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TD 13 : Développements limités.

1 DL et polyndmes

Exercice 1.

n
Soit P= Y a;X*. Montrer que Yk € [0, n], PP (0) = klay.
k=0

Exercice 2. &%
Montrer qu’il existe un unique polynéme P de degré n a coefficients réels tel que Vk €
[0,n], P® 1) = k.

2 Calcul de DL

Exercice 3.
Donner un DL al’ordre 3 en zéro des fonctions suivantes :

1. x— In(1 + x) cos(x). 4, x> xextl,
X 1—cos(x
2. x— . 5. xe 1200500
1+x X

3. x—sin(2x). 6. x— arctan(x)

Exercice 4. £
Déterminer un DL d’ordre 3 de x — arctan(x3) en 1.

Exercice 5.
Déterminer un DL a l'ordre 4 de f : x — sin(In(x + 1)) — In(sin(x) + 1) en 0. En déduire un
équivalent de f(x) en 0.

3 Dérivabilité

Exercice 6.

cos(x)—1
Soitf:w—»%

oo S
ment est-il dérivable?

. Montrer que f est prolongeable par continuité en 0. Le prolonge-

Exercice 7.

cosx—V1-x?
P

son prolongement continu. Montrer qu'il est dérivable et donner f’(0).

Montrer que f : x — est prolongeable par continuité. On note encore f

4 Calcul de limites et d’équivalents

Exercice 8.
Déterminer les limites suivantes en 0 :

. In(1+x)—x e¥—1-sin(x)

1. . 4, x—
x2 cos(x) —1
x—1e*+1 1 1
2. x—»—( ) . 5. X— —— — .
x(e*-1) x sin(x)
V1+2x—(1+x) 1 cos(x)
3. x> —. 6. x> -5 +——.
x2 X sin“(x)

Exercice 9. .

Bl
Déterminer un équivalent en +oo de ex? — e x+1?,

Exercice 10. B
X2 +3x-1 )

Déterminer lim >
x“+x+1

X—+00

5 Utilisation de 'unicité du DL

Exercice 11.

by
Soit f:x— .
f 1+ x8

Déterminer la valeur de £ (0) pour tout entier n.

Exercice 12.

1
Soit f:x— Incosx) définie sur ] — 1, 1[. Déterminer f'(0) et f"(0).

6 Détermination de tangente et de la position de celle-ci

Exercice 13.
Soit f: x — In(1 + x). Déterminer I’équation de la tangente en x = 1 ainsi que la position
de la courbe par rapport a la tangente.

Exercice 14.

Soit f : x — —. Déterminer I'équation de la tangente a f en x = 2 ainsi que la position de

X
la courbe par rapport a la tangente.

Exercice 15.

X
Soit f:x—

eX —e—X’
1. Montrer que f est prolongeable par continuité en 0. On notera encore f le prolon-
gement.

2. Montrer que f admet un DL al'ordre 3 en 0 que I'on calculera.



3. Montrer que f est dérivable en 0. Que vaut f(0)?

4. Que dire de la position du graphe de f par rapport a sa tangente au point d’abscisse
0?
7 DLetintégrale

Exercice 16.
X
Soit h:x—

t
e
—dt.
-xV1+ 2
t

e
ViteZ

1. Déterminer un DL al’'ordre 4 en 0 de t —

2. En déduire un DL al'ordre 5 en 0 de h.

Exercice 17.

e
Montrer que f
1 o 1+12

—Xt

1 1
dt:x—>+oo - +O(_2)
X X

8 DL et suites

Exercice 18.
Soit (1) la suite définie par ug =0 et VR EN, U1 = \/ Uy + N2

1. Montrer que la suite est bien définie et déterminer sa limite.

2. Montrer que u, < n pour tout n € N.

1 3 1
3. Montrerque uy, =n——- - — +0(—)
2 8n n

9 Fonction réciproque et équation implicite

Exercice 19.

1. Montrer que pour tout € > 0 il existe une unique solution x. dans R, a I’équation
e ¢ = x d'inconnue x.
3€? )
2. Montrer que X, =¢_o 1 —€+ — +o (%).

