
Lycée du Parc 842.

Dérivabilité

1 Dérivée en un point, fonction dérivée

1.1 Dé�nitions

I désigne un intervalle de R et a un point intérieur à I.

Dé�nition 1. Soit f : I → R. On dit que f est dérivable en a si la limite quand x tend vers a de
f(x)− f(a)

x− a
existe et est �nie. On appelle alors nombre dérivé de f en a, noté f ′(a), ce réel. La

quantité
f(x)− f(a)

x− a
est appelé taux d'accroissement.

Exemple 1. x 7→ |x| n'est pas dérivable en 0.

Interprétation géométrique :
Le taux d'accroissement est le coe�cient directeur de la corde reliant les points d'abscisse a et x
du graphe de f . Quand f est dérivable, la corde se "rapproche" de la tangente au graphe en a
dont le coe�cient directeur vaut f ′(a).

Exemple 2. Calculer la dérivée de fn(x) = xn en a ∈ R.

Remarque. Lorsque le taux d'accroissement admet une limite in�nie lorsque x tend vers a, le
graphe de f admet une tangente verticale en ce point (d'équation x = a).

Dé�nition 2. Une fonction f : I → R est dérivable sur I si elle est dérivable en tout point de I.

Dé�nition 3. Si f : I → R avec a une extrémité de I (appartenant à I), on peut parler de dérivée
à gauche ou à droite de f en a.

Exemples 3.

1. Un polynôme est dérivable.

2. x 7→
√
x n'est pas dérivable en 0.

Dé�nition 4. Soit f : I → R une fonction dérivable sur I. On appelle fonction dérivée, notée f ′

la fonction qui à x associe f ′(x).

Proposition 1.

Soit f : I → R dérivable, alors f est continue.

Dé�nition 5. Soit f : I → R et x0 ∈ I. On dit que f admet un développement limité d'ordre 1
(ou DL1) en x0 s'il existe des réels a, b tels que

f(x) = a+ b(x− x0)+ o
x→x0

(x− x0).
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Remarque. Cette expression n'a d'intérêt qu'au voisinage de x0

Proposition 2.

Soit f : I → R une fonction et x0 ∈ I, alors f admet un DL à l'ordre 1 en x0 si et seulement
si f est dérivable en x0.

Remarque. On a montré, de plus, que si f(x) = a+ b(x− x0) + o(x− x0), on peut identi�er les
coe�cients a et b à f(x0) et f ′(x0).

Exemple 4. On considère f :


R −→ R

x 7−→


sin(x)

x
si x 6= 0

1 sinon

. Montrer que f est dérivable

1.2 Propriétés

Proposition 3.

Soient f et g deux fonctions dérivables, λ ∈ R.

1. λf est dérivable et (λf)′ = λf ′.

2. f + g est dérivable et (f + g)′ = f ′ + g′

3. fg est dérivable et (fg)′ = f ′g + g′f .

4. Si g ne s'annule pas, alors
f

g
est dérivable et

(
f

g

)′
=
f ′g − g′f

g2
.

Proposition 4.

Soit f : I → J et g : J → R; on suppose f dérivable en a et g dérivable
en f(a), alors g ◦ f est dérivable en a et :

(g ◦ f)′(a) = g′(f(a)).f ′(a).

Proposition 5.

Soit f : I → R dérivable, alors f est continue.

2



1.3 Signe de la dérivée et monotonie

Proposition 6.

Si f est dérivable sur un intervalle I. Alors

1. f est croissante ssi f ′(x) > 0,∀x ∈ I.

2. Si ∀x ∈ I, f ′(x) > 0, elle est strictement croissante sur I.

3. Si ∀x ∈ I, f ′(x) > 0 et f ′ n'est pas nulle sur un intervalle non réduit à un point, alors
f est strictement croissante sur I.

On se souvient qu'il est impératif de travailler sur un intervalle!

Exemples 5.

