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TD 12 : Dérivation.

1 Etude de la dérivabilité

Exercice 1.

hx—1
Soit f définie par f(x) = ax

et f(0) =0, f est-elle dérivable?

Exercice 2.

x2

e
Soit f : R* — R définie par f(x) = pour tout x € R*. Montrer que f est prolon-

geable par continuité en 0. le prolongement obtenu est-il de classe €' ?

Exercice 3.
Etudier la dérivabilité sur R et le caractere C! si elle est dérivable de

x
1+|x|°

1. f:x— xlx| 2. gix—

Exercice 4.
Ftudier la dérivabilité de f définie par f(x) = sinxsin% six #0; f(0)=0;

Exercice 5.
Que dire de la dérivée d'une fonction paire? impaire ?

Exercice 6.
Déterminer a, b € R de maniere a ce que la fonction f définie sur R, par:

fx)=vxsi0<x<1 et f(x)=ax?+bx+1sinon
soit dérivable sur R} .

Exercice 7.
.. R —- R

Sonf.{ o 12t

Rt — ]-o00,1]

fx)

1. Montrer que la corestrictionde f: g: { est bijective.

X —_—
2. Sur quel(s) intervalle(s) g~ ! est-elle dérivable?

3. Déterminez (g~ 1)'(1—e).

Exercice 8.
Soit f:[0,1] — R une fonction dérivable. On définit une fonction g sur [0, 1] par

f2x)sixe0,3]

§(0) = { f2x—1) sinon

A quelle(s) condition(s) la fonction g est-elle dérivable?

Exercice 9.
R* — R

Soit f: 2| 1| . Montrer que f est prolongeable par continuité en 0. Son

—_— X
X
prolongement est-il dérivable?

2 Résolution d’équation fonctionnelle

Exercice 10.
Soit f une fonction de classe €' telle que Vx € R, f'(x) f(x) = 0. Montrer que f’ est iden-
tiquement nulle.

Exercice 11.
Déterminer toutes les applications f : R — R dérivables, telle que

fx+y) =fx)+f(),V(x,y) eR?

3 Théoreme de Rolle
Exercice 12.

Soit f: [-1,+co[— R dérivable tel que f(—1) =1, f(0) =0 et xLHP f(x) = +o0. Montrer

que f’ s’annule.

Exercice 13.
Soit g deux fois dérivable sur [0, 3] telle que g(0) = g(3) =0 et g(1)g(2) < 0. Montrer que
g" s’annule.

4 Théoreme des accroissements finis

Exercice 14.
Démontrer que pour tout x et yréelsona: |arctanx —arctany |<| x— y |

Exercice 15. %8

Soit n € N*. Montrer que :

1
n+l—-vn<s——<vn-vn-1.
% vn NG vn



Exercice 16. ¥

Déterminer
1 1 1
lim — - -3 .
—=0x\y1-x Vi+x

Exercice 17.
Soit f : R — R dérivable et telle que f(0) = 0. Montrer que pour tout x > 0, il existe ¢ >0
tel que f(2x) =2xf"(c).

Exercice 18. &
Soit f : R — R dérivable telle que xliIP f'(x) = +oo, montrer que :
—+00

xl—1>r-lr—loo f(x) = +oo0.

Exercice 19. £
Soit f une fonction deux fois dérivable sur [0, 1] telle que f(0) = f(1) =0 et f" < 0. Mon-
trer que f est positive.

5 Dérivées d’ordre supérieur

Exercice 20.
Soit n € N, montrer que les fonctions suivantes sont de classe 6" sur leur ensemble de
définition et déterminer leur dérivée n-eme :

1. firtx—xe™ 5. fsix*’;z-
2. frix— x%e” (XII)
3. f3:x— (ax+b)¥, avec ke N. 6. fe:x— .
1 ax+b
4. fa:x— ——.
fa 1-x
Exercice 21.

Montrer que, pour tout réel x € R et tout entier n =2 :
2 (n) (n-1) (n-2) —
(1+x”)arctan”™ (x) + 2(n — 1) xarctan (x) + (n—2)(n—1)arctan (x)=0.

En déduire la valeur de arctan"” (0) pour tout entier n € N.

Exercice 22.
Soit f: x+— (x+1)", montrer que f(k) (x) =

(n—k)!

A+x)" ¥ sik<n.

Exercice 23.
Soit f: x — arctan(x).

1. Montrer que pour tout n = 1, f(”) (x) = (n—1)!cos™ (f(x)) sin(nf(x) + nz_n)

2. En déduire les racines de f"” pour tout n> 1.

6 Retour aux équation différentielle

Exercice 24.
Existe-t-il une solution non nulle de xy'(x) + (1 + x?) y(x) = 0 définie sur tout R?

Exercice 25.
Déterminer I'ensemble des solutions définies sur tout R de x?y’(x) + y(x) = x> + x.

Exercice 26.
Existe-t-il des solutions définies sur R de I'équation (1 — x)zy’ (x) = 2—x? si oui,
déterminez-les.

7 Sibesoin d’encore un peu d’entrainement

Exercice 27.
Etudier la dérivabilité de f : x — cos y/x.

Exercice 28.

. 1
Etudier la dérivabilité de h :—

1+|x|

Exercice 29.

Etudier la dérivabilité de f: x — In(1 + /X).

Exercice 30.

Ftudier la dérivabilité de f définie par f(x) = x2 cos% six#0; f(0)=0;.

Exercice 31.
. R — R — N - -
Soit f: { o x4 Montrer que f est bijective, que sa bijection réciproque !

est dérivable et déterminer (')’ (0).
Exercice 32. )
Soit f : R* — R définie par f(x) = x*sin —. Montrer que f est prolongeable par conti-

nuité en 0; on note encore [ la fonction prolongée. Montrer que f est dérivable sur R
mais que f' n’est pas continue en 0.

Exercice 33.
Soit f : R — R dérivable. Montrer que pour tout x > 0, il existe ¢ > 0 tel que

f@)-f=0=x(f'0+f'(=0).