Exercice 20. %%

R — R
Soit f: { . Montrer que f est bijective et déterminer un DL4 de f !

x — 2sh(x)—x
en0

10 Développement asymptotique et asymptote

Exercice 21.

V2x2+1
xvexr T définie sur R\ {1}.

Soit f:x—
! x-1
1. Donner I'équation de sa tangente en 0 et sa position relative par rapport au graphe
de f.

2. Montrer que f admet une asymptote en +oco dont on précisera I'équation et la po-
sition par rapport a la courbe.

Exercice 22.
Montrer que la fonction x — Vx¥+1e Y% admet une asymptote dont on précisera
I'équation et la position de I’asymptote.

11 Sibesoin d’encore un peu d’entrainement

Exercice 23.
Déterminer le DL d’ordre 6 en 0 de th. !

Exercice 24.
Déterminer un DL a I'ordre 6 en 0 de arctan(x3).

Exercice 25.

Déterminerle DL3en0de x— vV2—+v1—x.

Exercice 26. .

Déterminerle DL3en0de x— —.
cos(In(1 + x))

Exercice 27. )
Déterminer le DL3 en 3 de x — cos (mx (1 — x)).

Exercice 28.

Soit f:x—

X . .
5— - Déterminer un DL3 en 0 de f.
sh”(x)

Exercice 29.
Soit f: x— cosx*. Déterminer un DL4 en 0 de f.

Exercice 30.

Soit f: x— vV 1+ v1+4sinx. Déterminer un DL3 en 0 de f.

Exercice 31.
Donner le DL en 0 al’ordre 6 de x — In(cos(x)).

1. Onrappelle que b =sh/ch.



Exercice 32. Exercice 46.

Donner le DL en 0 al'ordre 5 de x — sin(tan(x)). Déterminer lim (cos x)% -V1-x
1-£°

1
=0 (1 +sinx)x —el™2

Exercice 33.
Donner le DL en 0 2 'ordre 4 de x — (In(1 + x))2. Exercice 47.
1\* 1
2 . . 2 2
Exercice 34. Déterminer xl_lgl@x (1 + ;) —ex"y/1- T
Donner le DL en 0 aI'ordre 3 de x — exp(sin(x)).
Exercice 48. in(cos(x) — 1) Exercice 54. h(sin(x) h(x)
. sin(cos(x) — ch(sin(x)) — ch(x
Exercice 35. Déterminer lim ———=. Déterminer lim - ) "
Donner le DL en 0 a 'ordre 9 de x — sin®(x). =0 V14+x2-1 x=0 (sin(x))
Exercice 36 Exercice 49. , Exercice 55. .
ercice . L . . sSin x anx
Déterminer lim vV x3+ x2—x. e —e
5T — = Calculer im ———.
Donnerle DL en 0 al'ordre 4 de x — In(1 + cos x). X—+00 o sinx—tanx
E ice 50.
Exercice 37. xercice VitZ-1 Exercice 56.
Donnerle DLen 0 al’ordre 3 de x — ﬂ. Déterminer lim —x. Calculer li —ex — (cos(v) + 1)
1+sinx x—0 cos(x)—1 alculer xlg(l) 2 .
Exercice 38. Exercice 51. 1 1 Exercice 57. )
V1+x Déterminer lim (— - —) . X—arcsinx
Al —_—_ ol 42 2 Calculer im —————.
Donnerle DLen 0 al’ordre 3 de x Tt x—0\x* In(1+x9) x—0 x2arcsinx
Exercice 39. X ExerClce 52. 1 xz Exel‘cice 58. xx —x
Donner le DL en 0 2 'ordre 4 de — 3+*". Calculer lim (x sin (—)) . Calculer im —.
X—+0o x x—11-x+In(x)
Exercice 40. T Exercice 53. ) Exercice 59.
Soit f définie par f(x) = ——— et f(0) = 0, f est-elle dérivable? Déterminer lim —2nX=smx Calculer lim (tan f)”‘”_
2x x—0 arcsin x — arctan x x—0 2
Exercice 41.
chx-1 Exercice 60.
Soit f définie par f(x) = et f(0) =0, f est-elle dérivable? X —cosx 3
X Calculer le DL al'ordre 1 en 0 de f définie par f(x) = 2 six#0et f(0) = 2 En
Exercice 42. déduire que f est dérivable en 0 et donner f'(0).