1. Considérons f dé�nie sur R? par f(x) =


1

x
+ 1 si x < 0

1

x
si x > 0

. La dérivée sur R? est négative.

On a pourtant f(−1) = 0 et f(1) = 1.

2. x 7→ x3 est-elle strictement croissante?

On en déduit :

Proposition 7.

Soit f une fonction dérivable sur un intervalle et de dérivée nulle, alors f est constante
sur cet intervalle

4! Pensez à la fonction x 7→ arctanx+ arctan
1

x

1.4 Extrema locaux

Dé�nition 6. On dit que f admet un minimum (respectivement maximum) local en a s'il existe
un intervalle J centré en a tel que :

∀x ∈ J, f(x) > f(a).

(respectivement ∀x ∈ J, f(x) 6 f(a).).
On dit qu'elle admet un extremum local si elle admet un maximum ou un minimum local.

Proposition 8.

Soient a un point de I qui n'est pas une extrémité de I et f : I → R une fonction dérivable
en a. Si f admet un extremum local en a, alors f ′(a) = 0.

Remarques. 1. On peut admettre un minimum local sans être dérivable (valeur absolue).

2. Le résultat est faux si a est une extrémité. f = id|[0,1].

3. La réciproque est fausse : x 7→ x3.
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1.5 Théorème de la limite de la dérivée

Rappel: On dit qu'une fonction est de classe C1 si f est dérivable et sa dérivée est continue.

Théorème 9 (Théorème de la limite de la dérivée).
Soit f : I → R une fonction continue.
Si f est dérivable sur I \ {a} et f ′(x) admet une limite �nie en a, alors f est dérivable en
a et f ′(a) = lim

x→a
f ′(x).

Remarque. � Si f véri�e les hypothèses du thm et est de classe C1 sur I \ {a}, on aura alors
que f est de classe C1 sur I.

� Si f ′(x) n'admet pas de limite en a, cela ne signi�e pas que f n'est pas dérivable en a ! On
ne peut pas conclure, il faut revenir au taux d'accroissement.

Exemples 6.

1. Soit f la fonction dé�nie par f(x) =


sin(x)

x
si x 6= 0

1 sinon
.

2. On considère la fonction f dé�nie sur R par f(x) =

x2 sin
1

x
si x 6= 0

0 sinon

Proposition 10.

Soit f une fonction continue sur I, dérivable sur I \ {a}. Si lim
x→a

f ′(x) =∞ alors f n'est pas

dérivable en a ET le graphe de f admet une tangente verticale en le point d'abscisse x = a.

1.6 Dérivabilité de la bijection réciproque

Proposition 11.

Soit f : I → J une fonction bijective et dérivable, alors f−1 est dérivable sur l'ensemble
{x ∈ J, f ′ ◦ f−1(x) 6= 0} et, ∀x ∈ J tel que f ′ ◦ f−1(x) 6= 0, on a(

f−1
)′
(x) =

1

f ′ ◦ f−1(x)
.

Remarque. Le graphe d'une fonction bijective et de sa réciproque sont symétriques par rapport à
la droite y = x. Lorsque f ′(a) est nul, la tangente au graphe de f au point d'abscisse x = a est
horizontale donc en le point d'abscisse x = f(a), la tangente au graphe de f−1 est verticale.

2 Étude globale des fonctions dérivables

2.1 Théorème de Rolle

Soient (a, b) ∈ R2, a < b.
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Théorème 12 (Théorème de Rolle). Soit f : [a, b] → R. On suppose f continue sur [a, b],
dérivable sur ]a, b[ et telle que f(a) = f(b). Alors, il existe c ∈]a, b[ tel que f ′(c) = 0.

Remarques. 1. si f(0) 6= f(1), f ′ ne s'annule pas forcément (f = id|[0,1]).

2. Si f pas continue sur [0, 1], f ′ ne s'annule pas forcément f(x) = x sur ]0, 1] et f(0) = 1.

3. si pas dérivable : g(x) = |x| sur [−1, 1].

