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TD 12 : Dérivation.

1 Étude de la dérivabilité

Exercice 1.

Soit f définie par f (x) = chx −1

x
et f (0) = 0, f est-elle dérivable?

Exercice 2.

Soit f : R∗ → R définie par f (x) = ex2 −1

x
pour tout x ∈ R∗. Montrer que f est prolon-

geable par continuité en 0. le prolongement obtenu est-il de classe C 1 ?

Exercice 3.
Étudier la dérivabilité sur R et le caractère C 1 si elle est dérivable de

1. f : x 7→ x|x| 2. g : x 7→ x

1+|x| .

Exercice 4.
Étudier la dérivabilité de f définie par f (x) = sin x sin 1

x si x 6= 0; f (0) = 0;

Exercice 5.
Que dire de la dérivée d’une fonction paire ? impaire?

Exercice 6.
Déterminer a,b ∈R de manière à ce que la fonction f définie sur R+ par :

f (x) =p
x si 0 É x É 1 et f (x) = ax2 +bx +1 sinon

soit dérivable sur R∗+.

Exercice 7.

Soit f :

{
R → R

x 7→ 1−x2ex .

1. Montrer que la corestriction de f : g :

{
R+ → ]−∞,1]
x 7→ f (x)

est bijective.

2. Sur quel(s) intervalle(s) g−1 est-elle dérivable?

3. Déterminez (g−1)′(1−e).

Exercice 8.
Soit f : [0,1] →R une fonction dérivable. On définit une fonction g sur [0,1] par

g (x) =
{

f (2x) si x ∈ [0, 1
2 ]

f (2x −1) sinon

A quelle(s) condition(s) la fonction g est-elle dérivable?

Exercice 9.

Soit f :

 R? −→ R

x 7−→ x2
⌊

1

x

⌋
. Montrer que f est prolongeable par continuité en 0. Son

prolongement est-il dérivable ?

2 Résolution d’équation fonctionnelle

Exercice 10.
Soit f une fonction de classe C 1 telle que ∀x ∈R, f ′(x) f (x) = 0. Montrer que f ′ est iden-
tiquement nulle.

Exercice 11.
Déterminer toutes les applications f :R→R dérivables, telle que

f (x + y) = f (x)+ f (y),∀(x, y) ∈R2

3 Théorème de Rolle

Exercice 12.
Soit f : [−1,+∞[→ R dérivable tel que f (−1) = 1, f (0) = 0 et lim

x→+∞ f (x) = +∞. Montrer

que f ′ s’annule.

Exercice 13.
Soit g deux fois dérivable sur [0,3] telle que g (0) = g (3) = 0 et g (1)g (2) < 0. Montrer que
g " s’annule.

4 Théorème des accroissements finis

Exercice 14.
Démontrer que pour tout x et y réels on a : | arctan x −arctan y |É| x − y |
Exercice 15. 3
Soit n ∈N?. Montrer que :

p
n +1−p

n É 1

2
p

n
Ép

n −p
n −1.
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Exercice 16. 3
Déterminer

lim
x→0

1

x

(
1

5p1−x
− 1

5p1+x

)
.

Exercice 17.
Soit f : R→ R dérivable et telle que f (0) = 0. Montrer que pour tout x > 0, il existe c > 0
tel que f (2x) = 2x f ′(c).

Exercice 18. 3
Soit f :R→R dérivable telle que lim

x→+∞ f ′(x) =+∞, montrer que :

lim
x→+∞ f (x) =+∞.

Exercice 19. 3
Soit f une fonction deux fois dérivable sur [0,1] telle que f (0) = f (1) = 0 et f " É 0. Mon-
trer que f est positive.

5 Dérivées d’ordre supérieur

Exercice 20.
Soit n ∈ N, montrer que les fonctions suivantes sont de classe C n sur leur ensemble de
définition et déterminer leur dérivée n-ème :

1. f1 : x 7→ xe−x

2. f2 : x 7→ x2ex

3. f3 : x 7→ (ax +b)k , avec k ∈N.

4. f4 : x 7→ 1

1−x
.

5. f5 : x 7→ 1

(x −1)2 .

6. f6 : x 7→ 1

ax +b
.

Exercice 21.
Montrer que, pour tout réel x ∈R et tout entier n Ê 2 :(

1+x2)arctan(n)(x)+2(n −1)x arctan(n−1)(x)+ (n −2)(n −1)arctan(n−2)(x) = 0.

En déduire la valeur de arctan(n)(0) pour tout entier n ∈N.

Exercice 22.

Soit f : x 7→ (x +1)n , montrer que f (k)(x) = n!

(n −k)!
(1+x)n−k si k É n.

Exercice 23.
Soit f : x 7→ arctan(x).

1. Montrer que pour tout n Ê 1, f (n)(x) = (n −1)!cosn( f (x))sin
(
n f (x)+ nπ

2

)
.

2. En déduire les racines de f (n) pour tout n Ê 1.

6 Retour aux équation différentielle

Exercice 24.
Existe-t-il une solution non nulle de x y ′(x)+ (1+x2)y(x) = 0 définie sur tout R?

Exercice 25.
Déterminer l’ensemble des solutions définies sur tout R de x2 y ′(x)+ y(x) = x2 +x.

Exercice 26.
Existe-t-il des solutions définies sur R de l’équation (1 − x)2 y ′(x) = 2 − x ? si oui,
déterminez-les.

7 Si besoin d’encore un peu d’entrainement

Exercice 27.
Étudier la dérivabilité de f : x 7→ cos

p
x.

Exercice 28.

Étudier la dérivabilité de h : 7→ 1

1+|x| .

Exercice 29.

Étudier la dérivabilité de f : x 7→ ln(1+p
x).

Exercice 30.

Étudier la dérivabilité de f définie par f (x) = x2 cos 1
x si x 6= 0; f (0) = 0;.

Exercice 31.

Soit f :

{
R −→ R

x 7−→ x +x3 . Montrer que f est bijective, que sa bijection réciproque f −1

est dérivable et déterminer
(

f −1
)′

(0).

Exercice 32.

Soit f : R∗ −→ R définie par f (x) = x2 sin
1

x
. Montrer que f est prolongeable par conti-

nuité en 0 ; on note encore f la fonction prolongée. Montrer que f est dérivable sur R
mais que f ′ n’est pas continue en 0.

Exercice 33.
Soit f :R→R dérivable. Montrer que pour tout x > 0, il existe c > 0 tel que

f (x)− f (−x) = x
(

f ′(c)+ f ′(−c)
)

.

Exercice 34.
Calculer la dérivée n-ème de la fonction x 7→ xn−1 ln x.
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Exercice 35.
Calculer la dérivée n-ième de f : x 7→ (x2 +1)ex .

Exercice 36.
Calculer la dérivée n-ième de f : x 7→ x2(1+x)n .

Exercice 37.
Déterminer la dérivée n-ième de g : x 7→ ex cos(x).

