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TD 12 : Dérivation.

1 Étude de la dérivabilité

Exercice 1.

Soit f définie par f (x) = chx −1

x
et f (0) = 0, f est-elle dérivable?

Exercice 2.

Soit f : R∗ → R définie par f (x) = ex2 −1

x
pour tout x ∈ R∗. Montrer que f est prolon-

geable par continuité en 0. le prolongement obtenu est-il de classe C 1 ?

Exercice 3.
Étudier la dérivabilité sur R et le caractère C 1 si elle est dérivable de

1. f : x 7→ x|x| 2. g : x 7→ x

1+|x| .

Exercice 4.
Étudier la dérivabilité de f définie par f (x) = sin x sin 1

x si x 6= 0; f (0) = 0;

Exercice 5.
Que dire de la dérivée d’une fonction paire ? impaire?

Exercice 6.
Déterminer a,b ∈R de manière à ce que la fonction f définie sur R+ par :

f (x) =p
x si 0 É x É 1 et f (x) = ax2 +bx +1 sinon

soit dérivable sur R∗+.

Exercice 7.

Soit f :

{
R → R

x 7→ 1−x2ex .

1. Montrer que la corestriction de f : g :

{
R+ → ]−∞,1]
x 7→ f (x)

est bijective.

2. Sur quel(s) intervalle(s) g−1 est-elle dérivable?

3. Déterminez (g−1)′(1−e).

Exercice 8.
Soit f : [0,1] →R une fonction dérivable. On définit une fonction g sur [0,1] par

g (x) =
{

f (2x) si x ∈ [0, 1
2 ]

f (2x −1) sinon

A quelle(s) condition(s) la fonction g est-elle dérivable?

Exercice 9.

Soit f :

 R? −→ R

x 7−→ x2
⌊

1

x

⌋
. Montrer que f est prolongeable par continuité en 0. Son

prolongement est-il dérivable ?

2 Résolution d’équation fonctionnelle

Exercice 10.
Soit f une fonction de classe C 1 telle que ∀x ∈R, f ′(x) f (x) = 0. Montrer que f ′ est iden-
tiquement nulle.

Exercice 11.
Déterminer toutes les applications f :R→R dérivables, telle que

f (x + y) = f (x)+ f (y),∀(x, y) ∈R2

3 Théorème de Rolle

Exercice 12.
Soit f : [−1,+∞[→ R dérivable tel que f (−1) = 1, f (0) = 0 et lim

x→+∞ f (x) = +∞. Montrer

que f ′ s’annule.

Exercice 13.
Soit g deux fois dérivable sur [0,3] telle que g (0) = g (3) = 0 et g (1)g (2) < 0. Montrer que
g " s’annule.

4 Théorème des accroissements finis

Exercice 14.
Démontrer que pour tout x et y réels on a : | arctan x −arctan y |É| x − y |
Exercice 15. 3
Soit n ∈N?. Montrer que :

p
n +1−p

n É 1

2
p

n
Ép

n −p
n −1.

1



Exercice 16. 3
Déterminer

lim
x→0

1

x

(
1

5p1−x
− 1

5p1+x

)
.

Exercice 17.
Soit f : R→ R dérivable et telle que f (0) = 0. Montrer que pour tout x > 0, il existe c > 0
tel que f (2x) = 2x f ′(c).

Exercice 18. 3
Soit f :R→R dérivable telle que lim

x→+∞ f ′(x) =+∞, montrer que :

lim
x→+∞ f (x) =+∞.

Exercice 19. 3
Soit f une fonction deux fois dérivable sur [0,1] telle que f (0) = f (1) = 0 et f " É 0. Mon-
trer que f est positive.

5 Dérivées d’ordre supérieur

Exercice 20.
Soit n ∈ N, montrer que les fonctions suivantes sont de classe C n sur leur ensemble de
définition et déterminer leur dérivée n-ème :

1. f1 : x 7→ xe−x

2. f2 : x 7→ x2ex

3. f3 : x 7→ (ax +b)k , avec k ∈N.

4. f4 : x 7→ 1

1−x
.

5. f5 : x 7→ 1

(x −1)2 .

6. f6 : x 7→ 1

ax +b
.

Exercice 21.
Montrer que, pour tout réel x ∈R et tout entier n Ê 2 :(

1+x2)arctan(n)(x)+2(n −1)x arctan(n−1)(x)+ (n −2)(n −1)arctan(n−2)(x) = 0.

En déduire la valeur de arctan(n)(0) pour tout entier n ∈N.

Exercice 22.

Soit f : x 7→ (x +1)n , montrer que f (k)(x) = n!

(n −k)!
(1+x)n−k si k É n.

