’on déterminera, tel que An =αn J +βn I3.

3. Calculer l’inverse de A.

4. La formule trouvée pour An est-elle encore valable pour n =−1 ?

Partie II - Une autre méthode de calcul des puissances de A

5. On pose

P =
 1 0 −1

1 1 0
1 0 1


Montrer que P est inversible et déterminer P−1.

6. Montrer que AP = PD A où D A =
 4 0 0

0 2 0
0 0 2

.

7. Calculer, pour tout n ∈N,Dn
A.

8. En déduire une écriture matricielle de An ne dépendant que de l’entier n.

9. Comparée l’expression trouvée à celle de la partie I.
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Exercice 2.
Soit a un réel positif ou nul. On considère la suite (un)nÊ1 définie par récurrence par u1 = a et ∀n ∈
N?,un+1 =

u2
np
n

.

1. Montrer qu’il existe une unique valeur de a telle que (un)nÊ1 soit constante et la déterminer.

2. On suppose que (un)nÊ1 converge. Montrer que sa limite est nulle en utilisant l’unicité de la li-
mite.

3. On suppose que pour tout entier n ∈N?, un >p
n. Montrer que (un)nÊ1 est croissante et tend vers

+∞.

4. On suppose maintenant qu’il existe un entier k tel que uk Ép
k.

(a) Montrer que pour tout entier n strictement supérieur à k, un <p
n.

(b) En déduire la nature de (un)nÊ1 et sa limite si elle existe?

On introduit maintenant la suite (vn)nÊ1 définie de la manière suivante : ∀n ∈N?, vn =
n∑

k=1

lnk

2k+1
.

5. Soit β ∈]0;1[. Montrer que la suite (βn)n∈N définie par βn =
n∑

k=1
βk converge et donner sa limite.

6. Exprimer
lnun

2n−1
en fonction de a et vn−1 pour tout entier n.

Indication : On pourra chercher une formule valable pour u2,u3,u4 et u5 puis la montrer par ré-
currence.

7. Montrer qu’il existe M ∈R+ tel que pour tout entier k, on ait

lnk

2k+1
É M

(
2

3

)k

Indication : utiliser les croissances comparées.

8. En déduire que la suite (vn)nÊ1 est majorée puis qu’elle converge.

Soit ` la limite de (vn)nÊ1.

9. Énoncer la définition avec des ε de lim
n→+∞vn = `.

10. On suppose ln a < `
(a) montrer que

∃λ> 0,∃N ∈N?,n Ê N ⇒ ln a − vn <−λ
(b) En déduire que un → 0 quand n →+∞.

11. On suppose désormais que ln a > `.

(a) Montrer qu’il existe λ> 0 tel que

∀n ∈N?, ln a − vn >λ

(b) En déduire que un →+∞ quand n →+∞.
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Exercice 3.

1. Soit f :R→R la fonction définie par : ∀x ∈ [0,1], f (x) = (x −1)2. On pose g = f o f .

(a) Dresser le tableau de variation de f .

(b) Montrer que f admet un unique point fixe sur [0,1] que l’on notera α.

(c) Dresser le tableaux de variations de g sur R.

(d) Déterminer les points fixes de g .

(e) En déduire le signe de g (x)−x sur R.

Soit a ∈R. Soit (un)n∈N la suite réelle définie par :

{
u0 = a, et

un+1 = (un −1)2, ∀n ∈N .

Pour tout entier n ∈N, on pose vn = u2n et wn = u2n+1.

2. On suppose tout d’abord a ∈ [0,α[.

(a) Pour tout n ∈N, exprimer vn+1 en fonction de vn , puis wn en fonction de vn .

(b) Montrer que ∀n ∈N, vn ∈ [0,α[.

(c) Montrer que la suite (vn)n∈N est décroissante et déterminer sa limite.

(d) En déduire que la suite (wn)n∈N converge et calculer sa limite.

(e) La suite (un)n∈N est-elle convergente ?

3. Quelle est la nature de (un)n∈N si u0 ∈]α,1] ?

4. (a) Montrer qu’il existe a1 < 0 et a2 > 2 tels que g (a1) = g (a2) = 1.

(b) Montrer que l’on connaît la nature de la suite (un)n∈N lorsque u0 ∈ [a1, a2].

5. On suppose ici u0 ∈ [0,α[. Pour tout entier n ∈N on pose xn = ln(4vn)

2n
.