Exercice 38.
Calculer de deux façons différentes la dérivée n-ièmes de x 7→ x2n . En déduire une ex-

pression de
n∑

k=0

(n
k

)2.

Exercice 39.

Soit n ∈N?. Déterminer la dérivée n-ième de x 7→ 1

x2 −1
.

8 Une fois qu’on est à l’aise

Exercice 40. 3 3
Soit f ∈ C 2 ([a,b],R) telle que f ′(a) = f (a) et f ′(b) = f (b). Montrer qu’il existe c ∈]a,b[,
f "(c) = f (c).

Exercice 41. 3 3
Soient a réel, f : [a,+∞[→R continue et dérivable sur ]a,+∞[. On suppose que f admet
une limite en +∞ égale à f (a). Démontrer qu’il existe c > a tel que f ′(c) = 0.

Exercice 42. 3
Soit f : [0,+∞[→R de classe C 1 telle que f (0) =−1 et lim+∞ f =+∞.

Montrer que si f s’annule au moins deux fois, alors f ′ aussi.

Exercice 43. 3 3
Soit f une fonction dérivable telle que lim

x→+∞ f ′(x) = 0, montrer que

lim
x→+∞

f (x)

x
= 0.

Le résultat reste-t-il vrai si la limite de f ′ est non nulle ?

Exercice 44. 3
Déterminer

lim
x→+∞

sh(x +1)

x +1
− sh(x)

x
.

Exercice 45. 3
Soit f bornée telle que lim

x→+∞ f ′(x) = l . Montrer que l = 0.

Exercice 46.
Soit f deux fois dérivable, bornée telle que f " Ê 0, montrer que f est constante.

Exercice 47. 3
Soit f ∈ C ∞ ([0,1],R) telle que ∀t ∈ [0,1],∀n ∈N, | f (n)(t )| É t . Montrer que f est la fonc-
tion nulle.

Memo

— Comment déterminer si une fonction est dérivable ?

— Utiliser les thms généraux (somme, produit, composée, quotient)
— Calculer la limite du taux d’accroissement
— Utiliser le théorème de la limite de la dérivée

— Comment montrer que la dérivée s’annule ?
Utiliser Rolle

— Comment majorer un taux d’accroissement?
Utiliser le théorème des accroissements finis

— Comment calculer la dérivée n-ième d’une fonction?

— Faire une récurrence
— Utiliser la formule de Leibniz



Correction du TD n 12

Correction 1 On calcule son taux d’accroissement en 0 :

f (x)− f (0)

x −0
= ch(x)−1

x2 ,

et comme ch(x)−1 ∼ x2

2
, on en déduit que le taux d’accroissement admet une limite finie

en 0, égale à
1

2
donc f est bien dérivable.

On peut également écrire un DL1 en écrivant le DL2 de ch : ch(x) = 1+ x2

2
+o(x2), donc

f (x) = x

2
+o(x). On en déduit que f est dérivable et, par identification, que f ′(0) = 1

2
.

Correction 2 On a lim
x→0

ex2 −1

x2 = lim
y→0

e y −e0

y
= 1 donc lim

x→0
f (x) = 0 et on peut prolonger

par continuité en posant f (0) = 0. La fonction f est C 1 sur R? et pour tout x ∈R?, on a :

f ′(x) =
2x2ex2 −

(
ex2 −1

)
x2 = 2ex2 − ex2 −1

x2 .

Le premier terme tend vers 2, le second vers 1 donc lim
x→0

f ′(x) = 1. D’après le théorème de

la limite de la dérivée, on en déduit que f est de classe C 1.

Correction 3

1. La fonction f est dérivable sur R∗. On calcule le taux d’accroissements en zéro :

f (x)− f (0)

x
= |x|→ 0

donc f est dérivable en 0 de dérivée f ′(0) = 0.
On regarde maintenant si elle est de classe C 1. On a :

f ′(x) =
{

2x si x > 0
−2x si x < 0

donc ∀x ∈R?, f ′(x) = 2|x|. On a lim
x→0

f ′(x) = 0 donc f est bien de classeC 1. Elle n’est

pas deux fois dérivable car la fonction x 7→ 2|x| n’est pas dérivable en 0.

2. La fonction g est dérivable sur R∗ en tant que composée de fonctions dérivables.
On calcule le taux d’accroissements en 0 et on trouve :

g (x)− g (0)

x
= 1

1+|x| → 1

donc g est dérivable en 0 de dérivée g ′(0) = 1.
On regarde maintenant si elle est de classe C 1. On a :

g ′(x) =


1

(1+x)2 si x > 0

1

(1−x)2 si x < 0

donc ∀x ∈ R?, g ′(x) = 1

(1+|x|)2 . On a lim
x→0

g ′(x) = 1 donc g est de classe C 1. En

revanche, elle n’est pas deux fois dérivable car
g ′(x)− g ′(0)

x
= x2 +2|x|

x(1+|x|)2 n’a pas de

limite en 0 puisque sa limite à gauche et sa limite à droite ne sont pas égales.

Correction 4 La fonction f est dérivable sur R∗ comme composée et produit de fonc-
tions dérivables. En 0, on a :

f (x)− f (0)

x
= sin x sin 1

x

x

On sait que sin x
x → 1 quand x → 0 car c’est le taux d’accroissement de sin en 0. On sait, de

plus, que sin 1
x n’a pas de limite quand x → 0, ce qui montre que le taux d’accroissement

n’admet pas de limite quand x → 0 donc f n’est pas dérivable.

Remarque. Pour montrer que x 7→ sin
1

x
n’a pas de limite en 0, on peut considérer les

deux suites xn = 1
2nπ+ π

2
et yn = 1

2nπ− π
2

qui tendent vers 0 mais sin 1
xn

= 1 et sin 1
yn

=−1.

Correction 5 Soit f une fonction paire définie sur un ensemble symétrique A, alors

∀x ∈ A, f (−x) = f (x).

On dérive cette égalité, on a :

∀x ∈ A,− f ′(−x) = f ′(x).

La dérivée est donc une fonction impaire.
Soit f une fonction impaire définie sur un ensemble symétrique A, alors

∀x ∈ A, f (−x) =− f (x).



On dérive cette égalité, on a :

∀x ∈ A,− f ′(−x) =− f ′(x),

c’est-à-dire
∀x ∈ A, f ′(−x) = f ′(x).

La dérivée est donc une fonction paire.

Correction 6 Il faut d’abord que la fonction soit continue en x = 1. La limite à gauche
est limx→1−

p
x = 1 et à droite limx→1− ax2 +bx +1 = a +b +1. Donc

a +b +1 = 1.

Il faut maintenant que les dérivées à droites et à gauches soient égales : limx→1+
1

2
p

x
=

1
2 et limx→1+ 2ax +b = 2a +b. Donc

2a +b = 1

2
.

Le seul couple (a,b) solution des deux équations est

(
1

2
,−1

2

)
.

