
Lycée du Parc
PCSI 842 Année 2025-2026
Feuille 13

TD 13 : Développements limités.

1 DL et polynômes

Exercice 1.

Soit P =
n∑

k=0
ak X k . Montrer que ∀k ∈ J0,nK,P (k)(0) = k !ak .

Exercice 2. 3
Montrer qu’il existe un unique polynôme P de degré n à coefficients réels tel que ∀k ∈
J0,nK, P (k)(1) = k.

2 Calcul de DL

Exercice 3.
Donner un DL à l’ordre 3 en zéro des fonctions suivantes :

1. x 7→ ln(1+x)cos(x).

2. x 7→ ex

1+x
.

3. x 7→ sin(2x).

4. x 7→ xe2x+1.

5. x 7→ 1−cos(x)

x2 .

6. x 7→ arctan(x)

Exercice 4. 3
Déterminer un DL d’ordre 3 de x 7→ arctan(x3) en 1.

Exercice 5.
Déterminer un DL à l’ordre 4 de f : x 7→ sin(ln(x +1))− ln(sin(x)+1) en 0. En déduire un
équivalent de f (x) en 0.

3 Dérivabilité

Exercice 6.

Soit f : x 7→ cos(x)−1

sin2 x
. Montrer que f est prolongeable par continuité en 0. Le prolonge-

ment est-il dérivable ?

Exercice 7.

Montrer que f : x 7→ cos x −
p

1−x2

x4 est prolongeable par continuité. On note encore f

son prolongement continu. Montrer qu’il est dérivable et donner f ′(0).

4 Calcul de limites et d’équivalents

Exercice 8.
Déterminer les limites suivantes en 0 :

1. x 7→ ln(1+x)−x

x2 .

2. x 7→ (x −1)ex +1

x(ex −1)
.

3. x 7→
p

1+2x − (1+x)

x2 .

4. x 7→ ex −1− sin(x)

cos(x)−1
.

5. x 7→ 1

x
− 1

sin(x)
.

6. x 7→ − 1

x2 + cos(x)

sin2(x)
.

Exercice 9.

Déterminer un équivalent en +∞ de e
1

x2 −e
1

(x+1)2 .

Exercice 10.

Déterminer lim
x→+∞

(
x2 +3x −1

x2 +x +1

)x

.

5 Utilisation de l’unicité du DL

Exercice 11.

Soit f : x 7→ x3

1+x6 . Déterminer la valeur de f (n)(0) pour tout entier n.

Exercice 12.

Soit f : x 7→ ln(cos x)

1+x
définie sur ]−1,1[. Déterminer f ′(0) et f "(0).

6 Détermination de tangente et de la position de celle-ci

Exercice 13.
Soit f : x 7→ ln(1+ x). Déterminer l’équation de la tangente en x = 1 ainsi que la position
de la courbe par rapport à la tangente.

Exercice 14.

Soit f : x 7→ 1

x
. Déterminer l’équation de la tangente à f en x = 2 ainsi que la position de

la courbe par rapport à la tangente.

Exercice 15.

Soit f : x 7→ x2

ex −e−x .

1. Montrer que f est prolongeable par continuité en 0. On notera encore f le prolon-
gement.

2. Montrer que f admet un DL à l’ordre 3 en 0 que l’on calculera.
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3. Montrer que f est dérivable en 0. Que vaut f ′(0) ?

4. Que dire de la position du graphe de f par rapport à sa tangente au point d’abscisse
0 ?

7 DL et intégrale

Exercice 16.

Soit h : x 7→
∫ x

−x

e t

p
1+ t 2

dt .

1. Déterminer un DL à l’ordre 4 en 0 de t 7→ e t

p
1+ t 2

.

2. En déduire un DL à l’ordre 5 en 0 de h.

Exercice 17.

Montrer que
∫ 1

0

e−xt

1+ t 2 dt =x→+∞
1

x
+O

(
1

x2

)
.

8 DL et suites

Exercice 18.
Soit (un) la suite définie par u0 = 0 et ∀n ∈N,un+1 =

√
un +n2.

1. Montrer que la suite est bien définie et déterminer sa limite.

2. Montrer que un É n pour tout n ∈N.

3. Montrer que un = n − 1

2
− 3

8n
+o

(
1

n

)

9 Fonction réciproque et équation implicite

Exercice 19.

1. Montrer que pour tout ε > 0 il existe une unique solution xε dans R+ à l’équation
e−εx = x d’inconnue x.

2. Montrer que xε =ε→0 1−ε+ 3ε2

2
+o

(
ε2

)
.

Exercice 20. 3

Soit f :

{
R −→ R

x 7−→ 2sh(x)−x
. Montrer que f est bijective et déterminer un DL4 de f −1

en 0

10 Développement asymptotique et asymptote

Exercice 21.

Soit f : x 7→ x
p

2x2 +1

x −1
définie sur R\ {1}.

1. Donner l’équation de sa tangente en 0 et sa position relative par rapport au graphe
de f .

2. Montrer que f admet une asymptote en +∞ dont on précisera l’équation et la po-
sition par rapport à la courbe.

Exercice 22.
Montrer que la fonction x 7→ 3p

x3 +1e−1/x admet une asymptote dont on précisera
l’équation et la position de l’asymptote.

11 Si besoin d’encore un peu d’entrainement

Exercice 23.
Déterminer le DL d’ordre 6 en 0 de th. 1

Exercice 24.
Déterminer un DL à l’ordre 6 en 0 de arctan(x3).

Exercice 25.
Déterminer le DL3 en 0 de x 7→

√
2−p

1−x.

Exercice 26.

Déterminer le DL3 en 0 de x 7→ 1

cos(ln(1+x))
.

Exercice 27.

Déterminer le DL3 en
1

2
de x 7→ cos(πx (1−x)).

Exercice 28.

Soit f : x 7→ x2

sh2(x)
. Déterminer un DL3 en 0 de f .

Exercice 29.
Soit f : x 7→ cos xx . Déterminer un DL4 en 0 de f .

Exercice 30.
Soit f : x 7→

√
1+p

1+4sin x. Déterminer un DL3 en 0 de f .

Exercice 31.
Donner le DL en 0 à l’ordre 6 de x 7→ ln(cos(x)).

1. On rappelle que þ = sh/ch.
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Exercice 32.
Donner le DL en 0 à l’ordre 5 de x 7→ sin(tan(x)).

Exercice 33.
Donner le DL en 0 à l’ordre 4 de x 7→ (ln(1+x))2.

Exercice 34.
Donner le DL en 0 à l’ordre 3 de x 7→ exp(sin(x)).

Exercice 35.
Donner le DL en 0 à l’ordre 9 de x 7→ sin6(x).

Exercice 36.
Donner le DL en 0 à l’ordre 4 de x 7→ ln(1+cos x).

Exercice 37.
Donner le DL en 0 à l’ordre 3 de x 7→ cos x

1+ sin x
.

Exercice 38.

Donner le DL en 0 à l’ordre 3 de x 7→
p

1+x

1+chx
.

