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TD 12 : Dérivation.

1 Etude de la dérivabilité

Exercice 1.

hx—1
Soit f définie par f(x) = ax

et f(0) =0, f est-elle dérivable?

Exercice 2.

x2

e
Soit f : R* — R définie par f(x) = pour tout x € R*. Montrer que f est prolon-

geable par continuité en 0. le prolongement obtenu est-il de classe €' ?

Exercice 3.
Etudier la dérivabilité sur R et le caractere C! si elle est dérivable de

x
1+|x|°

1. f:x— xlx| 2. gix—

Exercice 4.
Ftudier la dérivabilité de f définie par f(x) = sinxsin% six #0; f(0)=0;

Exercice 5.
Que dire de la dérivée d'une fonction paire? impaire ?

Exercice 6.
Déterminer a, b € R de maniere a ce que la fonction f définie sur R, par:

fx)=vxsi0<x<1 et f(x)=ax?+bx+1sinon
soit dérivable sur R} .

Exercice 7.
.. R —- R

Sonf.{ o 12t

Rt — ]-o00,1]

fx)

1. Montrer que la corestrictionde f: g: { est bijective.

X —_—
2. Sur quel(s) intervalle(s) g~ ! est-elle dérivable?

3. Déterminez (g~ 1)'(1—e).

Exercice 8.
Soit f:[0,1] — R une fonction dérivable. On définit une fonction g sur [0, 1] par

f2x)sixe0,3]

§(0) = { f2x—1) sinon

A quelle(s) condition(s) la fonction g est-elle dérivable?

Exercice 9.
R* — R

Soit f: 2| 1| . Montrer que f est prolongeable par continuité en 0. Son

—_— X
X
prolongement est-il dérivable?

2 Résolution d’équation fonctionnelle

Exercice 10.
Soit f une fonction de classe €' telle que Vx € R, f'(x) f(x) = 0. Montrer que f’ est iden-
tiquement nulle.

Exercice 11.
Déterminer toutes les applications f : R — R dérivables, telle que

fx+y) =fx)+f(),V(x,y) eR?

3 Théoreme de Rolle
Exercice 12.

Soit f: [-1,+co[— R dérivable tel que f(—1) =1, f(0) =0 et xLHP f(x) = +o0. Montrer

que f’ s’annule.

Exercice 13.
Soit g deux fois dérivable sur [0, 3] telle que g(0) = g(3) =0 et g(1)g(2) < 0. Montrer que
g" s’annule.

4 Théoreme des accroissements finis

Exercice 14.
Démontrer que pour tout x et yréelsona: |arctanx —arctany |<| x— y |

Exercice 15. %8

Soit n € N*. Montrer que :

1
n+l—-vn<s——<vn-vn-1.
% vn NG vn



Exercice 16. ¥

Déterminer
1 1 1
lim — - -3 .
—=0x\y1-x Vi+x

Exercice 17.
Soit f : R — R dérivable et telle que f(0) = 0. Montrer que pour tout x > 0, il existe ¢ >0
tel que f(2x) =2xf"(c).

Exercice 18. &
Soit f : R — R dérivable telle que xliIP f'(x) = +oo, montrer que :
—+00

xl—1>r-lr—loo f(x) = +oo0.

Exercice 19. £
Soit f une fonction deux fois dérivable sur [0, 1] telle que f(0) = f(1) =0 et f" < 0. Mon-
trer que f est positive.

5 Dérivées d’ordre supérieur

Exercice 20.
Soit n € N, montrer que les fonctions suivantes sont de classe 6" sur leur ensemble de
définition et déterminer leur dérivée n-eme :

1. firtx—xe™ 5. fsix*’;z-
2. frix— x%e” (XII)
3. f3:x— (ax+b)¥, avec ke N. 6. fe:x— .
1 ax+b
4. fa:x— ——.
fa 1-x
Exercice 21.

Montrer que, pour tout réel x € R et tout entier n =2 :
2 (n) (n-1) (n-2) —
(1+x”)arctan”™ (x) + 2(n — 1) xarctan (x) + (n—2)(n—1)arctan (x)=0.

En déduire la valeur de arctan"” (0) pour tout entier n € N.

Exercice 22.
Soit f: x+— (x+1)", montrer que f(k) (x) =

(n—k)!

A+x)" ¥ sik<n.