(a) Montrer que pour tout entier n ∈N on a :

vn+1 = v2
n(2− vn)2 et xn+1 −xn = ln(1− vn

2 )

2n

(b) Soit (n, p) ∈N2, n < p. Démontrer l’inégalité suivante :
ln(1− vn

2 )

2n−1
É xp −xn É 0.

(c) En déduire que la suite (xn)n∈N converge vers un réel L strictement négatif.

(d) Démontrer que xn = L+o

(
1

2n

)
(e) En déduire un équivalent de la suite (vn)n∈N.
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Correction du DS d’entrainement n 5

Correction 1 On pose

A =
3 0 1

1 2 1
1 0 3


Partie I - Une première méthode pour le calcul des puissances de A

On pose

J = A−2I3

On a donc

J =
1 0 1

1 0 1
1 0 1



1. On a J 2 =
2 0 2

2 0 2
2 0 2

. On en déduit, par une récurrence immédiate, que J n = 2n−1 J pour n Ê 1 et

J n = I3 pour n = 0.

2. Soit n ∈N∗. On écrit A = J+2I3. On sait que J et I3 commutent, on peut donc appliquer le binôme
de Newton :

An =
n∑

k=0

(n
k

)
J k 2n−k

= 2n I3 +
(

n∑
k=1

(n
k

)
2n−k 2k−1

)
J

= 2n I3 +
(

2n−1
n∑

k=1

(n
k

))
J

= 2n I3 +2n−1

(
n∑

k=0

(n
k

)−1

)
J

= 2n I3 +2n−1 (2n −1) J
= 2n I3 +

(
22n−1 −2n−1

)
J

= 2n I3 + 22n −2n

2
J

On a donc An =αn J +βn I3 avec αn = 22n −2n

2
et βn = 2n .

Là, ma question n’était pas suffisamment précise, certains l’ont fait par récurrence et ça répondait
à la question, j’ai donc compté tous les points. Certains encore ne sont pas allés jusqu’au bout de
la simplification de αn mais comme ça répondait aussi à la question, je n’ai pas pénalisé. Assurez-
vous toutefois de savoir appliquer Newton et simplifier la somme qui commence à 1, c’est du grand
classique.

3. On a A−1 = 1

8

 3 0 −1
−1 4 −1
−1 0 3

= 1

8
(4I3 − J ) = 1

2
I3 − 1

8
J .
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4. On a
2−2 +2−1

2
= 3

8
, 2−1 = 4

8
et

2−2 −2−1

2
=−1

8
. L’expression trouvée pour An est donc encore va-

lable pour n =−1.

Pour ceux qui n’avait pas explicité αn et βn , il suffisait de montrer que A−1 était bien une combi-
naison linéaire de I3 et J .

Partie II - Une autre méthode de calcul des puissances de A

5. On pose

P =
 1 0 −1

1 1 0
1 0 1



Soit X =
x1

x2

x3

 et Y =
y1

y2

y3

. On a

P X = Y ⇔


x1 −x3 = y1

x1 +x2 = y2

x1 +x3 = y3

⇔


x1 = 1

2
y1 + 1

2
y3 L1 ← 1

2
(L1 +L3)

x2 =−1

2
y1 + y2 − 1

2
y3 L2 ← L2 − 1

2
L1 − 1

2
L3

−x1 =−1

2
y1 + 1

2
y3 L3 ← 1

2
(L3 −L1)

On en déduit que P est inversible et P−1 = 1

2

 1 0 1
−1 2 −1
−1 0 1


6. On a AP =

4 0 −2
4 2 0
4 0 2

 puis PD A =
4 0 −2

4 2 0
4 0 2

 donc PD A = AP avec D A =
 4 0 0

0 2 0
0 0 2

.

Question sympa que vous pouviez faire même avec un P−1 faux (alors que ce qui nous intéresse est
que A = P−1 AP

7. Soit n ∈N, on a Dn
A =

4n 0 0
0 2n 0
0 0 2n


Aucune justification attendue, c’est dans les propriétés du calcul matriciel

8. On a An = (
PD AP−1

)n = PDn
AP−1. On a

PDn
A =

4n 0 −2n

4n 2n 0
4n 0 2n


puis

PDn
AP−1 =


4n +2n

2
0

4n −2n

2
4n −2n

2
2n 4n −2n

2

d f r ac4n −2n2 0
4n +2n

2


On est sur du TRÉS classique ! ! ! ! à savoir faire les yeux fermés donc
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9. On écrit

An = 2n I3 +


4n −2n

2
0

4n −2n

2
4n −2n

2
0

4n −2n

2
4n −2n

2
0

4n −2n

2

= 2n I + 4n −2n

2
J

On retrouve bien l’expression trouvée à la partie I.

