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Développements limités

1 Formule de Taylor Young

Théorème 1.

Soit p ∈ N.
Soit f : I → R une fonction dérivable p fois sur un intervalle I de R.
Pour tout x0, x ∈ I et pour tout:

f(x) =

p∑
k=0

f (k)(x0)

k!
(x− x0)k+ o

x→x0
((x− x0)p)

Rappel: la notation o ((x− x0)n) signi�e que ce terme divisé par (x − x0)
n tend vers 0 quand

x→ x0. Cette formule n'a donc d'intérêt qu'au voisinage de x0.
Elle sera très souvent appliquée en zéro:

f(x) =

p∑
k=0

f (k)(0)

k!
xk + o (xp)

Remarque: à l'ordre 1, on obtient f(x) = f(0) + xf ′(0) + o(x), on y reconnaît l'équation de la
tangente en 0.

Exercice 1. Donner le DL en 0 à l'ordre 7 de x 7→ tan(x).

Une fonction polynomiale :

On se donne f : x 7→
n∑
k=0

akx
k. Que vaut son DLk en 0 pour k ∈ N?

Fonction sinus :

On cherche à appliquer la formule de Taylor Young en 0 à la fonction sinus.

Exemple 1. calculer lim
x→0

sin3(x)− x3

x4
.

La fonction cos.

On cherche à appliquer la formule de Taylor Young en 0 à la fonction cosinus. Grâce au

développement de cos, on est en mesure de calculer lim
x→0

cos(x)− 1

x2

La fonction x 7→ 1

1− x
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On cherche à appliquer la formule de Taylor Young en 0 à la fonction f : x 7→ 1

1− x
. Pour

cela, on doit calculer les dérivées successives et les évaluer en 0.

La fonction x 7→ (1 + x)α, α ∈ R. Pour celle-là, la formule générale est compliquée à écrire à l'ordre
n mais facile à calculer pour les premiers termes.

2 Développements limités

2.1 dé�nition et opérations

Dé�nition 1. Soit f une fonction, on dit qu'elle admet un développement limité (DL) d'ordre n
en x0 s'il existe des réels a0, a1, . . . , an tels que

f(x) = a0 + a1(x− x0) + . . .+ an(x− x0)n+ o
x→x0

((x− x0)n) .

Autrement dit, au voisinage du point x0, la fonction f peut être approximée par une fonction
polynômiale et on sait majorer l'erreur de cette approximation (grâce au o).

Proposition 2.

Si une fonction admet un développement limité en x0, alors ce développement limité est
unique

Remarque: Autrement dit, les coe�cients du polynôme qui approxime la fonction sont
uniques.

Opérations sur les DLs

1. Si f et g admettent un DL d'ordre n en x0, alors f + g admet un DL d'ordre n en x0 qui est
la somme des DLs de f et g.

2. Si f admet un DL d'ordre n en x0, alors λf , avec λ ∈ R admet un DL d'ordre n en x0 qui
est le multiple de λ et du DL de f .

3. Si f et g admettent un DL d'ordre n en x0, alors fg admet un DL d'ordre n qui est égal au
produit des DLs de f et g.

4. si f admet un développement limité d'ordre n en x0, f(x) =
n∑
i=0

ai(x− x0)i + o ((x− x0)n),

alors toute primitive F de f admet un DL d'ordre n+ 1 en x0 tel que :

F (x) = F (x0) +
n∑
i=0

ai(x− x0)i+1

i+ 1
+ o

(
(x− x0)n+1

)
.

5. Si f admet un DL d'ordre n, f ′ n'admet pas nécessairement un DL d'ordre n − 1. En
revanche, si f ′ admet un DL, alors ce dernier est la dérivée du DL de f .

Exemples 2.
1. Soit f : x 7→ x− x3

6
+ x4 sin

1

x4
, montrer que f admet un DL3, f ′ admet-elle un DL2?

2. Considérons par exemple la fonction f : x 7→ x3 sin

(
1

x

)
. On la prolonge par continuité en

posant f(0) = 0. Montrer que f admet un DL2, f ′ admet-elle un DL1?
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2.2 DL et Taylor Young

Théorème 3.

Soit f une fonction n fois dérivable en x0, alors f admet un DL d'ordre n en x0.

En pratique, on applique Taylor Young pour déterminer les DLs des fonctions usuelles une
bonne fois pour toutes. Ensuite, ces DLs sont supposés connus donc on les apprend par c÷ur et
on les utilise sans les redémontrer pour déterminer le DL d'une fonction qui s'exprime à l'aide de
fonctions usuelles.

2.3 Développements limites et dérivabilité

On a déjà vu (chapitre sur la dérivation) qu'une fonction est dérivable si et seulement si elle admet
un DL1.

4! C'est faux pour un ordre strictement supérieur à 1. Autrement dit, on peut admettre un
DL2 et n'être pas deux fois dérivables.

Exemple 3. f : x 7→ x3 sin
1

x
.

2.4 Propriétés des DLs

Rappel: si f est n fois dérivable, f ′ est n− 1 fois dérivable.

Proposition 4.

Soit une fonction n fois dérivable,

� Si f est une fonction paire alors son DL n'a que des termes pairs,

� Si f est une fonction impaire alors son DL n'a que des termes impairs.

Proposition 5.

Soit f admettant un DL en x0 alors un équivalent en f en 0 est le premier terme non nul de
son DL.

Remarque: Si f(0) 6= 0, alors f(x) ∼ f(0).
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3 Développements usuels

En appliquant la formule de Taylor-Young aux fonctions usuelles qui sont C∞, on obtient facilement
les formules suivantes :

1

1− x
= 1 + x+ x2 + . . .+ xn + o(xn).

ex = 1 + x+
x2

2!
+ . . .+

xn

n!
+ o(xn).

cos(x) = 1− x2

2!
+
x4

4!
+ . . .+ (−1)n x2n

(2n)!
+ o(x2n+1).

sin(x) = x− x3

3!
+
x5

5!
+ . . .+ (−1)n x2n+1

(2n+ 1)!
+ o(x2n+2).

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 + . . .+

α(α− 1) . . . (α− n+ 1)

n!
xn + o(xn).

Exemples 4.
1. DLn en 0 de ln(1 + x)?

2. Déduire du DL1 de sin son DL3 en 0.

3. Déterminer un DL3 de tan en 0.

4. Déterminer un DL5 de arctan(x) en 0.

4 Développement asymptotique

Montrer que la fonction x 7→ x3 + 2

x2 − 1
admet une asymptote en +∞ et déterminer la position de

celle-ci par rapport au graphe de f .

Exercice 2. Étude de f : x 7→ x2

x+1
esin(

1
x) − 2x ln

(
1 + 1

x

)
au voisinage de +∞.
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