Exercice 23.
Soit f: x — arctan(x).

1. Montrer que pour tout n = 1, f(”) (x) = (n—1)!cos™ (f(x)) sin(nf(x) + nz_n)

2. En déduire les racines de f"” pour tout n> 1.

6 Retour aux équation différentielle

Exercice 24.
Existe-t-il une solution non nulle de xy'(x) + (1 + x?) y(x) = 0 définie sur tout R?

Exercice 25.
Déterminer I'ensemble des solutions définies sur tout R de x?y’(x) + y(x) = x> + x.

Exercice 26.
Existe-t-il des solutions définies sur R de I'équation (1 — x)zy’ (x) = 2—x? si oui,
déterminez-les.

7 Sibesoin d’encore un peu d’entrainement

Exercice 27.
Etudier la dérivabilité de f : x — cos y/x.

Exercice 28.

. 1
Etudier la dérivabilité de h :—

1+|x|

Exercice 29.

Etudier la dérivabilité de f: x — In(1 + /X).

Exercice 30.

Ftudier la dérivabilité de f définie par f(x) = x2 cos% six#0; f(0)=0;.

Exercice 31.
. R — R — N - -
Soit f: { o x4 Montrer que f est bijective, que sa bijection réciproque !

est dérivable et déterminer (')’ (0).
Exercice 32. )
Soit f : R* — R définie par f(x) = x*sin —. Montrer que f est prolongeable par conti-

nuité en 0; on note encore [ la fonction prolongée. Montrer que f est dérivable sur R
mais que f' n’est pas continue en 0.

Exercice 33.
Soit f : R — R dérivable. Montrer que pour tout x > 0, il existe ¢ > 0 tel que

f@)-f=0=x(f'0+f'(=0).

Exercice 34.
Calculer la dérivée n-eme de la fonction x — x"*~!1n x.



Exercice 35.
Calculer la dérivée n-ieme de f: x — (x> + 1)e.

Exercice 36.
Calculer la dérivée n-ieme de f: x — x*(1+x)".

Exercice 37.
Déterminer la dérivée n-ieme de g : x — e* cos(x).

Exercice 38.
Calculer de deux facons différentes la dérivée n-iémes de x — x?”*. En déduire une ex-
n
. 2
pressionde ) (7)°.
k=0
Exercice 39.
Soit n € N*. Déterminer la dérivée n-ieme de x —

x2-1
8 Une fois qu’'on est a 'aise

Exercice 40. % £
Soit f € €2 (la, b],R) telle que f'(a) = f(a) et f'(b) = f(b). Montrer qu'il existe c €]a, b],
f'e)=f(o).

Exercice 41. # &%
Soient a réel, f: [a, +oco[— R continue et dérivable sur ]a, +oo[. On suppose que f admet
une limite en +oo égale a f(a). Démontrer qu'il existe ¢ > a tel que f’'(c) =0.

Exercice 42. £

Soit f: [0, +oo[— R de classe C! telle que f(0)=—-1et limf = +00.
(e o]

Montrer que si f s’annule au moins deux fois, alors f’ aussi.

Exercice 43. & &
Soit f une fonction dérivable telle que thP f'(x) =0, montrer que
—+00

lim m=

X—+00 X

0.

Le résultat reste-t-il vrai si la limite de f’ est non nulle?

Exercice 44. %%
Déterminer

sh(x+1) sh(x)
x—+o0  x+1 x

Exercice 45. &
Soit f bornée telle que xlirP f'(x) = 1. Montrer que [ = 0.
—+00

Exercice 46.
Soit f deux fois dérivable, bornée telle que f" = 0, montrer que f est constante.

Exercice 47. %
Soit f € € ([0,1],R) telle que YVt € [0,1],Vn € N, | f(£)| < t. Montrer que f est la fonc-
tion nulle.

Memo

— Comment déterminer si une fonction est dérivable ?

— Utiliser les thms généraux (somme, produit, composée, quotient)
— Calculer la limite du taux d’accroissement
— Utiliser le théoreme de la limite de la dérivée
— Comment montrer que la dérivée s’annule?
Utiliser Rolle
— Comment majorer un taux d’accroissement?
Utiliser le théoreme des accroissements finis
— Comment calculer la dérivée n-ieme d’'une fonction?

— Faire une récurrence
— Utiliser la formule de Leibniz
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