Exercice 39.
Donner le DL en 0 à l’ordre 4 de 7→ e3+x2

.

Exercice 40.

Soit f définie par f (x) = ex +e−x −2

2x
et f (0) = 0, f est-elle dérivable?

Exercice 41.

Soit f définie par f (x) = chx −1

x
et f (0) = 0, f est-elle dérivable?

Exercice 42.
Étudier la dérivabilité de f : x 7→ cos

p
x.

Exercice 43.

Déterminer un équivalent de

√
1+ 1

n2 −e
1

2n2

ln

(
1+ 1

n2
p

n

) .

Exercice 44.

Déterminer lim
x→0

sin(x)− tan(x)p
1+2x − ln(1+x)−1

.

Exercice 45.

Soit f : x 7→ 1

ln(1+x2)
− 1

tan2 x
. Déterminer la limite en 0 de f (x).

Exercice 46.

Déterminer lim
x→0

(cos x)
1
x −p

1−x

(1+ sin x)
1
x −e1− x

2

.

Exercice 47.

Déterminer lim
x→+∞x2

(
1+ 1

x

)x

−ex2

√
1− 1

x
.

Exercice 48.

Déterminer lim
x→0

sin(cos(x)−1)p
1+x2 −1

.

Exercice 49.
Déterminer lim

x→+∞
3
√

x3 +x2 −x.

Exercice 50.

Déterminer lim
x→0

p
1+x2 −1

cos(x)−1
.

Exercice 51.

Déterminer lim
x→0

(
1

x2 − 1

ln(1+x2)

)
.

Exercice 52.

Calculer lim
x→+∞

(
x sin

(
1

x

))x2

.

Exercice 53.

Déterminer lim
x→0

tan x − sin x

arcsin x −arctan x
.

Exercice 54.

Déterminer lim
x→0

ch(sin(x))−ch(x)

(sin(x))4 .

Exercice 55.

Calculer lim
x→0

esin x −etan x

sin x − tan x
.

Exercice 56.

Calculer lim
x→0

ex − (cos(x)+x)

x2 .

Exercice 57.

Calculer lim
x→0

x −arcsin x

x2 arcsin x
.

Exercice 58.

Calculer lim
x→1

xx −x

1−x + ln(x)
.

Exercice 59.

Calculer lim
x→0

(
tan

x

2

)tan x
.

Exercice 60.

Calculer le DL à l’ordre 1 en 0 de f définie par f (x) = ex2 −cos x

x2 si x 6= 0 et f (0) = 3

2
. En

déduire que f est dérivable en 0 et donner f ′(0).

Exercice 61.

Soit f : x 7→ cos(x)−1

sin2 x
. Montrer que f est prolongeable par continuité en 0. Le prolonge-

ment est-il dérivable ?

Exercice 62.

Calculer le DL à l’ordre 1 en 0 de f définie par f (x) = ln(1+x)− sin x

x
si x 6= 0 et f (0) = 0.

En déduire que f est dérivable et donner f ′(0).

Exercice 63.
Soit f : x 7→ ecos x . Déterminer l’équation de la tangente à f en x = 0 ainsi que la position
de la courbe par rapport à la tangente.
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Exercice 64.

Soit f : x 7→ 1

3+ sin x
. Déterminer l’équation de la tangente en x = 0 ainsi que la position

de la courbe par rapport à la tangente.

Exercice 65. 3
Soit f : x 7→ x + sin x. Montrer que f est bijective et déterminer un DL3 en 0 de f −1.

12 Une fois qu’on est à l’aise

Exercice 66. 3

Calculer lim
x→+∞

(
e −

(
1+ 1

x

)x) 1
x

.

Exercice 67.
On considère la fonction f définie par f (x) = x1+ 1

x , ∀x > 0 et f (0) = 0.

1. Étudier la continuité et la dérivabilité de f sur R+.

2. Déterminer un DL à l’ordre 3 de f en 1.

3. Que peut-on en déduire sur le graphe de f ?

Exercice 68. 31. Montrer que pour tout entier n ∈N?, il existe un unique réel xn > 0 tel que xn
n +xn =

1.

2. Montrer que la suite (xn)n∈N est croissante et majorée par 1.

3. Montrer que la suite converge vers 1.

4. Pour tout n ∈N?, on pose yn = 1−xn . Montrer que yn ∼− ln(yn)

n
puis que − ln(yn) ∼

ln(n).

5. En déduire un développement asymptotique à deux termes de xn .

Exercice 69. 3
Montrer que la fonction x 7→ (x + 1)e

1
x−1 admet une asymptote en +∞ et déterminer la

position de celle-ci par rapport au graphe de f .

Exercice 70. 3 3

Déterminer le développement asymptotique à l’ordre 2 en +∞ de x 7→ arctan

√
x +2

x +1
.

Exercice 71. 3 3

On considère la fonction x 7→ x arctan
x

x −1
. On souhaite montrer qu’elle admet une

asymptote en −∞ et déterminer une équation de cette asymptote.

1. Déterminer un DL à l’ordre 2 de tan
(

y + π

4

)
−1 en 0.

2. En déduire un développement limité à l’ordre 2 en 0 de arctan(X +1).

3. Déterminer l’équation de l’asymptote en −∞ de la fonction.

4. Quelle est la position de l’asymptote par rapport au graphe de la fonction?

Memo

— Comment déterminer un développement limité ?

— Utiliser les développements limités usuels
— Intégrer un développement limité en n’oubliant pas de déterminer la constante

d’intégration (pour les rares cas où elle n’est pas nulle)
— Comment déterminer le développement limité d’un quotient?

Se ramener à un produit en faisant apparaître un quotient de la forme
1

1+X
avec

X → 0.
— Comment déterminer une limite?

Déterminer un équivalent ou un DL
— Comment déterminer la position relative du graphe

par rapport à la tangente/asymptote ? Étudier le signe du premier coefficient non
nul d’ordre k Ê 2 du développement limité (ou du développement asymptotique
dans le cas d’une asymptote).

— Comment déterminer un DL de f −1 quand on n’a pas l’expression? intégrer un DL
de la dérivée, identifier les coefficients du DL de f ◦ f −1 ou utiliser un DL de f puis
un changement de variable
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Correction du TD n 13

Correction 1 La manière la plus élégante est de considérer la fonction polynômiale f
associée à P . Elle est de classe C ∞ et son développement limité en 0 est :

f (x) =
n∑

k=0

f (k)(0)

k !
xk +o(xn).

Or, f (x) =
n∑

k=0
ak xk . Par unicité du développement limité, on peut identifier les coeffi-

cients et on obtient
f (k)(0)

k !
= ak , autrement dit P (k)(0) = k !ak .

Il est également possible d’écrire

P ( j )(X ) =
n∑

k=0
ak (X k )( j )

=
n∑

k= j
ak

k !

(k − j )!
X k− j car (X k )( j ) = 0 pour j > k

Le terme constant de P ( j )(X ) correspond au terme de la somme pour k = j et on re-
trouve l’égalité souhaitée.