Exercice 34.
Calculer la dérivée n-eme de la fonction x — x"*~!1n x.



Exercice 35.
Calculer la dérivée n-ieme de f: x — (x> + 1)e.

Exercice 36.
Calculer la dérivée n-ieme de f: x — x*(1+x)".

Exercice 37.
Déterminer la dérivée n-ieme de g : x — e* cos(x).

Exercice 38.
Calculer de deux facons différentes la dérivée n-iémes de x — x?”*. En déduire une ex-
n
. 2
pressionde ) (7)°.
k=0
Exercice 39.
Soit n € N*. Déterminer la dérivée n-ieme de x —

x2-1
8 Une fois qu’'on est a 'aise

Exercice 40. % £
Soit f € €2 (la, b],R) telle que f'(a) = f(a) et f'(b) = f(b). Montrer qu'il existe c €]a, b],
f'e)=f(o).

Exercice 41. # &%
Soient a réel, f: [a, +oco[— R continue et dérivable sur ]a, +oo[. On suppose que f admet
une limite en +oo égale a f(a). Démontrer qu'il existe ¢ > a tel que f’'(c) =0.

Exercice 42. £

Soit f: [0, +oo[— R de classe C! telle que f(0)=—-1et limf = +00.
(e o]

Montrer que si f s’annule au moins deux fois, alors f’ aussi.

Exercice 43. & &
Soit f une fonction dérivable telle que thP f'(x) =0, montrer que
—+00

lim m=

X—+00 X

0.

Le résultat reste-t-il vrai si la limite de f’ est non nulle?

Exercice 44. %%
Déterminer

sh(x+1) sh(x)
x—+o0  x+1 x

Exercice 45. &
Soit f bornée telle que xlirP f'(x) = 1. Montrer que [ = 0.
—+00

Exercice 46.
Soit f deux fois dérivable, bornée telle que f" = 0, montrer que f est constante.

Exercice 47. %
Soit f € € ([0,1],R) telle que YVt € [0,1],Vn € N, | f(£)| < t. Montrer que f est la fonc-
tion nulle.

Memo

— Comment déterminer si une fonction est dérivable ?

— Utiliser les thms généraux (somme, produit, composée, quotient)
— Calculer la limite du taux d’accroissement
— Utiliser le théoreme de la limite de la dérivée
— Comment montrer que la dérivée s’annule?
Utiliser Rolle
— Comment majorer un taux d’accroissement?
Utiliser le théoreme des accroissements finis
— Comment calculer la dérivée n-ieme d’'une fonction?

— Faire une récurrence
— Utiliser la formule de Leibniz



CorrectionduTDn 12

On calcule son taux d’accroissement en 0 :
fx)=f0) ch(x)-1

x—0 x2

Correction 1

2
X
etcomme ch(x)—1~ Ex on en déduit que le taux d’accroissement admet une limite finie

1
en 0, égale a 3 donc f est bien dérivable.
2
X
On peut également écrire un DL1 en écrivant le DL2 de ch: ch(x) =1+ > +0(x?), donc

1
fl) = g + 0(x). On en déduit que f est dérivable et, par identification, que f'(0) = >

x? _ eV — 0
5— =lim
X y—0 y
par continuité en posant f(0) = 0. La fonction f est €' sur R* et pour tout x € R*, ona:

e
Correction2 Ona lin[l) =1donc liH(l) f(x) =0 et on peut prolonger
X— X—

2x2e* — (e'x2 - 1) 1
!
x) = _—_—
r =
Le premier terme tend vers 2, le second vers 1 donc lin(l) f'(x) = 1. D’apres le théoréme de
X

la limite de la dérivée, on en déduit que f est de classe €.

Correction 3
1. Lafonction f est dérivable sur R*. On calcule le taux d’accroissements en zéro :

fO-fO _
X

donc f est dérivable en 0 de dérivée f'(0) = 0.
On regarde maintenant si elle est de classe 6. On a:

2x
—-2Xx

six>0
six<0

f'(x)={

donc Vx eR*, f'(x) =2|x|.Ona lir% f'(x) =0donc f estbien de classe€¢!. Elle nest
x—>

pas deux fois dérivable car la fonction x — 2|x| n’est pas dérivable en 0.

2. La fonction g est dérivable sur R* en tant que composée de fonctions dérivables.
On calcule le taux d’accroissements en 0 et on trouve :

g -g® _ 1
X _1+|x|

donc g est dérivable en 0 de dérivée g'(0) = 1.
On regarde maintenant si elle est de classe €'. Onaa:

1
— six>0
2
g=4 707
a2 9*<0
donc Vx € R*, g'(x) = m On a )lcii%g/(x) =1 donc g est de classe €'. En

g -g' 0  x*+2lx|

T ox(1+x))2
limite en 0 puisque sa limite a gauche et sa limite a droite ne sont pas égales.

revanche, elle n’est pas deux fois dérivable car n'a pas de

Correction4 La fonction f est dérivable sur R* comme composée et produit de fonc-
tions dérivables. En 0, on a:

. 1

fx) - f(0) _ sinxsin

X X

824 — 1 quand x — 0 car c’est le taux d’accroissement de sin en 0. On sait, de

On sait que
plus, que sin}—lc n’a pas de limite quand x — 0, ce qui montre que le taux d’accroissement

n'admet pas de limite quand x — 0 donc f n’est pas dérivable.

.1 - s
Remarque. Pour montrer que x — sin — n’a pas de limite en 0, on peut considérer les
X
1

. _ 1 _ 1 . e L 1
deux suites x, = 5— = ety,= a7 qui tendent vers 0 mais sin - =1 et sin 7o =L
Correction 5 Soit f une fonction paire définie sur un ensemble symétrique A, alors

VxeA, f(-x) = f(x).
On dérive cette égalité, on a:
VxeA-f(-x) = f(x).

La dérivée est donc une fonction impaire.
Soit f une fonction impaire définie sur un ensemble symétrique A, alors

VxeA f(-=x)=-f(x).



On dérive cette égalité, on a:
VxeA-f(-x)=—-f'(x),

c'est-a-dire
VxeA f(-x) = f(x).