Correction 7

1. On va tracer le tableau de variations de f . La fonction est dérivable sur R de
dérivée f ′ : x 7→ −(x2 + 2x)ex . On a lim

x→−∞ f (x) = 0 par le théorème de crois-

sances comparées et lim
x→+∞ f (x) =−∞. On a donc le tableau de variations suivant :

x −∞ −2 0 +∞
f ′(x) − 0 + 0 −

f

0
@
@
@R

1−4e−2

��
�

�

1
@
@
@R−∞ La fonction f est donc strictement

croissante sur R+ donc injective. De plus, f (R+) =]−∞,1] donc g est surjective.
Cette corestriction est donc bien bijective.

2. La fonction réciproque g−1 est dérivable en tout x tel que g ′◦g−1(x) 6= 0. La fonction
g ′ s’annule en 0 donc g−1 n’est pas dérivable en g (0) = 1, elle est donc dérivable sur
l’intervalle ]−∞,1[.

3. On a g (1) = 1 − e et pour tout x ∈] −∞,1[,
(
g−1

)′
(x) = 1

g ′ ◦ g−1(x)
. On a donc(

g−1
)′

(1−e) = 1

g ′ ◦ g−1(1−e)
= 1

g ′(1)
=− 1

3e
.

Correction 8 Pour que la fonction soit continue, elle doit être continue en 1/2 car elle
l’est ailleurs par les théorèmes usuels. On a :

lim
x→ 1

2
+ g (x) = lim

x→ 1
2
+ f (2x −1) = lim

y→0+
f (y) = f (0)

et
lim

x→ 1
2
− g (x) = lim

x→ 1
2
− f (2x) = lim

y→1−
f (y) = f (1)

il faut donc avoir f (0) = f (1).

On sait que f est dérivable en dehors de
1

2
. Calculons la limite à gauche à droite du

taux d’accroissement en
1

2
. On a :

lim
x→ 1

2
+

g (x)− g (1/2)

x −1/2
= lim

x→ 1
2
+

f (2x −1)− f (0)

x −1/2
= lim

y→0+
f (y)− f (0)

y
= f ′(0)

et

lim
x→ 1

2
−

g (x)− g (1/2)

x −1/2
= lim

x→ 1
2
−

f (2x)− f (1)

x −1/2
= lim

y→1−
f (y)− f (1)

y −1
= f ′(1)

on doit donc avoir f ′(0) = f ′(1).
On en déduit que f est dérivable si f (0) = f (1) et f ′(0) = f ′(1).

Correction 9 On commence par déterminer si f admet une limite finie en 0. Par défi-
nition de la partie entière, on a l’encadrement :

1

x
−1 <

⌊
1

x

⌋
É 1

x
,

d’où, en multipliant par x2,
x(1−x) É f (x) É x.

Par le théorème d’encadrement, on sait que f admet une limite en 0 et que celle-ci vaut
0 donc f est prolongeable par continuité en posant f (0) = 0.

Pour savoir si son prolongement, que l’on note encore f , est dérivable, on étudie le
taux d’accroissement en 0. On a :

f (x)− f (0)

x
= x

⌊
1

x

⌋
.

D’après l’encadrement de la partie entière, on a :

1−x É f (x)

x
É 1,



donc, par le théorème d’encadrement, le taux d’accroissement de f en 0 admet une li-
mite finie en 0 égale à 1. Ainsi, le prolongement continu de f en 0 est bien dérivable en
0.

Correction 10 On suppose par l’absurde que f ′ n’est pas identiquement nulle. Il existe
alors α ∈R tel que f ′(α) 6= 0. Comme f ′ est continue, on peut trouver un intervalle ouvert
I , centré en α, sur lequel f ′ ne s’annule pas. On a alors :

∀x ∈ I , f ′(x) f (x) = 0 et f ′(x) 6= 0

donc ∀x ∈ I , f (x) = 0 ce qui montre que f est constante sur cet intervalle. Cela implique
que f ′ est nulle sur cet intervalle ce qui est absurde. On a donc montré, par l’absurde,
que f ′ est la fonction nulle.

Correction 11 Pour y = 0, on obtient f (0) = 0 puis en dérivant l’égalité f (x+y) = f (x)+
f (y) par rapport à x, on obtient :

∀y ∈R, f ′(x + y) = f ′(x).

On en déduit que f ′ est une constante d’où, comme f (0) = 0, f : x 7→ ax. Réciproque-
ment, une telle fonction vérifie bien l’égalité donc on a trouvé toutes les solutions.

Correction 12 On a f continue sur [−1,0] et f (0) < 1

2
< f (−1). On applique le TVI entre

−1 et 0 : il existe c ∈]−1,0[ tel que f (x) = 1

2
.

Par ailleurs, f étant continue, on sait que f ([0,+∞[) est un intervalle. Il est non borné
puisque lim

x→+∞=+∞ et il contient 0 puisque f (0) = 0. On en déduit qu’il contient [0,+∞[

donc il contient le réel
1

2
. Ainsi, il existe d > 0 tel que f (d) = 1

2
.

On a maintenant f continue sur [c,d ], dérivable sur ]c,d [ et telle que f (c) = f (d) =
1

2
. On peut appliquer le théorème de Rolle : il existe e ∈]c,d [ tel que f ′(e) = 0 donc f ′

s’annule.

Correction 13 On suppose, sans nuire à la généralité, que g (1) < 0. On commence par
appliquer le TVI entre 1 et 2 : il existe α ∈]1,2[ tel que g (α) = 0.

— On a g (1) < g (1)

2
< g (0) donc il existe a ∈]0,1[ tel que g (a) = g (1)

2
.

— On a g (1) < g (1)

2
< g (α) donc il existe b ∈]1,α tel que g (b) = g (1)

2
.

On applique maintenant le thm de Rolle entre a et b : il existe a1 ∈]a,b[⊂]0,α[ tel que
f ′(a1) = 0.

On a

— g (α) < g (2)

2
< g (2) donc il existe c ∈]α,2[ tel que g (c) = g (2)

2
.

— g (3) << g (2)

2
< g (2) donc il existe d ∈]2,3[ tel que g (d) = g (2)

2
.

On applique le thm de Rolle entre c et d : il existe c1 ∈]c,d [⊂]α,3[ tel que g ′(c1) = 0.
Comme a1 < α < c1, on a bien a1 6= c1. On peut maintenant appliquer le thm de Rolle
entre a1 et c1 et on obtient un réel en lequel g " s’annule.

Correction 14 Soit (x, y) ∈ R2. Si x = y , le résultat est clair. Sinon, par le théorème des
accroissements finis, il existe c strictement compris entre x et y tel que

arctan(x)−arctan(y)

x − y
= arctan′(c) = 1

1+ c2 .

On a donc ∣∣∣∣arctan(x)−arctan(y)

x − y

∣∣∣∣É 1.

Ceci étant vrai pour tout couple (x, y), on a l’inégalité souhaitée.