Correction 2 On raisonne par analyse/synthèse.
Analyse : On suppose qu’il existe un polynôme P de degré n tel que ∀k ∈ J0,nK,

P (k)(1) = k. On pose Q(X ) = P (X + 1) et on note Q =
n∑

k=0
ak X k . On a ∀k ∈ N,Q(k)(0) =

P (k)(1). On a donc :
Q(k)(0) = k.

D’après l’exercice 1, on sait que

∀k ∈ J0,nK,Q(k)(0) = k !ak ,

on a donc
∀k ∈ J0,nK,k !ak = k,

d’où

a0 = 0 et ∀k ∈ J1,nK, ak = 1

(k −1)!
.

Ainsi, Q(X ) =
n∑

k=1

X k

(k −1)!
et P (X ) =Q(X −1) =

n∑
k=1

(X −1)k

(k −1)!
.

Synthèse : Réciproquement, on pose P (X ) =
n∑

j=1

(X −1) j

( j −1)!
. Le polynôme P est bien de de-

gré n. De plus, pour tout k ∈ J0,nK,

P (k)(X ) =
n∑

j=k

j !(X −1) j−k

( j −k)!( j −1)!
=

n∑
j=k

j (X −1) j−k

( j −k)!
,

on a donc

P (k)(1) = k

0!
= k.

On a montré l’existence d’un tel polynôme. De plus, la phase d’analyse montre que ce
polynôme est unique.

Correction 3

1. On a ln(1+x) = x − x2

2
+ x3

3
+o(x3) et cos(x) = 1− x2

2
+o(x3) donc

ln(1+x)cos(x) = x − x2

2
+ x3

3
− x3

2
+o(x3)

= x − x2

2
− x3

6
+o(x3)

2. On va multiplier le DL de x 7→ ex et celui de
1

1+x
. Comme on veut un DL à l’ordre

3, on fait un DL à l’ordre 3 des deux fonctions :

ex = 1+x + x2

2
+ x3

3!
+o(x3),

et
1

1+x
= 1−x +x2 −x3 +o(x3).

On a donc

ex

1+x
= 1−x +x2 −x3 +x −x2 +x3 + x2

2
− x3

2
+ x3

3!
o(x3)

= 1+ x2

2
− x3

3
+o(x3)
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3. On a

sin(x) = x − x3

6
+o(x3),

donc sin(2x) = 2x − 4x3

3
+ o(x3). Ici, on peut appliquer la formule du DL en 0 de

sinus à 2x car 2x → 0. Notez que o(8x3) = o(x3) donc on écrit simplement o(x3).

4. Attention, 2x+1 → 1 quand x → 0, on ne peut donc pas remplacer x par 2x+1 dans
le DL en 0 de exponentielle ! On écrit

xe2x+1 = xe.e2x ,

puis on utilise le DL de ex :

ex = 1+x + x2

2
+o(x2),

donc
e2x = 1+2x +2x2 +o(x2).

(on fait un DL à l’ordre 2 car, en multipliant par x, on obtiendra un DL à l’ordre 3).

On a donc :
xe2x+1 = ex +2ex2 +2ex3 +o(x3).

5. On va diviser par x2, il nous faut donc un DL à l’ordre 5 de 1−cos(x).

On a

cos(x) = 1− x2

2
+ x4

4!
+o(x5)

(car le terme en x5 est nul) donc

1−cos(x) = x2

2
− x4

4!
+o(x5),

puis
1−cos(x)

x2 = 1

2
− x2

4!
+o(x3).

On sait que la limite de
1−cos(x)

2
est

1

2
donc le premier terme du DL est juste !

6. On va intégrer le DL de x 7→ 1

1+x2 . Comme on veut un DL à l’ordre 3, il suffit d’in-

tégrer un DL à l’ordre 2 de x 7→ 1

1+x2 .

On écrit
1

1+x2 = 1−x2 +o(x2),

en intégrant, on obtient :

arctan(x) = arctan(0)+x − x3

3
+o(x3) = x − x3

3
+o(x3).

Correction 4 On pose x = 1+h, on a h → 0 et x3 = 1+ 3h + 3h2 +h3. On commence
par chercher un DL3 en 0 de y 7→ arctan(1+ y). On va, pour cela, calculer un DL2 de sa
dérivée. On écrit :

1

1+ (1+ y)2 = 1

2

1

1+ y + y2

2

= 1

2

(
1− y − y2

2
+ y2 +o(y2)

)
= 1

2
− y

2
+ y2

4
+o(y2)

On intègre et on obtient :

arctan(y +1) = arctan(1)+ y

2
− y2

4
+ y3

12
+o(y3)

Enfin, on pose y = 3h +3h2 +h3, on obtient :

arctan
(
(1+h)3

) = π

4
+ 1

2

(
3h +3h2 +h3

)− 1

4

(
9h3 +18h3

)+ 9h3

4
+o(h3)

= π

4
+ 3h

2
− 3h2

4
− 3h3

4
+o(h3)

.

Il suffit maintenant de remplacer h par x −1 pour avoir le DL souhaité :

arctan(x3) = π

4
+ 3(x −1)

2
− 3(x −1)2

4
− 3(x −1)3

4
+o((x −1)3).

Correction 5 On a sin(x) = x − x3

6
+o(x4) et ln(1+x) = x − x2

2
+ x3

3
− x4

4
+o(x4) donc :

sin(ln(x +1)) =
(

x − x2

2
+ x3

3
− x4

4

)
− 1

6

((
x − x2

2
+ x3

3
− x4

4

))3

+o(x4)

=
(

x − x2

2
+ x3

3
− x4

4

)
− 1

6

(
x3 −3x2 x2

2

)
+o(x4)

= x − x2

2
+ x3

6
+o(x4)

et

ln(sin(x)+1) =
(

x − x3

6

)
− 1

2

(
x − x3

6

)2

+ 1

3

(
x − x3

6

)3

− 1

4

(
x − x3

6

)4

+o(x4)

=
(

x − x3

6

)
− 1

2

(
x2 −2x

x3

6

)
+ x3

3
− x4

4
+o(x4)

= x − x2

2
+ x3

6
− x4

12
+o(x4)

On a donc sin(ln(1+x))− ln(sin(x)+1) = x4

12
+o(x4) d’où :

sin(ln(1+x))− ln(sin(x)+1) ∼ x4

12
.
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Correction 6 On a cos(x)−1 =−x2

2
+o(x3) et sin2(x) = x2 +o(x3). On en déduit que :

f (x) = − x2

2 +o(x3)

x2 +o(x3)
= − 1

2 +o(x)

1+o(x)
=−1

2
+o(x).

On en déduit que f admet une limite finie en 0 égale à −1

2
, elle est donc prolongeable

par continuité en 0 en posant f (0) = −1

2
. De plus, la fonction prolongée est continue et

admet un DL1 en 0, on peut donc affirmer qu’elle est dérivable.