Exemple 7. Soit f une fonction dérivable deux fois qui s'annule en trois points distincts. Alors sa
dérivée seconde s'annule au moins une fois.

Exercice 1. Soit ϕ : [−1, 1]→ R dérivable telle que ϕ(−1) = −1, ϕ(0) = 1 et ϕ(1) = 0. Montrer
que ϕ′ s'annule.

2.2 Théorème des accroissements �nis

Théorème 13 (thm des accroissements �nis). Soit f : [a, b]→ R une fonction continue sur
[a, b], dérivable sur ]a, b[, alors il existe c ∈]a, b[ tel que

f(b)− f(a)
b− a

= f ′(c).

Interprétation géométrique :

Pour tout point a, b, on peut trouver un point du graphe en lequel la tangente au graphe est
parallèle à la corde reliant les points d'abscisses a et b.

Remarque. On peut désormais montrer le thm de la limite de la dérivée.

Proposition 14 (inégalité des accroissements �nis). Soit f : [a, b] → R une fonction
continue sur [a, b], dérivable sur ]a, b[ et telle que ∀x ∈]a, b[, |f ′(x)| 6 k, alors ∀(x, y) ∈
[a, b]2, x 6= y, on a ∣∣∣∣f(x)− f(y)x− y

∣∣∣∣ 6 k.

Remarque: C'est le cas notamment lorsque f est de classe C1 sur le segment [a, b].

Corollaire 15.

Soit f : [a, b]→ R une fonction continue sur [a, b], dérivable sur ]a, b[. Soit k > 0. Alors les
assertions suivantes sont équivalentes :

1. ∀x ∈]a, b[, |f ′(x)| 6 k.

2. ∀(x, y) ∈ [a, b]2, |f(x)− f(y)| 6 k|x− y|.

Exemples 8.

1. Montrer que pour tout x > −1, ln(1 + x) 6 x.

2. Soit g de classe C1 telle que lim
x→+∞

g′(x) = 1 = lim
x→−∞

g′(x). Montrer que g est lipschitzienne.
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Application: Application aux suites récurrentes.

On considère la suite réelle dé�nie par x0 = 1 et ∀n ∈ N, xn+1 =
√
2xn + 1.

1. Montrer que pour tout n ∈ N, xn > 1.

2. Déterminer l'unique limite l possible.

3. Montrer qu'il existe un réel k tel que |xn+1 − l| 6 k |xn − l|.

4. En déduire que (xn)n∈N converge.
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3 Dérivées successives.

3.1 Dé�nition

Soit f : I → R une fonction dé�nie sur un intervalle I.
La dérivabilité p fois de f et sa dérivée p-ème sont dé�nies par récurrence :

Dé�nition 7. Soit p ∈ N∗. On pose:

� f (0) = f ;

� ∀k ∈ {0, . . . , p− 1}, f (k+1) =
(
f (k)
)′
.

On dit que f est dérivable p fois en x0 ∈ I lorsque le nombre f (p)(x0) existe. La fonction f (p)

est la dérivée p-ème de f .

4! Attention à ne pas confondre f (p) et fp

Dé�nition 8. On dit que f est de classe Cp lorsqu'elle est p fois dérivable et que sa dérivée
p-ème f (p) est continue.
On dit que f est de classe C∞ lorsque, pour tout p ∈ N, f est de classe Cp.

Détaillons pour les quelques premières valeurs de p:

� f est de classe C0 signi�e que f est continue

� f est de classe C1 signi�e que f est dérivable et sa dérivée continue

� f est de classe C2 signi�e que f est deux fois dérivable et sa dérivée seconde est continue (sa
dérivée première est aussi continue puisqu'elle est dérivable !)

Pour 0 6 p 6 q 6∞:

f est de classe Cq =⇒ f est de classe Cp.