Correction 15 On pose f : x 7→p
x. Alors l’encadrement se réécrit :

f (n +1)− f (n)

(n +1)−n
É f ′(n) É f (n)− f (n −1)

n − (n −1)
.

D’après le théorème des accroissements finis, on sait qu’il existe αn ∈]n,n + 1[ et βn ∈
]n −1,n[ tels que

f (n +1)− f (n)

(n +1)−n
= f ′(αn) et

f (n)− f (n −1)

n − (n −1)
= f ′(βn).

On remarque, de plus, que la fonction f ′ est décroissante. On a βn < n <αn donc

f ′(αn) É f ′(n) É f ′(βn),

ce qui montre l’encadrement souhaité.

Correction 16 On pose f (x) = 1
5
p

x
, on cherche à déterminer lim

x→0

f (1−x)− f (1+x)

x
.

On écrit
f (1−x)− f (1+x)

x
=−2

f (1−x)− f (1+x)

(1−x)− (1+x)
.



Par le théorème des accroissements finis, on sait que pour tout x, il existe cx strictement
compris entre 1−x et 1+x tel que

f (1−x)− f (1+x)

(1−x)− (1+x)
= f ′(cx ).

On a f ′(cx ) =−1

5
c
− 6

5
x et f ′(cx ) est compris entre f ′(1− x) et f ′(1+ x). Quand x tend vers

0, f ′(1− x) et f ′(1+ x) tendent vers f ′(1) = −1

5
donc, par le théorème d’encadrement,

lim
x→0

f ′(cx ) =−1

5
. On en déduit que :

lim
x→0

1

x

(
1

5p1−x
− 1

5p1+x

)
= 2

5
.

Correction 17 Soit x > 0, la fonction f est continue sur [0,2x], dérivable sur ]0, x[

donc, par le théorème des accroissements finis, il existe c ∈]0,2x[ tel que
f (2x)

x
=

f (2x)− f (0)

2x −0
= f ′(c). En multipliant par 2x, on a bien l’égalité souhaitée.

Correction 18 Pour tout réel M > 0, il existe A > 0 tel que ∀x > A f ′(x) > M . Soit main-
tenant x > A, alors, d’après le théorème des accroissements finis, il existe cx ∈]A, x[ tel

que
f (x)− f (A)

x − A
= f ′(cx ). On a donc f (x) > f (A)+ (x − A) f ′(cx ) et comme cx > A, on a

f (x) > f (A)+ (x − A)M .
On sait que lim

x→+∞ f (A) + (x − A)M = +∞ donc, par le théorème de minoration,

lim
x→+∞ f (x) =+∞.

Correction 19 La fonction f est continue sur [0,1] car dérivable, dérivable sur ]0,1[ et
f (0) = f (1). On peut appliquer le théorème de Rolle : il existe α ∈]0,1[ tel que f ′(α) = 0.
Comme on sait que f " É 0, la fonction f ′ est décroissante donc elle est négative ou nulle
sur [0,α] et positive ou nulle sur [α,1].
Soit x ∈ [0,α], alors, d’après le théorème des accroissements finis, il existe β ∈]0, x[ tel

que
f (x)− f (0)

x
= f ′(β). Comme f ′(β) Ê 0 et x Ê 0, on a f (x)− f (0) Ê 0 donc f (x) Ê 0.

Soit maintenant x ∈]α,1], alors, d’après le théorème des accroissements finis, il existe

γ ∈]x,1[ tel que
f (x)− f (1)

x −1
= f ′(γ). Comme f ′(γ) É 0 et x − 1 É 0, on a f (x)− f (1) Ê 0

donc f (x) Ê 0.

On a montré que ∀x ∈ [0,1], f (x) Ê 0 donc la fonction f est positive.

Correction 20

1. La fonction f1 est de classe C n en tant que produit de fonctions de classe C n . On
pose g1 : x 7→ x et h1 : x 7→ e−x . On va appliquer la formule de Leibniz.
— On a g ′

1 = 1 et ∀k Ê 2, g (k)
1 = 0.

— On a h′
1 : x 7→ −e−x , h1" : x 7→ e−x donc ∀k ∈N,h(k)

1 = (−1)k h1.
On applique maintenant la formule de Leibniz : pour tout x ∈R,

f (n)
1 (x) =

n∑
k=0

(n
k

)
g (k)

1 (x)h(n−k)
1 (x)

= g1(x)h(n)
1 (x)+ng ′

1(x)h(n−1)
1 (x)+0

= x(−1)ne−x +n(−1)n−1e−x = (−1)n (x −n)e−x .

2. La fonction f2 est de classe C n en tant que produit de fonctions de classe C n . On
pose g2 : x 7→ x2 et h2 : x 7→ ex . On va appliquer la formule de Leibniz.
— On a g ′

2 : x 7→ 2x, g2" : x 7→ 2 et ∀k Ê 3, g (k)
2 = 0.

— On a ∀k ∈N,h(k)
2 = h2.

On applique maintenant la formule de Leibniz : pour tout x ∈R,

f (n)
2 (x) =

n∑
k=0

(n
k

)
g (k)

2 (x)h(n−k)
2 (x)

= g2(x)h(n)
2 (x)+ng ′

2(x)h(n−1)
2 (x)+ n(n −1)

2
g "2(x)h(n−2)

2 (x)

= (
x2 +2nx +n(n −1)

)
ex .

3. La fonction f3 est de classe C n en tant que puissance d’une fonction affine qui est
donc de classe C n .

On a f ′
3 : x 7→ ak(ax +b)k−1, f3" : x 7→ a2k(k −1)(ax +b)k−2, pour n É k, on a f (n)

3 :

x 7→ an k !

(k −n)!
(ax +b)k−n et pour n > k, f (n)

3 = 0.

4. On a f4 de classe C n sur R \ {1} en tant qu’inverse d’une fonction de classe C n qui
ne s’annule pas. On calcule ses dérivées successives :

— f ′
4 : x 7→ 1

(1−x)2

— f "4 : x 7→ 2

(1−x)3

— f (3)
4 : x 7→ 3!

(1−x)4

— ∀k ∈N, f (k)
4 : x 7→ k !

(1−x)k+1

On a donc f (n)
4 : x 7→ n!

(1−x)n+1 .



5. On remarque que f5 = 1

2
f ′

4, on a donc f (n)
5 = f (n+1)

4

2
donc f (n)

5 : x 7→ (n +1)!

2(1−x)n+2 .

6. On a f6 de classe C n sur R\{− b
a } en tant qu’inverse d’une fonction de classe C n qui

ne s’annule pas. On a f ′
6 :

−a

(ax +b)2 , f6" : x 7→ 2a2

(ax +b)3 , f (3)
6 : x 7→ −3!a3

(ax +b)4 et, par

une récurrence immédiate, ∀k ∈N, f (n)
6 : x 7→ (−1)n ann!

(ax +b)n+1 .

Correction 21 Posons f = arctan, on a f ′ : x 7→ 1

1+x2 et f " : x 7→ − 2x

1+x2 .