La dérivée est donc une fonction paire.

Correction 6 1l faut d’abord que la fonction soit continue en x = 1. La limite a gauche
estlim,_;- vx =1 et adroitelim,_;- ax*+ bx+1=a+ b+ 1. Donc

a+b+1=1.
Il faut maintenant que les dérivées a droites et a gauches soient égales : lim,_,;+ ﬁ} =
% etlim,_;+2ax+b=2a+b. Donc

1
2a+b=—.
2

1 1
Le seul couple (a, b) solution des deux équations est (E’ - 5)

Correction 7
1. On va tracer le tableau de variations de f. La fonction est dérivable sur R de
dérivée f': x — —(x2 +2x)e*. On a lim f(x) = 0 par le théoréeme de crois-
X——00
sances comparées et lirP f(x) = —oo. On a donc le tableau de variations suivant :
X—+00

X |-oo -2 0 +00|
f'(x) - 0 + 0 -
0 \ /1\
f 1-4e-2 %9 La fonction f est donc strictement

croissante sur R* donc injective. De plus, f(R*) =] —oo,1] donc g est surjective.
Cette corestriction est donc bien bijective.

2. Lafonction réciproque g ! est dérivable en tout x tel que g'og~! (x) # 0. La fonction
g’ s’annule en 0 donc g~! n’est pas dérivable en g(0) = 1, elle est donc dérivable sur
I'intervalle ] — oo, 11.

3. On a g(1) = 1 - e et pour tout x €] — oo, 1], (g‘l)’ (x) = . On a donc

1 1 1

gogll-e g0 3¢

gogtx)

(g a-e=

Correction 8 Pour que la fonction soit continue, elle doit étre continue en 1/2 car elle
I'est ailleurs par les théorémes usuels. On a :
lim gx) =

1t
=3

linll f2x-1)= lirg f»)=f)
+ y—0+

=3
et
lim g(x)= lim f(2x)= lim f(y)=f)
R
il faut donc avoir f(0) = f(1).
1
On sait que f est dérivable en dehors de > Calculons la limite a gauche a droite du

. 1
taux d’accroissementen —.On a:

lim g -g/2) _ lim fRx-1)-fO) _ lim F - f(0) — F0)
x—1* x—-1/2 x> 17 x—-1/2 y—0* y
ot 1/2 2 1 1
lim gx)—g(/2) _ i f2x)-f) - lim fy-ra - )
x—1" x—1/2 x—1" x—1/2 y—=1~  y-1

on doit donc avoir f'(0) = f'(1).
On en déduit que f est dérivable si f(0) = f(1) et f'(0) = f'(1).

Correction9 On commence par déterminer si f admet une limite finie en 0. Par défi-
nition de la partie entiére, on al’encadrement :

1 FJ 1
——1<|=|<5,
X X X

x(1-x)<f(x)<x.

d’ot;, en multipliant par x2,

Par le théoréme d’encadrement, on sait que f admet une limite en 0 et que celle-ci vaut
0 donc f est prolongeable par continuité en posant f(0) = 0.

Pour savoir si son prolongement, que I'on note encore f, est dérivable, on étudie le
taux d’accroissementen 0.On a:

fx) - 1) _xFJ
x x]’
D’apres I'encadrement de la partie entiere, on a :

l—xsms

X

lr



donc, par le théoreme d’encadrement, le taux d’accroissement de f en 0 admet une li-
mite finie en 0 égale a 1. Ainsi, le prolongement continu de f en 0 est bien dérivable en
0.

Correction 10  On suppose par 'absurde que f’ n’est pas identiquement nulle. Il existe
alors a € Rtel que f'(a) # 0. Comme f' est continue, on peut trouver un intervalle ouvert
I, centré en a, sur lequel f’ ne s’'annule pas. On a alors :

Vxel f'(x)f(x)=0et f/(x)#0

donc Vx € I, f(x) = 0 ce qui montre que f est constante sur cet intervalle. Cela implique
que f' est nulle sur cet intervalle ce qui est absurde. On a donc montré, par ’absurde,
que ' estla fonction nulle.

Correction11 Pour y =0, on obtient f(0)
f(y) par rapport a x, on obtient :

= 0 puis en dérivant 'égalité f(x+y)

=fx)+

VyeR, f'(x+y) =f'(x).

On en déduit que f’ est une constante d’oli, comme f(0) = 0, f : x — ax. Réciproque-
ment, une telle fonction vérifie bien Iégalité donc on a trouvé toutes les solutions.

1
Correction 12 Ona f continue sur [-1,0] et f(0) < 3 < f(-=1). On applique le TVI entre

—letO:il existe ce]—1,0[ tel que f(x) = =

Par ailleurs, f étant continue, on sait que f([0, +oo[) est un intervalle. Il est non borné
puisque lim = +oo et il contient 0 puisque f(0) = 0. On en déduit qu’il contient [0, +oo[

donc il contient le reel . Ainsi, il existe d > 0 tel que f(d) =

On a maintenant f contlnue sur [c,d], dérivable sur ]c, d[ et telle que f(c) =

fld) =
1

> On peut appliquer le théoréme de Rolle : il existe e €]c, d| tel que f'(e) = 0 donc f’
s’annule.

Correction 13  On suppose, sans nuire a la généralité, que g(l) < 0. On commence par

appliquer le TVI entre 1 et 2 : il existe a €]1,2[ tel que g(a) =

— Onag)< % < g(0) donc il existe a €]0,1[ tel que g(a) = (1).

g) &) )
2

— Onag(l) < = < g(a) doncil existe be]l, a tel que g(b) =

On applique maintenant le thm de Rolle entre a et b : il existe a; €]a, b[c]0, a] tel que

f'(a1) =0.
Ona ) 5
— gla) < =— 82 < g(2) donc il existe c €]a,2[ tel que g(c) = %
g3) << %2) < g(2) doncil existe d €]2,3[ tel que g(d) = g(22)

On applique le thm de Rolle entre c et d : il existe ¢; €]¢,d[<]a,3[ tel que g'(c1) = 0.
Comme a; < a < ¢, on a bien a; # ¢;. On peut maintenant appliquer le thm de Rolle
entre a; et ¢; et on obtient un réel en lequel g" s’annule.