Correction 2 Soit a un réel positif ou nul. On considère la suite (un)nÊ1 définie par récurrence par

u1 = a et ∀n ∈N,un+1 =
u2

np
n

.

1. On suppose que ∀n ∈N, un = a, on a alors ∀n ∈N, a = a2

p
n

. On a donc, pour n = 1, a2 = a donc

a = 0 ou a = 1. Pour n = 2,
p

2a = a2, ce qui impose a = 0. Réciproquement, si a = 0, la suite nulle

vérifie bien u1 = a et ∀n ∈ N,un+1 = u2
np
n

. Il y a donc bien une unique valeur de a pour laquelle

(un)n∈N? est constante.

La plupart d’entre vous est partie de un alors que l’on vous demande une condition sur u1. Ceux
qui ont pensé à mettre des quantificateurs sont arrivés à

(un)n∈N constante ⇔∀n ∈N?, a = 0 ou a =p
n

et ont conclu en me disant que la suite (
p

n)n∈N n’était pas constante donc que l’on n’avait jamais
∀n ∈ N?,un = p

n. Cette assertion est juste. Problème, vous n’avez pas montré que cette assertion
était un des cas. En effet, ∀n ∈N?, un = 0 ou un =p

n n’est pas la même chose que ∀n ∈N?,un =
0 ou ∀n ∈N?,un =p

n

2. On suppose que (un)nÊ1 converge vers une limite L. Alors un+1 → L. Or
u2

np
n
→ 0 donc, par unicité

de la limite, L = 0.

22 personnes m’ont écrit un+1 → l 2

p
n

(ou l’équivalent). C’est vraiment une erreur lourde : la limite

ne peut dépendre de n puisque vous avez fait tendre n vers +∞.

3. On suppose que pour tout entier n ∈N?, un >p
n. En particulier, pour tout n ∈N?, un > 0 Alors

pour tout n ∈N?,
un+1

un
= unp

n
> 1,

et un > 0 donc la suite (un)n∈N? est croissante. On a u1 > 1 donc la suite ne peut converger en
croissant vers 0, elle diverge donc vers +∞.

Si vous faites le quotient, il est indispensable de préciser AVANT que l’on ne divise pas par une
quantité qui peut s’annuler. Pour conclure sur la monotonie de la suite, il faut préciser que (un)

est positive (scoop : La suite de terme général an = − 1

n +1
vérifie

an+1

an
< 1 et elle est pourtant

croissante)

On pouvait aussi faire la différence. Soit n ∈N?, alors

un+1 −un = un

(
unp

n
−1

)
.
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On sait que un > p
n donc

unp
n
− 1 > 0 et un > p

n > 0. On en déduit que la suite (un)n∈N? est

croissante.

Par le théorème de minoration, la limite de la suite est +∞.

Beaucoup d’entre vous oublient de parler du deuxième facteur.

4. On suppose maintenant qu’il existe un entier k ∈N? tel que uk Ép
k.

(a) On va montrer que pour tout entier n supérieur à k, un <p
n par récurrence sur n. Pour tout

n > k, on pose donc HR(n) : "un <p
n". Initialisation : Au rang k +1, on a :

uk+1 = u2
kp
k

Ép
k

<p
k +1

La propriété est donc vraie au premier rang. On suppose maintenant qu’elle est vraie pour un
certain entier n > k. On a alors

un+1 = u2
np
n

Ép
n par hypothèse de récurrence

<p
n +1

et la propriété est vraie au rang n + 1. Par le principe de récurrence, elle est vraie pour tout
entier n > k.

(b) D’après la question précédente, on a, pour tout n > k, un < p
n donc, un étant positif, u2

n É
un

p
n puis un+1 É un .

Comme vous écrivez des inégalités sans préciser pour quelles valeurs de n, beaucoup ont écrit
un+1 −un < 0 et en on déduit que (un)n∈N? était décroissante ce qui est faux. La suite (un)n∈N?
est seulement décroissante à partir du rang k

On en déduit que la suite est décroissante à partir du rang k. Comme elle est minorée par 0,
elle converge et on a vu qu’elle ne pouvait converger que vers 0.