Nous allons montrer, par récurrence sur n Ê 2 que, pour tout x ∈R,(
1+x2)arctan(n)(x)+2(n −1)x arctan(n−1)(x)+ (n −2)(n −1)arctan(n−2)(x) = 0.

On fixe x ∈R, on commence par montrer que la propriété est vraie au rang 2 pour initia-
liser.

On a :

(1+x2).
−2x

1+x2 +2.1.x.
1

1+x2 +0 = 0,

la propriété est donc vraie au rang 2.
On suppose que la propriété est vraie au rang n, on a donc :(

1+x2)arctan(n)(x)+2(n −1)x arctan(n−1)(x)+ (n −2)(n −1)arctan(n−2)(x) = 0.

On dérive cette égalité, on obtient :

2x arctan(n)(x)+ (1+x2)arctan(n+1)(x)+2(n −1)arctan(n−1)(x)

+2(n −1)x arctan(n)(x)+ (n −2)(n −1)arctan(n−1)(x) = 0,

soit, après simplification :(
1+x2)arctan(n+1)(x)+2nx arctan(n)(x)+ (n −1)n arctan(n−1)(x) = 0.

La propriété est vraie au rang n +1, elle est héréditaire.
Par le principe de récurrence, on a montré que la propriété est vraie pour tout entier n.
On souhaite maintenant calculer arctan(n)(0). En prenant x = 0 dans l’égalité, on ob-

tient :

arctan(n)(0)+ (n −2)(n −1)arctan(n−2)(0) = 0,

donc
arctan(n)(0) =−(n −2)(n −1)arctan(n−2)(0).

Par récurrence descendante, on a donc arriver à exprimer arctan(n)(0) en fonction de
arctan(2)(0) ou arctan(1)(0) selon la parité de n.

— Si n est pair, comme arctan(2)(0) = 0, on obtient arctan(n)(0) = 0.
— Si n est impair, on l’écrit n = 2p +1, on a alors

arctan(2p+1)(0) =−(2p −1).2p arctan(2p−1)(0)
= 2p(2p −1)(2p −2)(2p −3)arctan(2p−3)(0)
=−2p.(2p −1) . . . (2p −5)arctan(2p−5)(0)
= (−1)p 2p !arctan(1)(0)

par une récurrence descendante. On a donc arctan(2p+1) = (−1)p (2p !).

Correction 22 On a f ′(x) = n(1+x)n−1, f "(x) = n(n−1)(1+x)n−2 et, par une récurrence
immédiate, f (k)(x) = n(n − 1) . . . (n − k + 1)(1+ x)n−k , pour k É n. On a donc le résultat
souhaité.

Correction 23

1. On le montre par récurrence sur n. On sait que f ′(x) = 1

1+x2 et

cosarctan(x).sin
(
arctan(x)+ π

2

)
= cos2 arctan(x)

= 1

1+ tan2 arctan(x)

= 1

1+x2 .

La formule est vraie au rang 1. On suppose qu’elle est vraie au rang n et on dérive
la formule :

f (n+1)(x)

= −(n −1)!n f ′(x)sin( f (x))cosn−1( f (x)).sin
(
n f (x)+ nπ

2

)
+(n −1)!cosn( f (x))n f ′(x)cos

(
n f (x)+ nπ

2

)
= n! f ′(x)cosn−1( f (x))

[
−sin( f (x))sin

(
n f (x)+ nπ

2

)
+cos( f (x))cos

(
n f (x)+ nπ

2

)]
= n! f "(x)cosn−1( f (x))cos

(
(n +1) f (x)+ nπ

2

)
= n! f "(x)cosn−1( f (x))sin

(
(n +1) f (x)+ (n +1)π

2

)
= n!cosn+1( f (x))cos

(
(n +1) f (x)+ nπ

2

)
car on a vu que f ′(x) = cos2

(
f (x)

)
La formule est vraie au rang k +1 donc, par le principe de récurrence, elle est vraie
pour tout entier n Ê 1.



2. D’après la formule montrée à la question précédente, on a :
f (n)(x) = 0

⇔ cosn( f (x)) = 0 ou sin
(
n f (x)+ nπ

2

)
= 0

⇔ sin
(
n f (x)+ nπ

2

)
= 0car cosarctan(x) 6= 0

⇔ n f (x)+ nπ

2
≡ 0[π]

⇔ n f (x) = kπ− nπ

2
, k ∈Z

⇔ f (x) = kπ

n
− π

2
, k ∈Z

⇔ x = tan

(
kπ

n
− π

2

)
, k ∈Z

⇔ x =
sin

(
kπ

n
− π

2

)
cos

(
kπ

n
− π

2

) , k ∈Z

⇔ x =−cotan

(
kπ

n

)
, k ∈Z

⇔ x =−cotan

(
kπ

n

)
, k ∈ J0,n −1Kcar tan est π-périodique

Les racines de f (n) sont donc −cotan

(
kπ

n

)
pour k ∈ J0,n −1K.

Correction 24 On note I1 = R?+, I2 = R?−. On sait que l’ensemble des solutions sur Ii ,
i = 1,2 est x 7→ λi e−

x2
2

x
,λi ∈R

 .

On cherche maintenant une solution définie sur R. On suppose qu’une telle solution
existe et on la note f . Il est clair que f |R?+ est une solution sur R?+ de l’équation donc il
existe λ1 ∈R tel que :

∀x > 0, f (x) = λ1e−
x2
2

x
.

De même, f |R?− est une solution sur R?− donc il existe λ2 ∈R tel que :

∀x < 0, f (x) = λ2e−
x2
2

x
.

On a supposé f solution, elle est donc dérivable, ce qui implique continue. Calculons la
limite à gauche et à droite de f en 0 :

lim
x→0+

f (x) = lim
x→0+

λ1e−
x2
2

x
.

Cette limite est finie si et seulement si λ1 = 0. De même,

lim
x→0−

f (x) = lim
x→0−

λ2e−
x2
2

x

est finie si et seulement si λ2 = 0. Il n’existe donc pas de solution, autre que la solution
nulle, définie sur tout R.

Correction 25 On note I1 =R?+, I2 =R?−. On sait que l’ensemble des solutions de l’équa-
tion homogène sur Ii , i = 1,2 est : {

x 7→λi e−
1
x ,λi ∈R

}
.

La fonction identité est une solution particulière, l’ensemble des solutions sur Ii , i = 1,2
est donc : {

x 7→λi e−
1
x +x,λi ∈R

}
.

On cherche maintenant une solution définie sur R. On suppose qu’une telle solution
existe et on la note f . Il est clair que f |R?+ est une solution sur R?+ de l’équation donc il
existe λ1 ∈R tel que :

∀x > 0, f (x) =λ1e−
1
x +x.

De même, f |R?− est une solution sur R?− donc il existe λ2 ∈R tel que :

∀x < 0, f (x) =λ2e−
1
x +x.