Correction 14  Soit (x,y) € R2. Si x = ¥, le résultat est clair. Sinon, par le théoréme des
accroissements finis, il existe ¢ strictement compris entre x et y tel que

arctan(x) — arctan
) W _ arctan’(c) = 5.
X-=y 1+c

On adonc
arctan(x) — arctan(y)
xX=y

Ceci étant vrai pour tout couple (x, y), on a l'inégalité souhaitée.

<1

Correction 15 On pose f : x — v/x. Alors 'encadrement se réécrit :

f(n+1)- f(n) -f(n-1)

/ fm
mih-n ST LoD

D’apres le théoréeme des accroissements finis, on sait qu'il existe a, €]n,n+1[ et B, €
]n—1,n[ tels que

ﬂn+D—fM)_f(n)th),ﬂn 1)

n+1)-n n—(n— =f'Bn).

On remarque, de plus, que la fonction f” est décroissante. On a 8, < n < a;,, donc

fllan) < f'm < f'(Bn),

ce qui montre 'encadrement souhaité.

! on cherche a déterminer hm fa-»-ra+x .
Vx m p
~fa+n) L fA-0-fA+x)
* T A-n-0+x)

Correction 16 On pose f(x) =

On écrit

fa-x




Par le théoréeme des accroissements finis, on sait que pour tout x, il existe ¢y strictement
compris entre 1 — x et 1 + x tel que

fA-x)—f1+x)
1-x)—(1+x)

:f,(cx)-

_s
~5Cx * et f'(cy) est compris entre f'(1— x) et f'(1+ x). Quand x tend vers

Ona f'(cy) =

1
0, f'(1—x) et f'(1 + x) tendent vers f'(1) = —z donc, par le théoreme d’encadrement,

1
lim f'(cx) = —=. On en déduit que :
x—0 5

lim ! ! !
—=0x\yI-x

2
M+x) 5

Correction 17  Soit x > 0, la fonction f est continue sur [0,2x], dérivable sur ]0, x[

2Xx
donc, par le théoreme des accroissements finis, il existe ¢ €]0,2x[ tel que M =
X
2x)—f(0
% = f’(c). En multipliant par 2x, on a bien I'égalité souhaitée.

Correction 18  Pour tout réel M > 0, il existe A >0 tel que Vx> A f'(x) > M. Soit main-
tenant x > A, alors, d’apres le théoréme des accroissements finis, il existe ¢, €] A, x| tel

ef(x)—f(A)

P = f'(cx). On a donc f(x) > f(A) + (x— A) f'(cx) et comme c; > A, on a
fx) > f(A+x—-AM.
On sait que liIPoo f(A) + (x— AM = +oo donc, par le théoréme de minoration,
lim f(x)=

X—+00

Correction 19 La fonction f est continue sur [0, 1] car dérivable, dérivable sur ]0, 1[ et
f(0) = f(1). On peut appliquer le théoréme de Rolle : il existe « €]0,1[ tel que f'(a) =0
Comme on sait que f" <0, la fonction f’ est décroissante donc elle est négative ou nulle
sur [0, a] et positive ou nulle sur [a, 1].

Soit x € [0, a], alors, d’apres le théoréme des accroissements finis, il existe § €]0, x[ tel

x)—f(0
ue w = f'(B). Comme f'()=0etx=0,0na f(x)— f(0) =0donc f(x) =0.
Soit maintenant x €]a, 1], alors, d’apres le théoreme des accroissements finis, il existe
f =7 f'(y). Comme f’(y) < 0,ona f(x)— f(1) =0
X

Y €lx,1[ tel que Detx—1<

donc f(x) = 0.

f
-1

On a montré que Vx € [0,1], f(x) =0 donc la fonction f est positive.

Correction 20

1. La fonction fj est de classe €” en tant que produit de fonctions de classe €”. On
pose g1 : x— x et h; : x— e~*. On va appliquer la formule de Leibniz.
— Onag) =1 eth?.’Z,g{k) =0.
— Ona hi x——e % h":x—e *doncVkeN, hik) = (=D*n,.
On applique maintenant la formule de Leibniz : pour tout x € R,

n
@ =Y (8 om0
k=0
= g1(0h{"” (x) + ng| (A" P (x) +0

=x(-D"e*+n-1)"te*=(-D"(x—n)e .

2. La fonction f est de classe €" en tant que produit de fonctions de classe €”. On
pose g : x — x? et hy : x — e*. On va appliquer la formule de Leibniz.
— Onag):x— 2x, gg":x'—>2eth23,g§k) =0.
— OnaVkeN,hP = p,.
On applique maintenant la formule de Leibniz : pour tout x € R,

n
2(}’!) (x) — kz (Z)gék) (x) h;ﬂ—k) (x)
0

= 2 (1) + ngh() RSV + T (” 1

gn (x)h(n 2)(x)
=(x?+2nx+n(n-1)e*

3. Lafonction f3 est de classe €™ en tant que puissance d'une fonction affine qui est
donc de classe €.
Ona f]: x— ak(ax+b)*, f3": x— a®k(k—1)(ax +b)*72, pour n< k, ona f":
k!
x— a” i )'(ax+ b)k=" et pour n > k, f(")
4. Ona f; de classe €" sur R\ {1} en tant qu’'inverse d'une fonction de classe € qui
ne s’annule pas. On calcule ses dérivées successives :

— fi:XHW
— flyix— a 3'35)3
i k!
— VkeN, fF:x— m
n!