Etudier la dérivabilité de f : x — cos y/x.
Exercice 61.

: cos(x) -1
Exercice 43. J1+ iz —en? Soit f: x— % Montrer que | est prolongeable par continuité en 0. Le prolonge-
n

sin
Déterminer un équivalent de ment est-il dérivable?

1)
In|1+ )
n*vn Exercice 62. In(l + 1) —si
n(l+x)—sinx
Exercice 44. Calculer le DL a 'ordre 1 en 0 de f définie par f(x) = ———  six #0 et f(0) =0.
; _ X
Déterminer lim sin(x) — tan(x) . En déduire que f est dérivable et donner f'(0).
*=04/14+2x—-In(1+x) -1
Exercice 45 Exercice 63.
.erc1ce | 1 ) . o Soit f: x — €°%¥. Déterminer I'équation de la tangente a f en x = 0 ainsi que la position

Soit f:x— n1:?)  @lx Déterminer la limite en 0 de f(x). de la courbe par rapport a la tangente.



Exercice 64.

Soit f:x— ———
3+sinx N
de la courbe par rapport a la tangente.

. Déterminer I'équation de la tangente en x = 0 ainsi que la position

Exercice 65. £
Soit f : x — x +sinx. Montrer que f est bijective et déterminer un DL3 en 0 de f~!.

12 Une fois qu'on est a I'aise

ISt
1+ -) ) .
X
Exercice 67. .
On consideére la fonction f définie par f(x) = xE Vx>0et f(0)=0.

Exercice 66. ¥

Calculer lim (e—
X—+00

1. Ftudier la continuité et la dérivabilité de f sur R*.
2. Déterminer un DL al'ordre 3de f en 1.

3. Que peut-on en déduire sur le graphe de f?

. 3
Equ.'c%g%elgéfue pour tout entier n € N*, il existe un unique réel x,, > 0 tel que x! + x,, =
1.

2. Montrer que la suite (x,,) ,eny €St croissante et majorée par 1.

3. Montrer que la suite converge vers 1.

In(yn)
n

4. Pourtout n € N*, on pose y, = 1-x,. Montrer que y, ~ — puis que —In(y,) ~
In(n).

5. En déduire un développement asymptotique a deux termes de x,,.

Exercice 69. 1
Montrer que la fonction x — (x + 1)e*1 admet une asymptote en +oo et déterminer la
position de celle-ci par rapport au graphe de f.

Exercice 70. £ &

. . . . s xX+2
Déterminer le développement asymptotique a I'ordre 2 en +oo de x — arctan 1
X

Exercice 71. %% &
On considere la fonction x — xarctan

. On souhaite montrer qu’elle admet une

asymptote en —oo et déterminer une équation de cette asymptote.
/2
1. Déterminer un DL a'ordre 2 de tan (y + Z) —1len0.

2. En déduire un développement limité a I'ordre 2 en 0 de arctan(X + 1).

3. Déterminer I'équation de 'asymptote en —oo de la fonction.

. Quelle est la position de I'asymptote par rapport au graphe de la fonction?

Memo

Comment déterminer un développement limité?

— Utiliser les développements limités usuels

— Intégrer un développement limité en n'oubliant pas de déterminer la constante
d’intégration (pour les rares cas ou elle n’est pas nulle)

Comment déterminer le développement limité d'un quotient?

. . R . 1
Se ramener a un produit en faisant apparaitre un quotient de la forme T+ % avec

X —0.

Comment déterminer une limite?

Déterminer un équivalent ou un DL

Comment déterminer la position relative du graphe

par rapport a la tangente/asymptote? Etudier le signe du premier coefficient non
nul d’ordre k = 2 du développement limité (ou du développement asymptotique
dans le cas d'une asymptote).

Comment déterminer un DL de f~! quand on n’'a pas I'expression ? intégrer un DL
de la dérivée, identifier les coefficients du DL de fo f~! ou utiliser un DL de f puis
un changement de variable
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