On a supposé f solution, elle est donc dérivable, ce qui implique continue. Calculons la
limite à gauche et à droite de f en 0 :

lim
x→0−

f (x) = lim
x→0−λ2e−

1
x +x.

Cette limite est finie si et seulement si λ2 = 0. En revanche,

lim
x→0+

f (x) = lim
x→0+λ1e−

1
x +x = 0,∀λ1 ∈R.

On suppose donc λ1 ∈R et λ2 = 0 et on a f continue avec f (0) = 0. Nous allons calculer
la limite du taux d’accroissement en 0+ et 0− afin de déterminer si f est bien dérivable
en 0. On a :

lim
x→0−

f (x)− f (0)

x −0
= lim

x→0−
x −0

x −0
= lim

x→0−
1 = 1,

et

lim
x→0+

f (x)− f (0)

x −0
= lim

x→0+
λ1e−

1
x +x − f (0)

x
= lim

x→0+
λ1e−

1
x

x
+1.



Par croissance comparée, cette limite est toujours égale à 1, quelque soit λ1 ∈ R. On en
déduit que les solutions de l’équation définies sur R sont les fonctions de la forme :

x 7→
{

λ1e−
1
x +x si x Ê 0

x si x < 0

Correction 26 On travaille sur un intervalle sur lequel (1−x)2 ne s’annule pas.

On note I1 =]−∞,1[ et I2 =]1,+∞[.
On remarque que :

2−x

(1−x)2 = 1

(1−x)2 + 1

1−x
.

Ainsi, l’ensemble des solutions sur Ii , pour i = 1, 2 est :

x 7→ λi e
1

1−x

1−x
, λi ∈R.

On suppose qu’il existe une solution réelle f . Alors f |Ii est solution sur Ii donc il existe
λi , i = 1, 2 tels que :

f (x) = λi e
1

1−x

1−x
,∀x ∈ Ii , i = 1,2.

Par croissance comparée, on a :

lim
x→1+

λ2e
1

1−x

1−x
= 0,

tandis que :

lim
x→1−

λ1e
1

1−x

1−x
=+∞,

dès lors que λ1 6= 0. Si λ1 = 0, en revanche, on a bien une fonction continue en 1.

Est-elle dérivable ? On calcule le taux d’accroissement. On a :

lim
x→1−

f (x)

x −1
= 0,

puisque f (x) = 0,∀x É 1 et

lim
x→1+

f (x)

x −1
= 0,

par croissance comparée. L’ensemble des solutions réelles est donc l’ensemble des fonc-
tions de la forme :

f (x) =
{

λe
1

1−x

1−x si x > 1
0 si x É 1

.

Correction 27 La fonction f est la composée de cos, dérivable sur R et de la fonction
racine carrée, dérivable sur R?+, elle est donc dérivable sur R?+. Étudions sa dérivabilité en
0. On a

cos
p

x −1

x
∼− (

p
x)2

x
=−1

2
,

donc le taux d’accroissement en 0 admet une limite finie ce qui montre que f est déri-

vable en 0 de dérivée −1

2
.

On peut également calculer un DL : cos(
p

x) = 1− x

2
+o(x) donc f est bien dérivable en

0.

Correction 28 La fonction h est dérivable sur R∗, on calcule le taux d’accroissements

qui vaut
−|x|

x(1+|x|) et dont la limite à droite vaut -1 tandis que celle à gauche vaut 1. h

n’est donc pas dérivable en 0.

Correction 29 La fonction f est la composée de x 7→ ln(1+ x), dérivable sur R?+ et de
la fonction racine carrée, dérivable sur R?+, elle est donc dérivable sur R?+. Étudions sa
dérivabilité en 0. On a :

ln(1+p
x)

x
= ln(1+p

x)p
x

.
1p
x

.

On reconnaît le taux d’accroissement de x 7→ ln(1+x), on sait donc que

lim
x→0+

ln(1+p
x)p

x
= lim

y→0

ln(1+ y)− ln(1)

y −0
= 1.

Comme lim
x→0+

1p
x
=+∞, on en déduit que le taux d’accroissement de f admet une limite

infinie en 0 donc f n’est pas dérivable en 0.

Correction 30 La fonction f est dérivable sur R∗ en tant que composée et produit de
fonctions dérivables. En 0, on a :

f (x)− f (0)

x
= x2 cos 1

x

x
= x cos

1

x

La fonction cos est bornée et x tend vers 0 donc f est dérivable en 0 de dérivée nulle.

Correction 31 L’application f est strictement croissante donc injective. De plus, on a :

lim
x→+∞ f (x) =+∞ et lim

x→−∞ f (x) =−∞,



donc, par continuité de f , Im( f ) =R. La fonction f est donc bijective.
Sa bijection réciproque est dérivable si f ′ ne s’annule pas ce qui est le cas. On sait, de
plus, que (

f −1)′ (0) = 1

f ′ ◦ f −1(0)
.

On a f −1(0) = 0 car f (0) = 0 et, comme f ′(x) = 1+3x2, on a :

(
f −1)′ (0) = 1

1+3.02 = 1.

Correction 32 La fonction f est C∞ sur R∗.
— Comme sinus est bornée, lim

x→0
f (x) = 0 donc la fonction est prolongeable par conti-

nuité en posant f (0) = 0.
— Le taux d’accroissement est

f (x)− f (0)

x −0
= x sin

1

x
.

Comme ci-dessus il y a une limite (qui vaut 0) quand x tend vers 0 car sinus est
bornée. La fonction f est dérivable en 0 et f ′(0) = 0.

— Sur R∗, f ′(x) = 2x sin(1/x)− cos(1/x), Donc f ′(x) n’admet pas de limite quand x
tend vers 0. On en déduit que f ′ n’est pas continue en 0.

Correction 33 On pose g : x 7→ f (x)− f (−x), la fonction est dérivable. Par le théorème

des accroissements finis, pour tout x > 0, il existe c ∈]0, x[ tel que
g (x)

x
= g ′(c). On a

g ′(x) = f (x)+ f (−x) donc l’égalité g (x) = xg ′(c) est précisément l’égalité souhaitée.

Correction 34 On pose f : x 7→ xn−1 et g : x 7→ ln(x). On veut appliquer la formule de
Leibniz, il faut donc calculer les dérivées successives de f et g .

— On a f ′ : x 7→ (n −1)xn−2, f " : x 7→ (n −1)(n −2)xn−3 puis, pour tout k ∈ J0,n −1K

et tout x ∈N, f (k)(x) = (n −1)(n −2) . . . (n −k)xn−k−1 = (n −1)

(n −k −1)!
xn−k−1. On a, de

plus, f (n) = 0.

— On a g ′ : x 7→ 1

x
, g " : x 7→ − 1

x2 , g (3) : x 7→ 2

x3 , g (4) : x 7→ − 3!

x4 puis, pour tout k ∈N?,

g (k) : x 7→ (−1)k−1(k −1)!

xk
.