On adonc f(n) : m



(n+1)

1 (n+1)!
5. Onremarque que f5 = - f;, onadonc f" = 2—— donc f{"” 1 x—» — .
que que f = 2 f; f5 20— )2
6. Ona f; de classe €" sur R\ {— Q} en tant qu'inverse d’une fonction de classe €" qui
-3la3
ne s’annule pas. On a tX— SF —— et, par
P i +b)2 6! (ax+b)3 s et P
4 S ) . (-D"a"n!
une récurrence immédiate, Vk € N, f P .
(ax+ byt
Correction 21  Posons f =arctan,ona f': x etf":x 2x
B ’ ' 1+ x2 ’ 1+x2°

Nous allons montrer, par récurrence sur n = 2 que, pour tout x € R,
(1+x?)arctan™ (x) +2(n — 1) xarctan" " (x) + (n - 2)(n - 1) arctan 2 (x) = 0

On fixe x € R, on commence par montrer que la propriété est vraie au rang 2 pour initia-
liser.
Ona:

X 1
+2.1.x.——+0=0,
+ x2 1+ x2

2
1+x ).1

la propriété est donc vraie au rang 2.
On suppose que la propriété est vraie au rang n, on a donc :

(1+x%)arctan™ (x) + 2(n — Dxarctan™ P (x) + (n - 2)(n - 1) arctan"~? (x) = 0
On dérive cette égalité, on obtient :
2xarctan™ (x) + (1 + x?) arctan"*V (x) + 2(n — 1) arctan "V (x)
+2(n-1xarctan™ (x) + (n—2)(n— 1) arctan”™ Y (x) = 0
soit, apres simplification :
(1+ xz) arctan”V (x) + 2nxarctan™ (x) + (n — 1) narctan™ " (x) = 0

La propriété est vraie au rang n + 1, elle est héréditaire.
Par le principe de récurrence, on a montré que la propriété est vraie pour tout entier n.
On souhaite maintenant calculer arctan™ (0). En prenant x = 0 dans 1'égalité, on ob-
tient :

arctan (0) + (n —2)(n — 1) arctan™ 2 (0) = 0,

donc

arctan™ (0) = —(n —2)(n— 1) arctan"~?(0).

Par récurrence descendante, on a donc arriver a exprimer arctan”(0) en fonction de
arctan® (0) ou arctan” (0) selon la parité de n.

— Si n est pair, comme arctan® (0) = 0, on obtient arctan (0) = 0
— Si n estimpair, on1'écrit n =2p + 1, on a alors

arctan®”*(0) =-(2p-1).2parctan®”~1(0)
=2p2p-1)2p-2)(2p - 3)arctan®P~3(0)
=-2p.2p-1)...2p-5) arctan®P~9(0)
= (-1)P2p'arctan (0)

par une récurrence descendante. On a donc arctan@P+) = (- nPE2p.

n(1+x)"1, f"(x) = n(n—1)(1+x)""2 et, par une récurrence
(n—k+1)(1+x)"* pour k < n. On a donc le résultat

Correction22 Ona f'(x) =
immédiate, f®(x) = n(n-1)...
souhaité.

Correction 23

1
1. On le montre par récurrence sur 7. On sait que f'(x) = T3 2 et
X
. T 2
cosarctan(x).sin (arctan(x) + E) = cos” arctan(x)
B 1
1 +1 tan? arctan(x)

T 14x2

La formule est vraie au rang 1. On suppose qu’elle est vraie au rang n et on dérive

la formule :
f(}’l+l) (x)

= —(n- 1)!nff(x) sin(f(x)) Cosn_l(f(x)),sin(nf(x) + %)
+(n—D!cos"(f(x))nf'(x)cos (nf(x) + %)
= nlf'(x)cos™ 1 (f(x)) [—sin(f(x))sin(nf(x) + ﬂ)
2 nmw
+cos(f(x))cos(nf(x) + 7)]
= nlf"(x)cos™ 1 (f(x))cos ((n +1)f(x)+ %)
= nlf"(x) cos"L(f(x))sin ((n FDf)+ M)

= nleos™ ! (f(x) cos(n+1) f() + E)

car on avu que f’(x) = cos? (f(x))

La formule est vraie au rang k + 1 donc, par le principe de récurrence, elle est vraie
pour tout entier n = 1.



2. D’apres la formule montrée a la question précédente, on a:
M@ =0
& cos"(f(x))=00u sin(nf(x) + %) =0
sin (nf(x) + %) = Ocar cosarctan(x) #0
nm
nf(x)+— =0[nx]

o nf(x)zkn—%, keZ

k
o f(x)=7ﬂ—g,k€Z

(kn ﬂ)
& x=tan|—-—|, keZ
n 2
. (kn 7[)
sin -3
o :—(kn ”),kEZ
cos|———
n 2

km
<& x=-cotan|—|, keZ
n

km L.
& x=-cotan|— |, k€ [0, n— 1]car tan est 7-périodique
n

kn
Les racines de £ sont donc —cotan (—) pour ke [0,n—1].
n

Correction 24 On note I} = R}, I, = R*. On sait que I'ensemble des solutions sur I,

i=1,2est
xZ
Aie” 7z

X —

A €R

On cherche maintenant une solution définie sur R. On suppose qu'une telle solution
existe et on la note f. Il est clair que f|p+ est une solution sur R} de I'équation donc il
existe 1) € Rtel que :

N‘*‘N

/11e

Vx>0, f(x)=

De méme, f|p+ est une solution sur R* donc il existe A, € R tel que :

N‘*‘N

V<0, fx) = 22¢

On a supposé f solution, elle est donc dérivable, ce qui implique continue. Calculons la
limite a gauche et a droite de f en0:

[N

X

2

xlir{)l+ f(X) - xll»Ia-

Cette limite est finie si et seulement si A; = 0. De méme,

I\J‘RN

iy 0 = Jig

est finie si et seulement si 1, = 0. Il n'existe donc pas de solution, autre que la solution
nulle, définie sur tout R.

Correction25 Onnote I =R, I, = R*. On sait que I'ensemble des solutions de 'équa-
tion homogeéne sur I;, i = 1,2 est:

{xH/l,-e_%,/lie[R}.

La fonction identité est une solution particuliere, 'ensemble des solutions sur [;, i = 1,2
est donc: .
{xH AieTx+x,A; € R}.