On introduit maintenant la suite (vn)nÊ1 définie de la manière suivante : vn =
n∑

k=1

lnk
2k+1 .

5. Soitβ ∈]0;1[. Pour tout n ∈N, on a
n∑

k=1
βk = β−βn+1

1−β carβ 6= 1 d’où lim
n→+∞

n∑
k=1

βk = β

1−β carβn+1 →
0 puisque β ∈]0,1[

6. Exprimer
lnun

2n−1
en fonction de a et vn−1 pour tout entier n.

Indication : On pourra chercher une formule valable pour u2,u3,u4 et u5 puis la montrer par ré-
currence. On a
— ln(u2) = 2ln(a),

— ln(u3) = 2ln(u2)− 1

2
ln(2) = 22 ln(a)− 1

2
ln(2)

— ln(u4) = 2ln(u3)− 1

2
ln(3) = 23 ln(a)− ln(2)− 1

2
ln(3).

— ln(u5) = 2ln(u4)− 1

2
ln(4) = 24 ln(a)−2ln(2)− ln(3)− 1

2
ln(4)

On a donc

—
ln(u2)

2
= ln(a).
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—
ln(u3

22
= ln(a)− 1

23
ln(2)

—
ln(u4)

23
= ln(a)− 1

23
ln(2)− 1

24
ln(3)

—
ln(u5)

24
= ln(a)− 1

23
ln(2)− 1

24
ln(3)− 1

25
ln(4)

On intuite donc que pour tout n ∈N, ln(un) = 2n−1 (ln(a)− vn−1). On le montre par récurrence sur
n. Pour tout n ∈N?, on pose HR(n) : " ln(un) = 2n−1 (ln(a)− vn−1)". La propriété est vraie au rang
2 (et même aux rangs 3,4 et 5 !). Soit n un entier tel que HR(n) est vraie. On a alors

ln(un+1) = 2ln(un)− 1

2
ln(n)

= 2
(
2n−1 (ln(a)− vn−1)

)− 1

2
ln(n)

par hypothèse de récurrence

= 2n ln(a)−2n vn−1 − 1

2
ln(n)

= 2n ln(a)−2n
(

vn−1 + ln(n)

2n+1

)
= 2n ln(a)−2n vn

La propriété est vraie au rang n +1. Par le principe de récurrence, elle est vraie pour tout entier
n ∈N?.

L’énoncé vous suggère de calculer les premiers termes. Premier écueil : j’ai vu beaucoup de u2 =
u2

1p
2

ce qui est faux car u2 correspond à n = 1.

Ensuite, l’énoncé vous demande une formule pour
ln(un)

2n−1
ce qui signifie, sauf à croire le concepteur

sadique, que c’est plus simple que de trouver une expression de un (et donc pourquoi certains ont
cherché une expression de un avec des produits ?? ??)

7. Montrer qu’il existe M ∈R+ tel que pour tout entier k, on ait

lnk

2k+1
É M

(
2

3

)k

Indication : utiliser les croissances comparées.
On a

ln(k)

2k+1
É M

(
2

3

)k

⇔ ln(k)

2× (4/3)k
É M .

On a
ln(k)

2× (4/3)k
→ 0 par croissances comparées car

4

3
> 1. On en déduit que la suite

(
ln(k)

2× (4/3)k

)
k∈N

est bornée. Il existe donc M tel que

∀k ∈N,
ln(k)

2× (4/3)k
É M .

En multipliant l’inégalité par

(
2

3

)k

, on obtient l’inégalité souhaitée.

Certains ont pensé à diviser pour montrer que le quotient tendait vers 0 mais conclure " donc elle
est majorée" ne peut suffire ! Dites-moi qu’une suite convergente est majorée ! ou bien prenez ε = 1
et vous appliquez la définition de limite nulle.

8. En déduire que la suite (vn)nÊ1 est majorée puis qu’elle converge.
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Soit n ∈ N. D’après la question précédente, pour tout k ∈ N,
lnk

2k+1
É M

(
2

3

)k

donc, en sommant ces in-

égalités, on obtient

vn É M
n∑

k=1

(
2

3

)k

.