On applique maintenant la formule de Leibniz. Pour tout x ∈R,

( f g )(n)(x) =
n∑

k=0

(n
k

)
f (k)(x)g (n−k)(x)

=
n−1∑
k=0

(n
k

) (n −1)!

(n −k −1)!
xn−k−1.

(−1)n−k−1(n −k −1)!

xn−k
+0

=
n−1∑
k=0

(n
k

)
(n −1)!

(−1)n−k−1

x

= (n −1)!(−1)n−1

x

n−1∑
k=0

(n
k

)
(−1)k

On sait que
n∑

k=0

(n
k

)
(−1)k = (1+ (−1))n = 0 donc

n−1∑
k=0

(n
k

)
(−1)k =

(
n∑

k=0

(n
k

)
(−1)k

)
− (−1)n . On a

donc

( f g )(n)(x) = (n −1)!

x
.

Correction 35 On pose h : x 7→ (x2+1). On a h′(x) = 2x, h"(x) = 2 et h(k) = 0, ∀k Ê 3. On
pose g : x 7→ ex , on a g (k) = g pour tout k ∈N.

D’après la formule de Leibniz, pour tout x ∈R, on a :

f (n)(x) =
n∑

k=0

(n
k

)
h(k)(x)g (n−k)(x)

=
2∑

k=0

(n
k

)
h(k)(x)g (x)d’après ce qui précède

= h(x)ex +nh′(x)ex + n(n −1)

2
ex

= (x2 +2nx +n(n −1))ex

.

Correction 36 On pose h : x 7→ x2, on a h′(x) = 2x, h"(x) = 2 et h(k) = 0, ∀k Ê 3. On

pose g : x 7→ (1+x)n , on a g (k)(x) = n!

(n −k)!
(1+x)n−k . D’après la formule de Leibniz, on a

donc :

f (n)(x) =
n∑

k=0

(n
k

)
h(k)(x)g (n−k)(x)

=
2∑

k=0

(n
k

)
h(k)(x)g (n−k)(x)

= x2g (x)+2xng ′(x)+2.
n(n −1)

2
g "(x)

= x2(1+x)n +2xn2(1+x)n−1 +n2(n −1)2(1+x)n−2



Correction 37 On pose f : x 7→ cos(x). On a f (k)(x) = cos

(
x + kπ

2

)
. On utilise la formule

de Leibniz :

g (n)(x) =
n∑

k=0

(
n

k

)
f (k)(x)ex = ex

n∑
k=0

(
n

k

)
cos

(
x + kπ

2

)
.

Correction 38 Posons fr : x 7→ xr . Pour tout entier r et tout k É r , on a f (k)
r (x) =

r !

(r −k)!
xr−k d’après l’exercice ??. On a donc :

f (n)
2n (x) = 2n!

n!
xn .

On écrit ensuite f2n = fn . fn et on applique la formule de Leibniz :

f (n)
2n (x) =

n∑
k=0

(n
k

)
f (k)

n (x) f (n−k)
n (x)

=
n∑

k=0

(n
k

)n!

k !
xn−k n!

(n −k)!
xk

= n!xn
n∑

k=0

(n
k

)2.

En utilisant les deux expressions, on en déduit que :

n∑
k=0

(
n

k

)2

= (2n)!

(n!)2 .

Correction 39 On écrit
1

x2 −1
= 1

2(x −1)
+ 1

2(x +1)
.

On pose h : x 7→ 1

x −1
et g : x 7→ 1

x +1
. Les deux fonctions sont dérivables. On a h′(x) =

− 1

(x −1)2 , h(2)(x) = 2

(x −1)3 et h(3)(x) =− 6

(x −1)4 . Par une récurrence immédiate, on a :

h(n)(x) = (−1)nn!

(x −1)n+1 .

De même, on a

g (n)(x) = (−1)nn!

(x +1)n+1 .

On en déduit que :

∀n Ê 0, f (n)(x) = (−1)nn!

2(x −1)n+1 + (−1)nn!

2(x +1)n+1 = (−1)n ((x +1)n + (x −1)n)

2(x2 −1)n+1 .

Correction 40 On pose g :

{
[a,b] −→ R

x 7−→ (
f ′(x)− f (x)

)
ex . La fonction g est de classe

C 1 et on sait que g (a) = g (b) donc, d’après le théorème de Rolle, il existe c ∈]a,b[ tel que
g ′(c) = 0. On a :

g ′(c) = (
f "(c)− f (c)

)
ec .

Comme ec 6= 0, on a nécessairement f "(c) = f (c).

Correction 41 On considère la fonction g (x) = f (a + tan x) définie sur
[

0,
π

2

[
. On a

lim
x→ π

2

g (x) = lim
y→+∞ f (y) = f (a) donc g est prolongeable par continuité en

π

2
en posant

g (π2 ) = f (a).

La fonction g est alors continue sur
[
0, π2

]
, dérivable sur

]
0, π2

[
et g (0) = f (a) = g (π2 ).

D’après le théorème de Rolle, il existe γ ∈
]

0,
π

2

[
tel que g ′(γ) = 0. Or g ′(x) = (1 +

tan2 x) f ′(a + tan x) donc f ′(a + tanγ) = 0. En posant c = a + tanγ, on a bien l’existence
d’un point d’annulation de f ′.

Correction 42 Supposons qu’il existe m1 < m2 tels que f (m1) = f (m2) = 0. Si f est
constante entre m1 et m2, alors f ′ s’annule sur l’intervalle ]m1,m2[. Sinon, il existe m0 ∈
]m1,m2[ tel que f (m0) 6= 0.

— Si f (m0) > 0. Alors, par définition de lim
x→+∞ f (x) =+∞, il existe A > 0 tel que ∀x > A,

f (x) > f (m0). On applique maintenant le TVI entre m1 et m0, entre m0 et m2 puis

entre m2 et A + 1, on obtient trois antécédents distincts de
f (m0)

2
. On applique

ensuite Rolle deux fois afin d’obtenir deux points d’annulation de la dérivée.
— Si f (m0) < 0, on applique le TVI entre 0 et m1, entre m1 et m0 et entre m0 et m2,

on obtient trois antécédents distincts de
f (m0)

2
. On applique à nouveau Rolle deux

fois afin d’obtenir deux points d’annulation de la dérivée.
Dans tous les cas, on a montré que f ′ s’annule au moins deux fois.

Correction 43 Pour tout ε > 0, on sait qu’il existe A > 0 tel que ∀x Ê A, | f ′(x)| < ε. On

sait également, que pour tout x > A, ∃cx ∈]A, x[ tel que
f (x)− f (A)

x − A
= f ′(cx ).



Pour tout x > A, on a donc cx > A et

∣∣∣∣ f (x)− f (A)

x − A

∣∣∣∣< ε. On écrit maintenant

f (x)

x
= f (x)− f (A)+ f (A)

x
= x − A

x

f (x)− (A)

x − A
+ f (A)

x
.