On cherche maintenant une solution définie sur R. On suppose qu'une telle solution
existe et on la note f. Il est clair que flg+ est une solution sur R} de I'équation donc il
existe 11 e Rtel que:

Vx>0, f(x) =/11e_% + X.

De méme, f|p« est une solution sur R* donc il existe A, € R tel que :

Vx<0,f(x)= /lge_Tlc + X.

On a supposé f solution, elle est donc dérivable, ce qui implique continue. Calculons la
limite a gauche et a droite de fen0:

1
lim f(x)= lim Aze™x +x.
x—0~ x—0-
Cette limite est finie si et seulement si A, = 0. En revanche,
1
lim f(x)= lim Le"*+x=0,YA; eR.
x—0t x—0+

On suppose donc 1; e Ret A, =0etona f continue avec f(0) = 0. Nous allons calculer
la limite du taux d’accroissement en 0" et 0~ afin de déterminer si f est bien dérivable

en0.0Ona: 0 0
lim M: lim x;: Iim 1=1,
x—0~ x—0 x—0" X — x—0"
et .
- f( Me x+x-f(0 Aex
lim —f(x) V) = lim e rFX7JE I ): m 1€ +1
x—07t x—0 x—07t X x—0t X



Par croissance comparée, cette limite est toujours égale a 1, quelque soit 1; € R. On en
déduit que les solutions de I'équation définies sur R sont les fonctions de la forme :

1 .

o AMe x+x six=0

x six<0

Correction 26  On travaille sur un intervalle sur lequel (1 — x)? ne s’annule pas.

Onnote I; =] —oo,1[ et I, =]1, +oo].

On remarque que :
2—-x 1 1

1-x2 (0-0% 1-x

Ainsi, 'ensemble des solutions sur I;, pouri =1, 2 est:

1
Aie 1-x

1-x

X — , i €R.

On suppose qu'il existe une solution réelle f. Alors f|;, est solution sur I; donc il existe
Ai,i=1,2telsque:
Aieﬁ
1-x

flx) =

Par croissance comparée, on a:

,Vxel;,i=1,2.

1

. AreTx
lim =0,

x—1t 1—x

tandis que :
1
. AeTx
lim =+
x—1" 1—-x

oo,

deslors que A; #0. Si 1 =0, en revanche, on a bien une fonction continue en 1.

Est-elle dérivable ? On calcule le taux d’accroissement. On a :

lim %

x—1"x—1
puisque f(x)=0,Vx<1et

lim M = 0,

x—1tx—1

par croissance comparée. Lensemble des solutions réelles est donc I'’ensemble des fonc-

tions de la forme : .
AleT—x :
f(x)z{ T—x six>1 .

0 six<l

Correction 27 La fonction f est la composée de cos, dérivable sur R et de la fonction
racine carrée, dérivable sur R%, elle est donc dérivable sur R}. Ftudions sa dérivabilité en

0.0Ona
cosyvx—1 (Vx)? 1
x x 2
donc le taux d’accroissement en 0 admet une limite finie ce qui montre que f est déri-

’

1
vable en 0 de dérivée -5

On peut également calculer un DL : cos(y/x) =1— g + 0o(x) donc f est bien dérivable en
0.

Correction 28 La fonction & est dérivable sur R*, on calcule le taux d’accroissements
—|x

x(1+1x])
n’'est donc pas dérivable en 0.

qui vaut et dont la limite a droite vaut -1 tandis que celle a gauche vaut 1. h

Correction 29 La fonction f est la composée de x — In(1 + x), dérivable sur R et de
la fonction racine carrée, dérivable sur R}, elle est donc dérivable sur R%. Ftudions sa

dérivabilité en 0. On a:
In(1+vx) In(1+ %) 1

p N

On reconnait le taux d’accroissement de x — In(1 + x), on sait donc que

. InQ+vx) .. In(l+y) -In(1)
m ———=lim—————— =1

li
x—07* ﬁ y—0 y—0

1
Comme lim — = +oo, on en déduit que le taux d’accroissement de f admet une limite
x—0 X
infinie en 0 donc f n’est pas dérivable en 0.

Correction 30 La fonction f est dérivable sur R* en tant que composée et produit de
fonctions dérivables. En 0,on a:
f)—f0) x?cosi
X X

1
= XCOoS—
X

La fonction cos est bornée et x tend vers 0 donc f est dérivable en 0 de dérivée nulle.

Correction 31 Lapplication f est strictement croissante donc injective. De plus, on a:

xlierf(x) = +o00 et xlirpmf(x) = —00,



donc, par continuité de f, Im(f) = R. La fonction f est donc bijective.
Sa bijection réciproque est dérivable si f’ ne s’annule pas ce qui est le cas. On sait, de
plus, que
1
fof o)

0 et, comme f’(x) =1+3x% ona:

o=

Ona f1(0) =0 car f(0) =

1

—1\/ _ _
) o= 1+3.02

Correction 32 La fonction f est C* sur R*.

— Comme sinus est bornée, lin%) f(x) = 0 donc la fonction est prolongeable par conti-
X—

nuité en posant f(0) =
— Le taux d’accroissement est

fR-FO _

x—0

Comme ci-dessus il y a une limite (qui vaut 0) quand x tend vers 0 car sinus est
bornée. La fonction f est dérivable en 0 et f'(0) =0

— Sur R*, f'(x) = 2xsin(1/x) — cos(1/x), Donc f'(x) n"'admet pas de limite quand x
tend vers 0. On en déduit que f’ n’est pas continue en 0.

Correction 33 On pose g: x— f(x) — f(—x), la fonction est dérivable. Par le théoréme

(x)
des accroissements finis, pour tout x > 0, il existe ¢ €]0, x[ tel que =— gx

g

=g'(c). On a

= f(x) + f(—x) donc I'égalité g(x) = xg'(c) est précisément I egallte souhaitée.