Correction 7 On écrit f (x) = cos x −
p

1−x2

x4 = 1

6
+o(x2) = 1

6
+o(x). On en déduit que f

admet une limite finie en 0 donc elle est prolongeable par continuité en posant f (0) = 1

6
.

Le prolongement continu de f admet un DL d’ordre 1 en 0, il est donc dérivable en 0 et
f ′(0) = 0 car le coefficient devant x est nul.

Correction 8 La difficulté de cet exercice est de déterminer à quel ordre on doit faire le
DL.

1. On divise par x2, il faut donc avoir au moins un DL d’ordre 2 au numérateur pour
éviter de tomber sur une forme indéterminée.

On écrit ln(1+x) = x− x2

2
+o(x2) donc ln(1+x)−x =−x2

2
+o(x2) d’où

ln(1+x)−x

x2 =

−1

2
+o(1), ce qui montre que la limite recherchée est −1

2
.

2. On a ex −1 = x +o(x) donc x(ex −1) = x2 +o(x2).

On a aussi (x−1)

(
1+x + x2

2
+o(x2)

)
+1 = x+x2−1−x− x2

2
+1+o(x2) = x2

2
+o(x2).

On a donc
(x −1)ex +1

x(ex −1)
= x2/2+o(x2)

x2 +o(x2)
= 1/2+o(1)

1+o(1)

donc la limite recherchée est
1

2
.

Attention, en faisant un DL1 de exponentielle au numérateur, cela ne marche pas !
En effet, on (x−1)(1+x+o(x)) = x−1+x2−x+o(x)+o(x2) =−1+o(x). On ne pourra
alors pas conclure quant à la limite !

3. Comme on divise par x2, on cherche à faire un DL2 du numérateur. On a

p
1+x = 1+ x

2
− x2

8
+o(x2),

donc p
1+2x = 1+x − x2

2
+o(x2).

Ainsi, on a
p

1+2x −1−x =−x2

2
+o(x2) donc la limite recherchée est −1

2
.

4. On écrit

— cos(x)−1 =−x2

2
+o(x2),

— ex = 1+x + x2

2
+o(x2) et

— sin(x) = x +o(x2) (car le terme en x2 est nul).

On a donc ex −1− sin(x) = x2

2
+o(x2) et la limite cherchée est −1.

5. On met au même dénominateur :

1

x
− 1

sin(x)
= sin(x)−x

x sin(x)
.

On sait que le dénominateur est équivalent à x2 (car sin(x) ∼ x) donc on va faire un
DL 2 du numérateur. Pour cela, il suffit d’écrire sin(x) = x +o(x2), donc sin(x)−x =
o(x2) et au numérateur, sin(x) = x +o(x) donc x sin(x) = x2 +o(x2). En divisant par
x2 le numérateur et le dénominateur, on trouve que la limite vaut 0.

6. On réduit au même dénominateur :

−sin2(x)+x2 cos(x)

x2 sin2(x)
.

Comme le dénominateur est équivalent à x4, il faut faire un DL à l’ordre 4 du nu-

mérateur pour éviter d’avoir une forme indéterminée. On a sin(x) = x − x3

6
+o(x3)

donc

sin2(x) = x2 −2.x.
x3

6
+o(x4) = x2 − x4

3
+o(x4)

et cos(x) = 1− x2

2
+o(x2) donc

x2 cos(x) = x2 − x4

2
+o(x4).

On a donc

−sin2(x)+x2 cos(x) = x4

3
− x4

2
+o(x4) =−x4

6
+o(x4).

On a sin2(x) = x2 +o(x2) donc x2 sin2(x) = x4 +o(x4), ainsi, on a :

−sin2(x)+x2 cos(x)

x2 sin2(x)
= − x4

6 +o(x4)

x4 +o(x4)

3



En divisant numérateur et dénominateur par x4, on trouve que la limite vaut −1

6
.

Correction 9 On a :

1

(1+x)2 = 1

x2

 1

1+ 2

x
+ 1

x2


= 1

x2

(
1− 2

x − 1

x2 + 4

x2 +o

(
1

x2

))
car

2

x
+ 1

x2 → 0

= 1

x2 − 2

x3 +o

(
1

x3

)
On a donc :

e
1

x2 −e
1

(x+1)2 = e
1

x2 −e
1

x2 − 2
x3 +o

(
1

x3

)
= 1+ 1

x2 +o

(
1

x3

)
−

(
1+ 1

x2 − 2

x3 +o

(
1

x3

))
= 2

x3 +o

(
1

x3

)

On en déduit qu’un équivalent en +∞ de e
1

x2 −e
1

(x+1)2 est
2

x3 .

Correction 10 On écrit

(
x2 +3x −1

x2 +x +1

)x

= exp

(
x ln

(
x2 +3x −1

x2 +x +1

))
=

exp

(
x ln

(
1+ 3

x − 1
x2

1+ 1
x + 1

x2

))
. On a :

1

1+ 1
x + 1

x2

= 1− 1

x
+o

(
1

x

)
donc :

1+ 3
x − 1

x2

1+ 1
x + 1

x2

=
(
1+ 3

x

)(
1− 1

x
+o

(
1

x

))
= 1+ 2

x
+o

(
1

x

)
.

On en déduit que :

ln

(
1+ 3

x − 1
x2

1+ 1
x + 1

x2

)
= ln

(
1+ 2

x
+o

(
1

x

))
= 2

x
+o

(
1

x

)
,

puis x ln

(
1+ 3

x − 1
x2

1+ 1
x + 1

x2

)
= 2+o(1). Ainsi, lim

x→+∞x ln

(
1+ 3

x − 1
x2

1+ 1
x + 1

x2

)
= 2 d’où lim

x→+∞ f (x) = e2.

Correction 11 On écrit
1

1+x
=

N∑
k=0

(−1)k xk +o(xN ), donc

1

1+x6 =
N∑

k=0
(−1)k x6k +o(x6N ),

puis

f (x) =
N∑

k=0
(−1)k x6k+3 +o(x6N+3).

On voit que le développement limité n’a pas de terme en xn si n n’est pas de la forme
6k + 3. Cela signifie que le coefficient devant xn est alors nul. Or, ce coefficient vaut
f (n)(0)

n!
donc, par unicité du DL, si n n’est pas congru à 3 modulo 6, on a f (n)(0) = 0.

De plus, si n = 6k + 3, le coefficient devant xn vaut (−1)k (d’après le DL trouvé ci-

dessus). Or ce coefficient vaut aussi
f (n)(0)

n!
(par unicité du DL) donc

f (n)(0)

n!
= (−1)k

puis f (n)(0) = n!(−1)k .

Correction 12 La fonction f est de classe C ∞ donc elle admet un DL à tout ordre en 0.
On détermine un DL de f à l’ordre 2 en 0. On sait que ln(1+h) ∼ h lorsque h tend vers
0 donc ln(cos(x)) = ln(1+ (cos(x)−1)) ∼ cos(x)−1, car cos(x)−1 → 0. Par ailleurs, on a

cos(x) = 1− x2

2
+o(x2) donc cos(x)−1 ∼−x2

2
. On en déduit que

ln(cos(x)) ∼−x2

2
donc ln(cos(x)) =−x2

2
+o(x2).