D’après l’inégalité triangulaire, on a∣∣∣∣ f (x)

x

∣∣∣∣É ∣∣∣∣ x − A

x

f (x)− f (A)

x − A

∣∣∣∣+ ∣∣∣∣ f (A)

x

∣∣∣∣ .

Comme
x − A

x
É 1, le premier terme est majoré par ε, pour tout x > A.

On choisit A′ tel que ∀x > A′,
∣∣∣∣ f (A)

x

∣∣∣∣< ε. Pour tout x Ê max(A, A′), on a alors∣∣∣∣ f (x)

x

∣∣∣∣< 2ε,

ce qui montre que lim
x→+∞

f (x)

x
= 0.

Si lim
x→+∞ f ′(x) = l , on pose g : x 7→ f (x) − l x. On a alors g ′(x) = f ′(x) − l donc

lim
x→+∞g ′(x) = 0. D’après ce qui précède, on a donc

lim
x→+∞

g (x)

x
= 0,

Or
g (x)

x
= f (x)

x
− l donc lim

x→+∞
f (x)

x
= l ce qui montre que le résultat reste vrai si la limite

est non nulle.

Correction 44 On pose f : x 7→ sh(x)

x
. La fonction est dérivable sur R? et pour tout

x 6= 0, f ′(x) = xch(x)− sh(x)

x2 . En explicitant les expressions de ch et sh, on obtient :

f ′(x) = (x −1)ex + (x +1)e−x

2x2 ,

et, pour x > 0, on a f ′(x) Ê (x −1)ex

2x2 . Pour tout x > 0, d’après le théorème des accroisse-

ments finis, il existe cx ∈]x, x +1[ tel que f (x +1)− f (x) = f ′(cx ). D’après ce qui précède,

on sait que f ′(cx ) Ê (cx −1)ecx

2c2
x

. Utilisons maintenant l’encadrement de cx pour minorer

(cx −1)ecx

2c2
x

. On sait que cx ∈]x, x +1[ donc :

(x −1)ex < (cx −1)ecx < ((x +1)−1)ex+1 et
1

2(x +1)2 < 1

2c2
x
< 1

2x2 .

On en déduit que, comme toutes les quantités sont positives :

(cx −1)ecx

2c2
x

> (x −1)ex

2(x +1)2 ,

d’où :

f ′(cx ) > (x −1)ex

2(x +1)2 ,

ce qui est équivalent à :

f (x +1)− f (x) > (x −1)ex

2(x +1)2 .

Il suffit maintenant d’écrire
(x −1)ex

2(x +1)2 = ex

2x
.
(x −1).x

(x +1)2 .

On sait que lim
x→+∞

(x −1).x

(x +1)2 = 1 et lim
x→+∞

ex

2x
=+∞ par le théorème de croissances compa-

rées. Par le théorème de minoration, on en déduit que lim
x→+∞ f (x +1)− f (x) =+∞.

Pour tout x Ê 1, on a xch(x)−sh(x) Ê ch(x)−sh(x) Ê 0 donc f ′(x) Ê 0 et f est croissante
sur [1,+∞[. On a donc, pour tout x Ê 1, f (cx ) Ê f (x). Or

f (x) = ex +e−x

x
= ex

x

(
1+e−2x)

donc lim
x→+∞ f (x) =+∞ par croissances comparées. Par le théorème de minoration, on en

déduit que lim
x→+∞ f (x +1)− f (x) =+∞.

Correction 45 On suppose par l’absurde que l 6= 0. Quitte à prendre − f , on peut sup-

poser l > 0. Par définition de la limite, il existe M > 0 tel que pour tout x Ê M , f ′(x) Ê l

2
.

On écrit f (x) = f (x)− f (M)+ f (M). D’après le théorème des accroissements finis, il existe

cx > M tel que
f (x)− f (M)

x −M
= f ′(cx ). On a donc :

f (x) = f (x)− f (M)

x −M
(x −M)+ f (M)

= f ′(cx )(x −M)+ f (M)

Ê l

2
(x −M)+ f (M)car cx > M

On a lim
x→+∞

l

2
(x − M) + f (M) = +∞ car l est strictement positif. Par le théorème de

minoration, on obtient que lim
x→+∞ f (x) =+∞ ce qui est une contradiction avec le fait que

f est bornée. L’hypothèse l 6= 0 est absurde, on a donc lim
x→+∞ f ′(x) = 0.



Correction 46 Comme f " est positive, on sait que f ′ est croissante. Supposons par
l’absurde qu’il existe a ∈R tel que f ′(a) 6= 0.
• Si f ′(a) > 0 alors pour tout x > a, il existe cx ∈]a, x[ tel que :

f (x)− f (a)

x −a
= f ′(cx ).

Par croissance de f ′, on a alors

f ′(a) < f (x)− f (a)

x −a
,

ce qui implique
f (x) > f (a)+ (x −a) f ′(a)

car (x −a) > 0. Or f ′(a) > 0 donc

lim
x→+∞(x −a) f ′(a) =+∞

et, par le théorème de minoration, on a lim
x→+∞ f (x) =+∞ ce qui contredit le fait que f est

bornée.

• Si f ′(a) < 0 alors pour tout x < a, il existe cx ∈]x, a[ tel que :

f (x)− f (a)

x −a
= f ′(cx ).

Par croissance de f ′, on a alors

f ′(a) > f (x)− f (a)

x −a
,

ce qui implique
f (x) < f (a)+ (x −a) f ′(a)

car x −a > 0. Or f ′(a) < 0 donc

lim
x→−∞(x −a) f ′(a) =−∞

et, par le théorème de majoration, on a lim
x→−∞ f (x) =−∞ ce qui contredit le fait que f est

bornée.

On a montré, par l’absurde, que f ′ est nulle donc f est constante.

Correction 47 On remarque, tout d’abord, que ∀n ∈ N, f (n)(0) = 0. Soit n ∈ N?. On va
montrer tout d’abord que :

∀t ∈]0,1], | f (n)(t )| É t ⇒∀t ∈]0,1], | f (n−1)(t )| É t 2.

Soit donc t ∈]0,1], alors, d’après le théorème des accroissements finis, il existe ct ∈]0, t [

tel que
f (n−1)(t )

t
= f (n)(ct ). Or :

| f (n)(ct )| < ct < t . On en déduit que : ∣∣∣∣ f (n−1)(t )

t

∣∣∣∣< t ,

d’où | f (n−1)(t )| < t 2. En appliquant le même raisonnement à f (n−2), on en déduit que :

∀t ∈]0,1], | f (n−2)(t )| < t 3.

Par récurrence descendante, on peut affirmer que pour tout entier n ∈N? et tout t ∈]0,1],
| f (t )| É t n .

Pour tout t ∈]0,1[, on fait tendre n vers +∞ et on obtient f (t ) = 0. La fonction f est
donc nulle sur ]0,1[ et comme elle est continue en 0 et en 1, elle est nulle sur tout le
segment [0,1].
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