Correction 34 On pose f: x — x""! et g: x — In(x). On veut appliquer la formule de
Leibniz, il faut donc calculer les dérivées successives de f et g.
— Onaf':x— m-1)x"2 f":x— (n—1)(n-2)x""3 puis, pour tout k € [0,n - 1]

n-1)n-2)...(n—k)x"*1= (n-1) x"k=1 On a, de

ettout xeN, f®(x) = Ty
n—k-1)!

plus, f” = 0.
1 2 3!
O S SN ¢ BT ) SO L *
— Onag':x kf,r tx— =, 89— —, g x— —— puis, pour tout k e N,
W ., DT (k-1
g X T
x

On applique maintenant la formule de Leibniz. Pour tout x € R,

n
(fg)(n) (x) = Z (Z)f(k) (x)g(n—k) (x)

k=0
n-l (n-1! D" lnm—k-1
=L Wg ey T e 0
n:1 (_l)n—k—l
=) (PJn-——
k:o( 9
(n—-DI(-1" 1

)(=Dk

- e

On sait que Z
k=0

J-DF =0+ (- 1))"—0doncz
k=0

n
)(- l)k—(Z (DDF
k=0

(n-1)!

) —(-1D"™.0Ona
donc
(fe" (x) =

Correction35 Onposeh:x— (x2+1).0nal(x)=2x, h"(x)=2eth® =0,Yk=3.0n
pose g:x—e*, ona g(k) = g pour tout ke N.
D’apres la formule de Leibniz, pour tout xe R, on a:
n
f(")(x) = Z (")h(k) (x)g(nfk) (x)
k 0

= Z
= h(x)e* +nh'(x)e* +

=2 +2nx+nn-1)e*

)h®) (x) g (x)d’apres ce qui précede
nn-1) ox

Correction 36 On pose h: x — x%, ona h'(x) = 2x, h"(x) =2 et h® =0, Vk = 3. On

poseg:x— (1+x)",onag®(x) = (1+x)" %, D’apres la formule de Leibniz, on a

n!
(n-K)!
donc:

n
[P0 =Y (JhP g P
k=0
2
Z (”) h(k) (x)g(n—k) (%)
k=0
2g(x) +2xng' (x) +2. nn-1)

=X

gu(x)

RA+x0)"+2xn20+0" 1+ n?(n-120 +x)"2



k
Correction37 On pose f : x— cos(x). Ona f® (x) = cos (x + 77[ . On utilise la formule

de Leibniz :

k=0

g™ (x) = Z( )f“”(x)e Z( )cos(“’;—”).

Correction 38 Posons f; : x — x'. Pour tout entier r et tout k < r, on a fr(k) (x) =

r!
(r=kKk)!

x"F d’apres 'exercice 22. On a donc :

2n!
(n) —
fZZ (X) = Wx”.
On écrit ensuite f>,, = f;.f, et on applique la formule de Leibniz :
n
f(l’l) (x) — Z (n)fr(Lk) (x)fr(ln_k) (x)
() n! k
= Z k k

(n—k)!x
=nix" 3 (i)

En utilisant les deux expressions, on en déduit que :

b 2 e
izo\k/  (b*
Correction 39 On écrit
1 1 1
= + .
x2-1 2(x-1) 2(x+1)

1 1
Onpose h:x— 1 etg:x— =1 Les deux fonctions sont dérivables. On a k' (x) =
x— X

- G2 h9(x) = W et h®(x) = - G Par une récurrence immeédiate, on a :
X— X — X—
. (=D"n!
h (x) = W
De méme, on a
(-1)"n!
g(n)( ) = -
(x+ 1)+

On en déduit que :

(-1)"n!
2(x_ 1)n+1

=D"n! D"+ D"+ (x-1")

(n) —
vn =0,/ = 2(x+ 1)+ 2(x% -

1)n+1

—

la, b]

X —_—

Correction40 Onposeg: { .Lafonction g est de classe

R
(f'0)-f)e*
%! et on sait que g(a) = g(b) donc, d’apres le théoreme de Rolle, il existe ¢ €]a, b| tel que
g'(c)=0.0na:

go=(f"©-f©)e

fo.

Comme e° # 0, on a nécessairement f"(c) =

. N . PP T
Correction 41 On consideére la fonction g(x) = f(a + tanx) définie sur [O, 5 [ On a

lim g(x) = lirPoo f(») = f(a) donc g est prolongeable par continuité en g en posant
e —
g3 = fla.

La fonction g est alors continue sur [0, %], dérivable sur |0, %[ et g(0)

= fla) = g(3).
D’apres le théoreme de Rolle, il existe y € ]0,%[ tel que g'(y) = 0. Or g'(x) = 01 +

tan? x) f'(a + tanx) donc f’(a + tany)
d’un point d’annulation de f’.

= 0. En posant ¢ = a +tany, on a bien l'existence

Correction 42  Supposons qu'il existe m; < my tels que f(m;) = f(my) = 0. Si f est
constante entre m; et my, alors f’ s’annule sur 'intervalle ] m;, my[. Sinon, il existe myq €

1my, ma[ tel que f(myg) #0.
— Si f(mg) > 0. Alors, par définition de xgglwf(x) =
f(x) > f(mp). On applique maintenant le TVI entre m, et my, entre mg et m, puis

f(mp)
2

ensuite Rolle deux fois afin d’obtenir deux points d’annulation de la dérivée.
— Si f(mgp) <0, on applique le TVI entre 0 et m,, entre m; et my et entre mqy et my,

f(mg)
2

fois afin d’obtenir deux points d’annulation de la dérivée.
Dans tous les cas, on a montré que f’ s’annule au moins deux fois.