On utilise maintenant l’unicité des coefficients du DL, on a

f (x) = f (0)+ f ′(0)x + f "(0)

2
x2 +o(x2),

donc, en identifiant les coefficients, on a f ′(0) = 0 et
f "(0)

2
=−1

2
donc f "(0) =−1.

Correction 13 On pose x = 1+h avec h qui tend vers 0. On a alors :

ln(1+x) = ln(2+h) = ln(2)+ ln

(
1+ h

2

)
= ln(2)+ h

2
− 1

2

(
h

2

)2

+o(h2)

= ln(2)+ h

2
− h2

8
+o(h2) ln(2)+ (x −1)

2
− (x −1)2

8
+o

(
(x −1)2

)
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On en déduit que l’équation de la tangente à f en x = 1 est y = ln(2)+ (x −1)

2
. On a f (x)−(

ln(2)+ (x −1)

2

)
∼0 x → 1− (x −1)2

8
et x 7→ − (x −1)2

8
est négative donc, au voisinage de 1,

on a f (x) É ln(2)+ (x −1)

2
, ce qui montre que la tangente est au-dessus de la courbe.

Correction 14 On pose x = 2+h avec h qui tend vers 0. On écrit :

1

x
= 1

2+h
= 1

2

1

1+ h
2

= 1

2

(
1− h

2
+ h2

4
+o(h2)

)
= 1

2
− h

4
+ h2

8
+o(h2)

= 1

2
− x −2

4
+ (x −2)2

8
+o ((x −2))2 .

On en déduit que l’équation de la tangente à f en x = 2 est y = 1

2
− x −2

4
. Comme f (x)−(

1

2
− x −2

4

)
∼0 x → 2

(x −2)2

8
, au voisinage de 2, on a f (x) Ê 1

2
− x −2

4
donc la courbe est

au-dessus de la tangente.

Correction 15

1. On a ex − e−x = 2x +o(x) donc f (x) ∼x→0
x2

2x
. On a lim

x→0
f (x) = 0 donc f est prolon-

geable par continuité en posant f (0) = 0.

2. On a fait un DL à l’ordre 3 du dénominateur. On a :

ex −e−x = 2x − x3

3
+o(x3).

On en déduit que :

f (x) = x2

2x − x3

3
+o(x3)

= 1

2

x

1− x2

6
+o(x3)

.

On pose X = x2

6
+ (x3). Comme X → 0, on a :

f (x) = 1

2
x

(
1+ x2

12
+o(x3)

)
= x

2
+ x3

12
+o(x3).

3. D’après ce qui précède, on a f (x) = x

2
+o(x) donc f est dérivable en 0 et f ′(0) = 1

2
.

4. On sait que f (x)− x

2
∼ x3

12
donc f (x)− x

2
est du signe de

x3

12
au voisinage de 0. La

tangente est donc en dessous puis au-dessus du graphe. On dit que f admet un
point d’inflexion en 0.

Correction 16

1. On a e t = 1+ t + t 2

2
+ t 3

3!
+ t 4

4!
+o(t 4) et

1p
1+ t 2

= (1+ t 2)−1/2 = 1− t 2

2
+ t 4

8
+o(t 4).

On en déduit que
e t

p
1+ t 2

= 1+ t − t 3

3
+ t 4

6
+o(t 4).

2. Notons F une primitive de t 7→ e t

p
1+ t 2

, alors

F (x) = x + x2

2
− x4

12
+ x5

30
+o(x5),

donc

h(x) = F (x)−F (−x) = 2x + x5

15
+o(x5).

Remarque : On accepterait aussi une rédaction du type :

h(x) =
∫ x

−x
1− t 2

2
+ t 4

8
+o(t 4)dt =

[
t + t 2

2
− t 4

12
+ t 5

30
+o(t 5)

]x

−x
= 2x + x5

15
+o(x5).

Correction 17 On écrit∫ 1

0

e−xt

1+ t 2 dt =
[
−e−xt

x
× 1

1+ t 2

]1

0
− 1

x

∫ 1

0

te−xt

(1+ t 2)2 dt .

or ∣∣∣∣∫ 1

0

te−xt

(1+ t 2)2 dt

∣∣∣∣É ∫ 1

0
e−xt dt = 1−e−x

x
É 1

x
.

On a donc

lim
x→+∞

∫ 1

0

te−xt

(1+ t 2)2 dt =O

(
1

x

)
,

d’où ∫ 1

0

e−xt

1+ t 2 dt = 1

x
− e−x

2x
+ 1

x
O

(
1

x

)
= 1

x
+O

(
1

x2

)
,

car
e−x

2x
= o

(
1

x2

)
=O

(
1

x2

)
par croissances comparées.

Correction 18
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1. On remarque tout d’abord que (un) est bien définie car pour tout x Ê 0, x +n2 Ê 0

et u0 Ê 0. On écrit ensuite un =
√

u2
n−1 + (n −1)2 Ê n −1 donc lim

n→+∞un =+∞ par le

thm de minoration.

2. On le montre par récurrence sur n, l’initialisation étant claire. On suppose un É
n, alors un+1 =

√
un +n2 É

p
n +n2 É

p
n2 +2n +1 = n + 1. La propriété est donc

héréditaire, par le principe de récurrence, elle est vraie pour tout n.

3. On a déjà n −1 É un É n donc un ∼ n. On écrit un = n +o(n), on a donc

un =
√

un−1 + (n −1)2

=
√

n −1+ (n −1)2 +o(n)

= n
√

n2 −n +o(n)

= n

√
1− 1

n
+o

(
1

n

)
= n

(
1− 1

2n
+o

(
1

n

))
.

On a donc un = n − 1

2
+o(1). On recommence avec ce nouveau développement :

un =
√

un−1 + (n −1)2

=
√

(n −1)− 1

2
+o(1)+ (n −1)2

=
√

n2 −n − 1

2
+o(1)

= n

√
1− 1

n
− 1

2n2 +o

(
1

n2

)
= n

(
1− 1

2

(
1

n
+ 1

2n2

)
− 1

8

(
1

n2

)
+o

(
1

n2

))
= n − 1

2n
− 3

4n
+o

(
1

n

)

Correction 19

1. pour tout ε> 0, la fonction fε : x 7→ e−εx − x est décroissante en tant que somme de
fonctions décroissantes.

2. On a fε(0) = 1 et fε(1) < 0. On en déduit, par le TVI qu’il existe xε ∈]0,1[ tel que
fε(xε) = 0. Ce réel est unique par injectivité de la fonction.

On a 0 < εxε < ε donc εxε−> 0. On peut donc faire un DL1 de l’exponentielle :

e−εxε = 1−εxε+o(xεε).