Exercice 23.
Soit f : x 7→ arctan(x).

1. Montrer que pour tout n Ê 1, f (n)(x) = (n −1)!cosn( f (x))sin
(
n f (x)+ nπ

2

)
.

2. En déduire les racines de f (n) pour tout n Ê 1.

6 Retour aux équation différentielle

Exercice 24.
Existe-t-il une solution non nulle de x y ′(x)+ (1+x2)y(x) = 0 définie sur tout R?

Exercice 25.
Déterminer l’ensemble des solutions définies sur tout R de x2 y ′(x)+ y(x) = x2 +x.

Exercice 26.
Existe-t-il des solutions définies sur R de l’équation (1 − x)2 y ′(x) = 2 − x ? si oui,
déterminez-les.

7 Si besoin d’encore un peu d’entrainement

Exercice 27.
Étudier la dérivabilité de f : x 7→ cos

p
x.

Exercice 28.

Étudier la dérivabilité de h : 7→ 1

1+|x| .

Exercice 29.

Étudier la dérivabilité de f : x 7→ ln(1+p
x).

Exercice 30.

Étudier la dérivabilité de f définie par f (x) = x2 cos 1
x si x 6= 0; f (0) = 0;.

Exercice 31.

Soit f :

{
R −→ R

x 7−→ x +x3 . Montrer que f est bijective, que sa bijection réciproque f −1

est dérivable et déterminer
(

f −1
)′

(0).

Exercice 32.

Soit f : R∗ −→ R définie par f (x) = x2 sin
1

x
. Montrer que f est prolongeable par conti-

nuité en 0 ; on note encore f la fonction prolongée. Montrer que f est dérivable sur R
mais que f ′ n’est pas continue en 0.

Exercice 33.
Soit f :R→R dérivable. Montrer que pour tout x > 0, il existe c > 0 tel que

f (x)− f (−x) = x
(

f ′(c)+ f ′(−c)
)

.

Exercice 34.
Calculer la dérivée n-ème de la fonction x 7→ xn−1 ln x.
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Exercice 35.
Calculer la dérivée n-ième de f : x 7→ (x2 +1)ex .

Exercice 36.
Calculer la dérivée n-ième de f : x 7→ x2(1+x)n .

Exercice 37.
Déterminer la dérivée n-ième de g : x 7→ ex cos(x).

Exercice 38.
Calculer de deux façons différentes la dérivée n-ièmes de x 7→ x2n . En déduire une ex-

pression de
n∑

k=0

(n
k

)2.

Exercice 39.

Soit n ∈N?. Déterminer la dérivée n-ième de x 7→ 1

x2 −1
.

8 Une fois qu’on est à l’aise

Exercice 40. 3 3
Soit f ∈ C 2 ([a,b],R) telle que f ′(a) = f (a) et f ′(b) = f (b). Montrer qu’il existe c ∈]a,b[,
f "(c) = f (c).

Exercice 41. 3 3
Soient a réel, f : [a,+∞[→R continue et dérivable sur ]a,+∞[. On suppose que f admet
une limite en +∞ égale à f (a). Démontrer qu’il existe c > a tel que f ′(c) = 0.

Exercice 42. 3
Soit f : [0,+∞[→R de classe C 1 telle que f (0) =−1 et lim+∞ f =+∞.

Montrer que si f s’annule au moins deux fois, alors f ′ aussi.

Exercice 43. 3 3
Soit f une fonction dérivable telle que lim

x→+∞ f ′(x) = 0, montrer que

lim
x→+∞

f (x)

x
= 0.

Le résultat reste-t-il vrai si la limite de f ′ est non nulle ?

Exercice 44. 3
Déterminer

lim
x→+∞

sh(x +1)

x +1
− sh(x)

x
.

Exercice 45. 3
Soit f bornée telle que lim

x→+∞ f ′(x) = l . Montrer que l = 0.

Exercice 46.
Soit f deux fois dérivable, bornée telle que f " Ê 0, montrer que f est constante.

Exercice 47. 3
Soit f ∈ C ∞ ([0,1],R) telle que ∀t ∈ [0,1],∀n ∈N, | f (n)(t )| É t . Montrer que f est la fonc-
tion nulle.

Memo

— Comment déterminer si une fonction est dérivable ?

— Utiliser les thms généraux (somme, produit, composée, quotient)
— Calculer la limite du taux d’accroissement
— Utiliser le théorème de la limite de la dérivée

— Comment montrer que la dérivée s’annule ?
Utiliser Rolle

— Comment majorer un taux d’accroissement?
Utiliser le théorème des accroissements finis

— Comment calculer la dérivée n-ième d’une fonction?

— Faire une récurrence
— Utiliser la formule de Leibniz
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