+00, il existe A> 0 tel que Vx > A,

entre my et A+ 1, on obtient trois antécédents distincts de

. On applique

on obtient trois antécédents distincts de

. On applique a nouveau Rolle deux

Correction 43  Pour tout € > 0, on sait qu'il existe A > 0 tel que Yx = A, |f'(x)| <e. On

A
f(xj: f()_fl x)

sait également, que pour tout x > A, 3¢y €] A, x[ tel que



Fx)-f(A

b

f _fO-fA+FA _ x—Af(x)—(A)+f(A)

X X X x—A X

Pour tout x> A,onadoncc, > Aet < €. On écrit maintenant

D’apres I'inégalité triangulaire, on a

fO|_|x=Af0)=f(A) ’ . f(A)‘
x | | x x—A x |
x —
Comme <1, le premier terme est majoré par ¢, pour tout x > A.
A
On choisit A’ tel que Vx > A/, M < €. Pour tout x = max(A, A'), on a alors
X
@ < 26,
X
X
—f( ) =0.

ce qui montre que lim
x—+oo X

Si xleme'(x) =1, on pose g : x — f(x)—Ix. On a alors g'(x) = f'(x) — I donc

thP g'(x) = 0. D’aprés ce qui précéde, on a donc
—+00

lim @:

x—+o0 X

0,

Or g = M —Ildonc xlirp @ = [ ce qui montre que le résultat reste vrai si la limite
—too  x

X X
est non nulle.

h
Correction 44 On pose f : x — > (x)' La fonction est dérivable sur R* et pour tout
xch(x) —sh(x)
X0, fll) = ——F——

. En explicitant les expressions de ch et sh, on obtient :

x-1DeX+(x+1e*
2x2

)

flx)=

(x—1e*
2x2
ments finis, il existe ¢, €]x, x + 1[ tel que f(x+1) — f(x) = f'(cx). D’apres ce qui précede,
(cx—1)e

2

et, pour x >0, ona f’(x) = . Pour tout x > 0, d’apres le théoréme des accroisse-

on sait que f'(cy) = . Utilisons maintenant I'’encadrement de ¢, pour minorer

X

cx—1)e’*
%. On sait que ¢y €]x,x+1[ donc:
Cx
1 1 1

x-De“<(cr—De* <(x+1)-De*let ——— < — < —,
(x—1)e* < (cx—1)e < ((x+1) - 1) 2P <3 <3

On en déduit que, comme toutes les quantités sont positives :

(cx—1De* (x—1e*

2c2 2(x+1)2’
d’out: ( ot

, x—1)e

>
Je)> 5y
ce qui est équivalent a:
(x-1)e*

f(x+ 1) —f(.X') > m

1l suffit maintenant d’écrire
(x—De* e* (x-1).x

26+ 12 2x (x+1)%°

X

. . . e P .
On sait que lim > lim — = +oo par le théoreme de croissances compa-
x—+o00 (x+1) X—+o02x

rées. Par le théoréeme de minoration, on en déduit que lirp fx+1) - f(x) = +oo.
X—+00

x—1).x
( ) =1let

Pour tout x = 1, on a xch(x) —sh(x) = ch(x) —sh(x) = 0 donc f’(x) = 0 et f est croissante
sur [1, +oo[. On a donc, pour tout x = 1, f(cy) = f(x). Or

ex

x+efx 2
=—(1 x
—(1+e7%)

e
f(x)—T

donc lim f(x) = +oo par croissances comparées. Par le théoréme de minoration, on en
X—+00
déduit que liIP fx+1) - f(x) =+oo.
X—+00

Correction 45 On suppose par I'absurde que [ # 0. Quitte a prendre — f, on peut sup-
l

poser [ > 0. Par définition de la limite, il existe M > 0 tel que pour tout x = M, f'(x) = >

On écrit f(x) = f(x)— f(M)+ f(M). D’apres le théoréme des accroissements finis, il existe

M = f'(cx). Onadonc:

cx > M tel que myY;

- f(M
fx =w(X—M+f(M)
= f'(ex) (x = M)+ f(M)

2%(x—M)+f(M)carcx>M

l
On a lirP E(x — M)+ f(M) = +oo car [ est strictement positif. Par le théoréme de
X—+00
minoration, on obtient que liIP f(x) = +o0 ce qui est une contradiction avec le fait que
X—+00

f estbornée. Lhypothese [ # 0 est absurde, on a donc xlir_{l flx)=o0.



Correction 46 Comme " est positive, on sait que f’ est croissante. Supposons par
I'absurde qu'il existe a € R tel que f'(a) # 0.
« Si f'(a) > 0 alors pour tout x > a, il existe ¢y €]a, x[ tel que :

[OJ@ _ prie,.
x—a
Par croissance de f’, on a alors
Flla) < f(x)—f(a),
x—a
ce qui implique
f>fla+x-a)f(a)

car (x—a) > 0. Or f'(a) >0 donc
lim (x-a)f'(a) = +oo
X—+00
et, par le théoreme de minoration, on a liIP f(x) = 400 ce qui contredit le fait que f est
X—+00
bornée.
« Si f’(a) < 0 alors pour tout x < a, il existe ¢y €]x, al tel que :

fx)-f(a) _

X—a

!
f (cx).
Par croissance de f’, on a alors

f,(a)>f(x)—f(a)
x—-a

ce qui implique
fO<fl@+x-af' (@

car x—a>0.Or f'(a) <0 donc
lim (x-a)f'(a) = -oco
X——00

et, par le théoreme de majoration, ona lim f(x) = —oo ce qui contredit le fait que f est
X——00
bornée.

On a montré, par I'absurde, que f” est nulle donc f est constante.

Correction 47 On remarque, tout d’abord, que Vn € N,f(”) (0) = 0. Soit n € N*. On va
montrer tout d’abord que :

vt€l0,1],|f™ (1) <t = Vtelo, 1], f" V() < 2.

Soit donc £ €]0,1], alors, d’apres le théoréeme des accroissements finis, il existe ¢; €]0, ¢[

(n-1)
Q — f(n)(ct)' Or:

I (c;)| < ¢; < t. On en déduit que :

(n=1)
‘f : (1) ' <

tel que

d’ott | f=D ()| < 2. En appliquant le méme raisonnement a "=, on en déduit que :
vt€lo,11,1f" 2 (1) < 1.

Par récurrence descendante, on peut affirmer que pour tout entier n € N* et tout ¢ €]0,1],
If(ol <"

Pour tout ¢ €]0, 1], on fait tendre n vers +oo et on obtient f(¢) = 0. La fonction f est
donc nulle sur ]0,1[ et comme elle est continue en 0 et en 1, elle est nulle sur tout le
segment [0, 1].
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