Or, d’après la question 5, comme
2

3
∈]0,1[, on sait que lim

n→+∞

n∑
k=1

(
2

3

)k

converge donc elle est bornée. On

en déduit que (vn)n∈N est majorée. Par ailleurs, pour tout n ∈N, vn+1 − vn = ln(n +1)

2n+2
Ê 0 donc la suite

est croissante. Par le thm de convergence monotone, on en déduit qu’elle converge.

J’ai encore vu le passage à la somme avec une équivalence... mais ce qui m’a fait le plus mal, c’est le
nombre effarant de personnes qui me disent que la suite est majorée après une inégalité dont le membre
de droite dépend de n ! ! !

Soit ` la limite de (vn)nÊ1.

9. Énoncer la définition avec des ε de lim
n→+∞vn = `.

∀ε> 0,∃N tel que ∀n Ê N , |vn −`| < ε.

10. On suppose ln a < `

il existe ε au lieu de ∀ε, c’est faux et ne pas préciser ∀ε AVANT, c’est faux aussi. En effet, le rang N
dépend de ε, il est donc impératif de le fixer avant de parler de l’existence de N .

(a) Montrons que
∃λ> 0,∃N ∈N,n Ê N ⇒ ln a − vn <−λ

On pose ε= `− ln(a) > 0 et on applique la définition de limite avec
ε

2
, on sait alors qu’il existe

N ∈N tel que ∀n Ê N , |vn −`| < ε

2
. Ainsi, pour tout n Ê N , `− vn < ε

2
. En écrivant ln(a)− vn =

ln(a)−`+`− vn =−ε+`− vn , on obtient

ln(a)− vn <−ε+ ε

2

donc
ln(a)− vn <− ε

2
.

En posant λ= ε

2
> 0, on a bien le résultat souhaité.

(b) En déduire que un → 0 quand n →+∞.

D’après la question précédente, on sait qu’il existe λ> 0 et N ∈N tel que ∀n Ê N , ln(a)− vn <−λ
donc

∀n > N ,n −1 Ê N donc ln(a)− vn−1 <−λ,

et comme ln(un) = 2n−1 (ln(a)− vn−1) , on a donc

∀n > N , ln(un) <−2n−1λ.

Par le thm de majoration, ln(un) →−∞ donc un → 0

11. On suppose désormais que ln a > `.

(a) Montrer qu’il existe λ> 0 tel que

∀n ∈N, ln a − vn >λ

On sait que (vn)n∈N? est croissante, elle est donc majorée par sa limite`. On poseλ= ln(a)−`
2

.

On a alors, pour tout n ∈N?, ln(a)− vn Ê ln(a)−`>λ.
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(b) En déduire que un →+∞ quand n →+∞.

D’après la question précédente, on sait qu’il existe λ> 0 et N ∈N tel que ∀n Ê N , ln(a)− vn >λ donc

∀n Ê N , ln(un) > 2n−1λ.

Par le thm de minoration, ln(un) →∞ donc un →+∞

Correction 3

1. Soit f : [0,1] → [0,1] la fonction définie par : ∀x ∈ [0,1], f (x) = (x −1)2. On pose g = f o f .

(a) Dresser le tableau de variation de f sur R
La fonction f est dérivable et pour tout x ∈ [0,1], f ′(x) = 2(x −1) donc f est décroissante sur

[0,1]. On a

x

f ′(x)

f

0 1

−

11

00

(b) Montrer que f admet un unique point fixe sur [0,1]. On le notera α
On a f (x)− x = x2 −3x +1, c’est un polynôme de degré 2, de coefficient dominant positif et

admettant pour racines
3±p

5

2
. On a 0 < 3−p

5

2
< 1 < 3+p

5

2
. Attention, certains m’ont parlé

d’injectivité de f pour justifier l’existence ou l’unicité de point fixe, cela n’a pas de sens ! Une
fonction injective peut (ou pas) admettre un ou plusieurs points fixes

(c) Dresser le tableau de variations de g sur R
On a g (x) = (x(x −2))2 donc g ′(x) = 2(2x −2)x(x −2) = 4x(x −1)(x −2). On en déduit que

x

g ′(x)

g

−∞ 0 1 2 +∞

− 0 + 0 − 0 +
+∞+∞

00

11

00

+∞+∞

α

α

L’erreur classique a été de me donner le tableau de variations sur [0,1] et pas sur R. J’en ai
vu quelques uns échouer à me trouver le signe de la dérivée (pourquoi avoir développé ? ! ? !).
Pensez à toujours regarder si 0, 1 ou −1 sont racines d’un polynôme lorsque vous cherchez à
le factoriser.