On sait que xε = e−εxε donc xε−> 1 par continuité de l’exponentielle. On peut donc
écrire xε = 1+o(1). En remplaçant xε par son DL0, on obtient

e−εxε = 1−ε+o(ε).

On fait maintenant un DL2 de l’exponentielle :

e−εxε = 1−εxε+ 1

2
(εxε)2 +o (εxε)2 .

puis on remplace xε par son DL1 :

e−εxε = 1−ε (1−ε+o (ε))+ 1

2
ε2 (1+o(1))+o

(
ε2)= 1−ε+ 3

2
ε2 +o(ε2).

Comme xε = e−εxε , on a bien le DL2 souhaité.

Correction 20 La fonction f est dérivable et sa dérivée f ′ est positive, f est donc stric-
tement croissante. Par le théorème de croissances comparées, on a :

lim
x→+∞ f (x) = lim

x→+∞ex (
1−e−2x −xe−x)=+∞.

Comme f est impaire, on en déduit que lim
x→−∞ f (x) =−∞. La fonction f étant continue,

son image est un intervalle de R et nous venons de montrer que son image n’est ni majo-
rée, ni minorée, on a donc Im( f ) =R et f est bien bijective.

On sait que f (0) = 0 donc f −1(0) = 0. Comme f est continue, f −1 aussi donc f −1(x) → 0
quand x → 0. On a f (x) ∼0 x → 0x donc f −1(y) ∼0 y → 0y. On vaut maintenant un équi-
valent de f −1(y)− y . Pour cela, on calcule un équivalent de f (x)−x. On a :

f (x)−x = 2sh(x)−2x = x3

3
+o

(
x3) ,

donc :

f (x)−x ∼0 x → 0
x3

3
,

ce qui implique, en posant x = f −1(y),

y − f −1(y) ∼0 y → 0

(
f −1(y)

)3

3
.

Comme f −1(y) ∼0 y → 0y, on obtient :

f −1(y)− y ∼0 y → 0− y3

3
,

6



d’où :

f −1(y) = y − y3

3
+o(y3).

On remarque, enfin, que f −1 est impaire puisque f l’est et qu’elle est 4 fois dérivable
puisque f ′ 6= 0. On en déduit qu’elle admet un DL4 avec uniquement des termes impairs.
Le DL obtenu est en réalité un DL4.

On peut aussi dire que f −1(x) ∼0 x → 0x et f ′(x) = 1+x2 +o(x2) donc

f ′ ◦ f −1(x) = 1+ f −1(x)2 +o
(

f −1(x)2)= 1+x2 +o(x2).

On en déduit que
1

f ′ ◦ f −1(x)
= 1

1+x2 +o(x2)
= 1−x2 +o(x2).

On intègre ce DL : f −1(x) = f −1(0)+x − x3

3
+o(x3). On retrouve bien le même DL.

Enfin, on peut utiliser l’unicité du DL en disant que f −1 est 4 fois dérivable puisque
f ′ 6= 0 donc elle admet un DL4. Comme elle est impaire, elle admet un DL de la forme
ax +bx3 +o(x4).

On écrit f (x) = x + x3

3
+o(x4) puis

f ◦ f −1(x) = f −1(x)+ 1

3
f −1(x)3 +o( f −1(x)4)

= (
ax +bx3 +o(x4)

)+ 1

3
+ (

ax +bx3 +o(x4)
)3 +o(x4)

= ax +bx3 + a3x3

3
+o(x4)

.

Or f ◦ f −1(x) = x, on a donc

x = ax +
(
b + a3

3

)
x3 +o(x4),

donc, par unicité du DL (de f ◦ f −1), on aa = 1

b + a3

3
= 0

d’où a = 1 et b =−1

3
. On retrouve bien le DL f −1(x) = x − x3

3
+o(x4).

Correction 21

1. On fait un DL à l’ordre 2 de f en 0. On a
p

1+2x2 = 1+x2 +o(x2) donc :

f (x) =−x

p
1+2x2

1−x
=−x(1+x2 +o(x2))(1+x +x2 +o(x2))
=−x(1+x2 +x +x2 +o(x2))
=−x(1+x +2x2 +o(x2))
=−x −x2 +o(x2)

On en déduit que l’équation de la tangente en 0 de f est y = −x. On a f (x)+ x ∼0

x → 0− x2 donc, au voisinage de 0, x 7→ f (x)+ x est du même signe que x 7→ −x2.
Localement, la courbe est donc en dessous de sa tangente en 0.

2. On écrit f (x) =
p

1+2x2

1− 1
x

=
x
p

2
√

1+ 1
2x2

1− 1
x

. On a :

√
1+ 1

2x2 = 1+ 1

4x2 +o

(
1

x2

)
et

1

1− 1
x

= 1+ 1

x
+ 1

x2 +o

(
1

x2

)
d’où :

f (x) =p
2x

(
1+ 1

4x2 +o

(
1

x2

))(
1+ 1

x
+ 1

x2 +o

(
1

x2

))
=p

2x

(
1+ 1

x
+ 1

x2 + 1

4x2 +o

(
1

x2

))
=p

2x

(
1+ 1

x
+ 5

4x2 +o

(
1

x2

))
=p

2x +p
2+ 5

p
2

4x
+o

(
1

x

)
.

On en déduit que lim
x→+∞ f (x) −

(p
2x +p

2
)
= 0 donc la droite d’équation y =

p
2x +p

2 est une asymptote. De plus, f (x) − (p
2x +p

2
) ∼0 x →+∞5

p
2

4x
donc

f (x)− (
p

2x +p
2) est du même signe que

5
p

2

4x
au voisinage de +∞. On en déduit

que la courbe est au-dessus de son asymptote en +∞.

Correction 22 On écrit :

3p
x3 +1e−1/x = x 3

√
1+ 1

x3 e−
1
x

= x

(
1+ 1

3x3 +o

(
1

x3

))(
1− 1

x
+ 1

2x2 +o

(
1

x2

))
= x

(
1− 1

x
+ 1

2x2 +o

(
1

x2

))
= x −1+ 1

2x
+o

(
1

x

)
.
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On en déduit que lim
x→+∞ f (x)− (x −1) = 0 donc le graphe de f admet la droite y = x −1

pour asymptote au voisinage de+∞. De plus, on a f (x)−(x−1) ∼0 x →+∞ 1

2x
donc f (x)−

(x −1) est positif au voisinage de +∞. Le graphe de f est donc au-dessus de l’asymptote.

Correction 23 La fonction þ est de classe C ∞ donc elle admet un développement limité
en 0 à tout ordre. On sait que þ(x) ∼0 x → 0x donc þ(x) = x + o(x). On en déduit que
1−þ2(x) = 1−x2+o(x2). On a le développement limité de þ′(x) puisque þ′(x) = 1−þ2(x),
on peut en déduire que

þ(x) = þ(0)+x − x3

3
+o(x3) = x − x3

3
+o(x3).