3.2 Calculs de dérivées p-ièmes

� Soit a ∈ R, on pose fa : x 7→ eax. Déterminer sa dérivée p-ième pour tout entier p.

� Pour tout entier p, déterminer la dérivée pième de sin.

� Toute fonction polynomiale f de degré n véri�e :

∀p > n+ 1, f (p) = 0.
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3.3 Opérations.

Soit p ∈ N ∪ {∞}. Les ensembles :

Dp(I,R) = {f : I → R | f est p fois dérivable sur I}
Cp(I,R) = {f : I → R | f est de classe Cp sur I}

sont des sous-espaces vectoriels (spoiler) de F(I,R). Si f et g sont deux vecteurs de l'un de ces
deux ensembles avec p ∈ N, alors pour tous α, β ∈ R:

(αf + βg)(p) = αf (p) + βg(p).

On a
Cp ⊂ Dp ⊂ Cp−1 ⊂ . . . C1 ⊂ D1 ⊂ C0

Remarque: Ces ensembles sont aussi stables par produit, et la dérivée du produit fg est donnée
par la formule suivante.

Théorème 16 (Formule de Leibniz). Soient f, g : I → R deux fonctions p fois dérivables
(resp. de classe Cp).
Alors, la fonction f × g est également p fois dérivable sur I (resp. de classe Cp) avec, pour
p ∈ N:

(f × g)(p) =
p∑

k=0

(
p

k

)
f (k)g(p−k).

Remarque:Cette formule s'avère pratique notamment avec des fonctions polynomiales ou de
dérivée k-ème s'exprimant simplement à l'aide de la fonction elle-même (exp, sin, cos, . . . ).

Exemples 9.
1. Déterminer la dérivée p-ème de la fonction x 7→ x2ex.

2. Écrire la dérivée p-ème de la fonction x 7→ x3 ln(x) en suivant le même raisonnement.

On démontre également par récurrence la stabilité des ensembles ci-dessus par quotient et
composition (en utilisant les formules connues pour les dérivées premières):

Proposition 17.

Soient f, g : I → R deux fonctions p fois dérivables (resp. de classe Cp).
On suppose de plus que g ne s'annule pas.

Alors, la fonction
f

g
est également p fois dérivable (resp. de classe Cp).

Proposition 18.

Soient f : I → R et g : J → R deux fonctions p fois dérivables (resp. de classe Cp).
On suppose de plus que f est à valeurs dans J : f(I) ⊂ J .
Alors, la fonction g ◦ f est également p fois dérivable (resp. de classe Cp).

Remarque: L'hypothèse "f(I) ⊂ J" permet de donner un sens à la composée g ◦ f .

4! Il n'y a pas de formule générale simple pour les dérivées p-ème de
f

g
et g ◦ f .
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Proposition 19.

Soit f une fonction bijective p fois dérivable et telle que f ′ ne s'annule pas, alors f−1 est p
fois dérivable.

4 Fonctions convexes

Dé�nition 9. On dit que f est une fonction convexe si pour tout (x, y) ∈ I2 et tout λ ∈ [0, 1], on
a

f ((1− λ)x+ λy) 6 (1− λ)f(x) + λf(y)

Interprétation géométrique: le graphe de f se situe en
dessous de ses cordes:

x

y

•
a

•
b

•

•

Proposition 20.

Soit f une fonction dérivable. Alors f est convexe si et seulement si f ′ est croissante.

Interprétation géométrique:
Une fonction f est convexe
si son graphe est au-dessus de ses tangentes.

x

y

Proposition 21.

Soit f une fonction deux fois dérivable. Alors f est convexe si et seulement si f” est positive.

5 Fonctions complexes

Soit f : I → C avec I ⊂ R. On dit que f est dérivable en un point a de I si Re(f) et Im(f) sont
dérivables en a. On note alors f ′(a) = Re(f)′(a) + iIm(f)′(a).

On dit que f est dérivable sur I si elle est dérivable en tout point de I.
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