(d) Déterminer les points fixes de g On a g (x) = x ⇔ x4−4x3+4x2−x = 0 ⇔= x(x3−4x2+4x−1) = 0
et comme les points fixes de f sont points fixes de g , on sait que x2 − 3x + 1 divise g donc
g (x) = x(x −1)(x2 −3x +1).
On pouvait aussi remarquer que 0 et 1 sont racines évidentes du polynôme g (x)−x et retrou-

ver ainsi la factorisation. Les points fixes de g sont 0,1,
3±p

5

2
.

(e) En déduire le signe de g (x)−x sur R.

On a
g (x)−x = x(x −2)(x2 −3x +1) = x(x −1)(x −α)(x −α′)

avec α′ = 3+p
5

2
.

On dresse le tableau de signe :
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x

g (x)− x

−∞ 0 α 1 α′ +∞

+ 0 − 0 + 0 − 0 +

Soit a ∈ [0,1]. Soit (un)n∈N la suite réelle définie par : u0 = a ∈]0,α[ et un+1 = (un −1)2. Pour tout
entier n ∈N on pose vn = u2n et wn = u2n+1.

2. On suppose tout d’abord a ∈ [0,α[.

(a) Exprimer vn+1 en fonction de vn , puis wn en fonction de vn .

On a
vn+1 = u2n+2 = f (u2n+1) = f ◦ f (u2n) = g (u2n) = g (vn)

et
wn = u2n+1 = f (u2n) = f (vn)

Beaucoup d’erreurs sur cette question. Impossible de faire correctement le reste si on n’a pas
vu que g va être la fonction qui définit v . Pour info, la réponse était donnée question 5a)

(b) Montrer que vn ∈ [0,α[,∀n ∈N.

On remarque, d’après le tableau de variations de g , que [0,α[ est un intervalle stable par g .
On a v0 = u0 ∈]0,α[ par hypothèse, on suppose donc que vn appartient à cet intervalle ; alors
vn+1 = g (vn) et comme vn ∈]0,α[ par hypothèse de récurrence, on sait que g (vn) ∈]0,α[. Ainsi,
on a montré le résultat par récurrence.

J’ai accepté ceux qui m’ont dit u0 ∈ [0,α[ et [0,α[ est stable par g donc car la récurrence est
immédiate..

(c) Montrer que la suite (vn)n∈N est décroissante et déterminer sa limite.
On utilise maintenant la question ??. On sait que vn ∈]0,α[ pour tout n et x 7→ g (x)− x est
négative sur ]0,α[ donc vn+1 = g (vn) < vn et la suite (vn)n est décroissante.

La suite (vn)n∈N est décroissante et bornée puisque son support est inclus dans [0,α[, elle est
donc convergente. De plus, comme elle est décroissante, sa limite ` ne peut être égale à α
donc ` ∈ [0,α[. On sait que lim

n→+∞vn+1 = ` or vn+1 = g (vn) donc, par continuité de g , on a

également vn+1 → g (`). Par unicité de la limite, on a g (`) = ` et comme g (x) < x,∀x ∈]0,α[,
on a nécessairement `= 0.

Attention, certains m’ont dit vn ∈ [0,α[ donc sa limite appartient à [0,α[ ce qui est faux, en
général. Si ∀n ∈N, vn ∈ [0,α[, alors lim

n→+∞vn ∈ [0,α].

(d) En déduire que la suite (wn)n∈N converge et calculer sa limite.
On a remarqué que wn = f (vn) et f est continue donc wn → f (l ) = f (0) = 1. Il était inutile de
montrer que (wn) converge.

(e) La suite (un)n∈N est-elle convergente ?
Les suites (vn) et (wn) sont deux suites extraites de (un) et elles convergent vers des limites
différentes, la suite (un) ne peut donc pas être convergente.

Inutile de me dire que les indices des deux suites recouvrent les entiers ! J’aurais la divergence
de (un) même si ce n’était pas le cas.

3. Quelle est la nature de (un)n∈N si u0 ∈]α,1] ?
Si u0 ∈]α,1], alors u1 ∈ [0,α[ donc, d’après l’étude précédente, on a (un) divergente. Seule Clara F.
a remarqué qu’il était inutile de refaire toute l’étude.