En partant d’un DL à l’ordre 1, on a obtenu un DL à l’ordre 3. On recommence :
(
þ2

)′
(x) =

x2 − 2x4

3
+o(x4) donc 1−þ2(x) = 1−x2 + 2x4

3
+o(x4) puis, en intégrant :

þ(x) = x − x3

3
+ 2x5

15
+o(x5).

Comme þ est impair, les termes d’ordre pair de son DL sont nuls donc on a :

þ(x) = x − x3

3
+ 2x5

15
+o(x6).

Correction 24 On a arctan(x) = x +o(x) et, comme arctan est impaire, on a arctan(x) =
x +o(x2). On en déduit que arctan(x3) = x3 +o(x6) ;

Correction 25 On a
p

1−x = 1− x

2
− x2

8
− x3

16
+o(x3) d’où :

√
2−p

1−x =
√

1+ x

2
+ x2

8
+ x3

16
+o(x3)

= 1+ 1

2

(
x

2
+ x2

8
+ x3

16
+o(x3)

)
− 1

8

(
x

2
+ x2

8
+ x3

16
+o(x3)

)2

+ 1

16

(
x

2
+ x2

8
+ x3

16
+o(x3)

)3

= 1+ x

4
+ x2

16
+ x3

32
− 1

8

(
x2

4
+2

x

2

x2

8

)
+ 1

16

( x

2

)3
+o(x3)

= 1+ x

4
+ x2

32
+ 3x3

128
+o(x3)

Correction 26 On écrit ln(1+x) = x − x2

2
+ x3

3
+o(x3) puis :

cosln(1+x) = 1− 1

2

(
x − x2

2
+ x3

3
+o(x3)

)2

+o(x3),

car o(ln(1+x)3) = o(x3). On a donc :

cos(ln(1+x)) = 1− 1

2

(
x2 −2x.

x2

2
+o(x3)

)
= 1− x2

2
+ x3

2
+o(x3).

On utilise maintenant le DL de
1

1−X
avec X = x2

2
− x3

2
+o(x3), on obtient :

1

cosln(1+x)
= 1+ x2

2
− x3

2
+o(x3)

Correction 27 On pose x = 1

2
+h, on a lim

x→ 1
2

h = 0. De plus, x(1−x) = 1

4
−h2 donc :

cos(πx (1−x)) = cos

(
π

(
1

4
−h2

))
= cos

(π
4
−πh2

)
.

On développe le cosinus, on obtient :

p
2

2
cos(πh2)−

p
2

2
sin(πh2).

On fait ensuite un DL de cos et sin. On a :

cos
(
πh2)= 1− 1

2

(
πh2)2 = 1+o(h3),

et
sin

(
πh2)= (

πh2)+o(h3),

d’où :

cosπ

(
1

4
−h2

)
=

p
2

2
+
p

2πh2

2
+o(h3).

En revenant à la variable x, on obtient :

cos(πx(1−x)) =
p

2

2
+
p

2π

2

(
x − 1

2

)2

+o

(
x − 1

2

)3

.

Correction 28 On écrit :
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x2

sh2(x)
= x2(

x + x3

6
+o(x3)

)2 = x2

x2 + x4

3
+o(x4)

= 1

1+ x2

3
+o(x2)

= 1− x2

3
+o(x2).

Un DL3 en 0 de f est 1− x2

3
+o(x2).

Correction 29 On écrit :

cos(x)x = exp(x lncos(x))

= exp

(
x ln

(
1− x2

2
+o(x3)

))
= exp

(
x

(
−x2

2
+o(x3)

))
= exp

(
−x3

2
+o(x4)

)
= 1− x3

2
+o(x4).

Un DL4 en 0 de f est 1− x3

2
+o(x4).

Correction 30 On écrit :

√
1+p

1+4sin x

=

√√√√
1+

√
1+4(x − x3

6
)+o(x3)

=

√√√√
1+

√
1+4x − 2x3

3
+o(x3)

=
√

2+ 1

2

(
4x − 2x3

3

)
− 1

8

(
4x − 2x3

3

)2

+ 1

16

(
4x − 2x3

3

)3

+o(x3)

=
√

2+2x − x3

3
−2x2 +4x3 +o(x3)

=
√

2+2x −2x2 + 11x3

3
+o(x3)

= p
2

√
1+x −x2 + 11x3

6
+o(x3)

= p
2

(
1+ 1

2

(
x −x2 + 11x3

6

)
− 1

8

(
x −x2 + 11x3

6

)2

+ 1

16

(
x −x2 + 11x3

6

)3

+o(x3)

)
= p

2

(
1+ x

2
− x2

2
+ 11x3

12
− 1

8

(
x2 −2x3

)+ x3

16
+o(x3)

)
= p

2

(
1+ x

2
− 5x2

8
+ 59x3

48
+o(x3)

)

.

Correction 31 La dérivée de ln(cos x) vaut − tan x dont le DL à l’ordre 6 est :

tan(x) = x + x3

3
+ 2x5

15
+o(x6).

On intègre et on obtient : ln(cos x) =−1

2
x2 − 1

12
x4 − 1

45
x6 +o

(
x6).
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On peut aussi poser X =−x2

2
+ x4

4!
− x6

6!
+o(x6). On a alors :

ln(cos x) = ln(1− x2

2
+ x4

4!
− x6

6!
+o(x6))

=
(

x2

2
+ x4

4!
− x6

6!
+o(x6)

)
− 1

2

(
x2

2
+ x4

4!
− x6

6!
+o(x6)

)2

+ 1

3

(
x2

2
+ x4

4!
− x6

6!
+o(x6)

)3

= x2

2
+ x4

4!
− x6

6!
+o(x6)− 1

2

(
x4

4
− x6

4!

)
− x6

24

= −1

2
x2 − 1

12
x4 − 1

45
x6 +o

(
x6

)

Correction 32 On a tan x = x + x3

3
+ 2x5

15
+o(x5) et tan x → 0 donc :

sin(tan x) = x + x3

3
+ 2x5

15
+o(x5)

− 1

3!

(
x + x3

3
+ 2x5

15
+o(x5)

)3

+ 1

5!

(
x + x3

3
+ 2x5

15
+o(x5)

)5

= x + x3

3
+ 2x5

15
− 1

6

(
x3 +3x2.

x3

3

)
+ 1

5!
x5 +o(x5)

= x + 1

6
x3 − 1

40
x5 +o

(
x5

)

Correction 33 On a

(ln(1+x))2 =
(

x − x2

2
+ x3

3
+o(x3)

)2

= x2 + x4

4
−2x.

x2

2
+2x

x3

3
+o(x4)

= x2 −x3 + 11
12 x4 +o

(
x4

)

Correction 34 On a

exp(sin x)

= 1+
(

x − x3

3!
+o(x3)

)
+ 1

2

(
x − x3

3!
+o(x3)

)2

+ 1

3!

(
x − x3

3!
+o(x3)

)3

= x − x3

3!
+o(x3)+ x2

2
+ x3

3!
+o

(
x3

)
= 1+x + 1

2
x2 +o

(
x3

)

Correction 35 On sait que sin(x) ∼0 x → 0x donc sin6(x) ∼0 x → 0x d’où
sin6 x = x6 +o

(
x6).