4. (a) Montrer qu’il existe a1 < 0 et a2 > 2 tels que g (a1) = g (a2) = 1.
On a g (R?−) = R?+ donc 1 admet un antécédent a1 par g dans ]−∞,0[. De même g (]2,+∞[) =
]0,+∞[ donc il existe un antécédent a2 ∈]2,+∞[ de 1 par g .
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(b) Montrer que l’on connaît la nature de la suite (un)n∈N lorsque u0 ∈ [a1, a2].
Si u0 ∈ [a1, a2], alors g (u0) = u2 ∈ [0,1]. On sait que (un) ∈ diverge si u0 ∈ [0,1] et u0 6= α. Ce
sera donc le cas chaque fois que u2 ∈ [0,1], u2 6=α. Pour u2 =α, la suite est constante à partir
du rang 2, elle est donc convergente.

5. Pour tout entier n ∈N on pose xn = ln(4vn)

2n
.

(a) Montrer que pour tout entier n ∈N on a : vn+1 = v2
n(2− vn)2, xn+1 −xn = ln(1− vn

2 )

2n
.

On a déjà montré que vn+1 = g (vn) = v2
n(2− vn)2. Par ailleurs, xn+1 − xn = 1

2n+1
ln(4vn+1)−

1

2n
ln(4vn) = 1

2n
ln

(p
4vn+1

2vn

)
= 1

2n
ln

(
2vn(2− vn)

2vn

)
= 1

2n
ln

(
1− vn

2

)
(b) Soit (n, p) ∈N2, n < p. Démontrer l’inégalité suivante :

ln(1− vn
2 )

2n−1
É xp −xn É 0.

On remarque tout d’abord que xp − xn =
p−1∑
k=n

xk+1 − xk =
p−1∑
k=n

ln
(
1− vk

2

)
2k

. Comme vk > 0, tous

les termes de la somme sont strictement négatifs donc xp − xn < 0. De plus, ln est croissante

et (vn) décroissante donc ln
(
1− vk

2

)
> ln

(
1− vn

2

)
, ∀k = n . . . p −1 d’où

xp −xn >
p−1∑
k=n

ln(
(
1− vn

2

)
2k

= ln(
(
1− vn

2

) p−1∑
k=n

1

2k

On explicite maintenant la suite géométrique
p−1∑
k=n

1

2k
= 1

2n

1− (1/2)p−n

1−1/2
= 1− (1/2)p−n

2n−1
< 1

2n−1
.

Enfin, on n’oublie pas que le ln est négatif donc la multiplication inverse les inégalités et on

se retrouve avec xp −xn > ln(1− vn/2)

2n−1
.

On ne va pas se mentir, c’était un massacre.

(c) En déduire que la suite (xn)n∈N converge vers un réel L strictement négatif.

La question précédente, appliquée à p = n +1 montre que (xn) est décroissante. De plus, en

l’appliquant à n = 0 et p > 0, on en déduit que 2ln
(
1− v0

2

)
< xp−x0 donc x0+2ln

(
1− v0

2

)
< xp

et la suite est minorée donc convergente. On a vu que la suite (vn) tend vers 0, donc, à partir
d’un certain rang, elle est strictement inférieure à 1 ce qui implique que xn < 0 à partir d’un
certain rang. Comme (xn) est, de plus, décroissante, sa limite ne peut être que strictement
négative.

(d) Démontrer que xn = L+o(
1

2n
) et en déduire un équivalent de la suite (vn)n∈N.

On revient à l’inégalité trouvée à la question a). On a la réécrit sous la forme

2ln
(
1− vn

2

)
< 2n(xp −xn) < 0

On fixe n et on fait tendre p vers +∞. On obtient alors 2ln
(
1− vn

2

)
< 2n(L − xn) < 0 On peut

maintenant faire tendre n vers +∞ et par le théorème des gendarmes, on a 2n(L − xn) → 0 ce

qui est équivalent à xn = L+o

(
1

2n

)
.
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(e) Comme vn = 1

4
e2n xn , on a vn = 1

4
e2n L+o(1) = e2n L

4
.eo(1) ∼ e2n L

4
.

Attention, j’ai vu des a ∼ b implique ea ∼ eb ! ! ! !
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