Correction 36 On a
cos x −1

2
→ 0 donc

ln(1+cos x) = ln(2+ (cos x −1))

= ln2+ ln

(
1+ cos x −1

2

)
= ln2+ ln

(
1− x2

4
+ x4

2.4!
+o(x4)

)
= ln2+

(
−x2

4
+ x4

2.4!

)
− 1

2

(
−x2

4
+ x4

2.4!

)2

+o(x4)

= ln2− x2

4
+ x4

2.4!
− x4

32
+o(x4)

= ln2− x2

4
− 1

96
x4 +o(x4).

Correction 37 On a cos x = 1− x2

2
+o(x3) et :

1

1+ sin x
= 1

1+x − x3

6
+o(x3)

= 1−
(

x − x3

6

)
+

(
x − x3

6

)2

−
(

x − x3

6

)3

+o(x3)

= 1−x + x3

6
+x2 −x3 +o(x3)

= 1−x +x2 − 5

6
x3 +o(x3).
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On en déduit que :

cos x

1+ sin x
=

(
1− x2

2
+o(x3)

)(
1−x +x2 − 5

6
x3 +o(x3)

)
= 1−x + x2

2
− x3

3
+o(x3)

Correction 38 On a
p

1+x = 1+ x

2
− x2

8
+ x3

16
+o(x3) et

1

1+chx
= 1

2+ x2

2 +o(x3)
= 1

2

1

1+ x2

4 +o(x3)
= 1

2

(
1− x2

4
+o(x3)

)
= 1

2
− x2

8
+o(x3).

On a donc :
p

1+x

1+chx
=

(
1+ x

2
− x2

8
+ x3

16
+o(x3)

)(
1

2
− x2

8
+o(x3)

)
= 1

2
+ x

4
− 3x2

16
− x3

32
+o(x3).

Correction 39 On écrit e3+x2 = e3ex2
. On a x2 → 0 donc :

e3+x2 = e3
(
1+x2 + x4

2
+o(x5)

)
= e3 +e3x2 + e3x4

2
+o(x5).

Correction 40 On pose ch(x) = ex +e−x On calcule son taux d’accroissement en 0 :

f (x)− f (0)

x −0
= ch(x)−1

x2 ,

et comme ch(x)−1 ∼ x2

2
, on en déduit que le taux d’accroissement admet une limite finie

en 0, égale à
1

2
donc f est bien dérivable.

Correction 41 On calcule son taux d’accroissement en 0 :

f (x)− f (0)

x −0
= ch(x)−1

x2 ,

et comme ch(x)−1 ∼ x2

2
, on en déduit que le taux d’accroissement admet une limite finie

en 0, égale à
1

2
donc f est bien dérivable.

Correction 42 La fonction f est la composée de cos, dérivable sur R et de la fonction
racine carrée, dérivable sur R?+, elle est donc dérivable sur R?+. Étudions sa dérivabilité en
0. On a

cos
p

x −1

x
∼− (

p
x)2

x
=−1

2
,

donc le taux d’accroissement en 0 admet une limite finie ce qui montre que f est déri-

vable en 0 de dérivée −1

2
.

Correction 43 On a

√
1+ 1

n2 = 1+ 1

2n2 − 1

8n4 +o

(
1

n4

)
et e

1
2n2 = 1+ 1

2n2 + 1

8n2 +o

(
1

8n2

)
donc : √

1+ 1

n2 −e
1

2n2 =− 1

4n4 +o

(
1

n4

)
.

On a également ln

(
1+ 1

n2
p

n

)
∼ 1

n2
p

n
donc :√

1+ 1

n2 −e
1

2n2

ln

(
1+ 1

n2
p

n

) ∼0 x → 0− 1

4n
p

n
.

Correction 44 On écrit :

sin(x)− tan(x) = x − x3

6
−

(
x + x3

3

)
+o(x3) =−x3

2
+o(x3),

p
1+2x −1 = x − (2x)2

8
+ (2x)3

16
+o(x3) = x − x2

2
+ x3

2
+o(x3),

et

ln(1+x) = x − x2

2
+ x3

3
+o(x3).

On a donc :
p

1+2x −1− ln(1+x) = x3

6
+o(x3).
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On en déduit que sin(x)− tan(x) ∼0 x → 0− x3

2
et

p
1+2x−1− ln(1+x) ∼0 x → 0

x3

6
d’où :

sin(x)− tan(x)p
1+2x − ln(1+x)−1

∼0 x → 0−3,

et, par suite, lim
x→0

sin(x)− tan(x)p
1+2x − ln(1+x)−1

=−3.

Correction 45 On écrit :

f (x) = tan2(x)− ln(1+x2)

tan2(x) ln(1+x2)
.

Le dénominateur est équivalent à x4, il faut donc faire un DL d’ordre 4 du numérateur
pour lever l’indétermination.

On écrit :

tan2(x)− ln(1+x2) =
(

x + x3

3
+o(x4)

)2

−
(

x2 − x4

2
+o(x4)

)
= x2 + 2x4

3
−x2 + x4

2
+o(x4)

= 7x4

6
+o(x4).

On en déduit que tan2(x)−ln(1+x2) ∼0 x → 0
7x4

6
donc f (x) ∼0 x → 0

7

6
d’où lim

x→0
f (x) = 7

6
.

Correction 46 On écrit (cos(x))
1
x = exp

(
1

x
ln(cos(x))

)
. On sait que cos(x) = 1− x2

2
+

o(x3) donc ln(cos(x)) = ln

(
1− x2

2
+o(x3)

)
=−x2

2
+o(x3) puis

1

x
ln(cos(x)) =−x

2
+o(x2).

Ainsi,

exp

(
1

x
ln(cos(x))

)
= exp

(
−x

2
+o(x2)

)
= 1− x

2
+ 1

2

( x

2

)2
+o(x2)

= 1− x

2
+ x2

8
+o(x2)

.

(cos(x))
1
x −p

1−x = x2

4
+o(x2).

Pour le dénominateur, on écrit :

(1+ sin(x))
1
x = exp

(
1

x
ln(1+ sin(x))

)
= exp

(
1

x
ln(1+x − x3

6
+o(x3))

)
= exp

(
1

x

(
x − x3

6
− x2

2
+ x3

3
+o(x3)

))
= exp

(
1− x

2
+ x2

6
+o(x2)

)
= e

(
exp

(
−x

2
+ x2

6
+o(x2)

))
= e

(
1− x

2
+ x2

6
+ 1

2

( x

2

)2
+o(x2)

)
Comme on a :

e1− x
2 = e.e−

x
2 = e

(
1− x

2
+ 1

2

( x

2

)2
+o(x2)

)
On en déduit que :

(1+ sin(x))
1
x −e1− x

2 = ex2

6
+o(x2).

Ainsi,

(cos(x))1/x −p
1−x

(1+ sin(x))
1
x −e1− x

2

∼0 x → 0
x2

4
ex2

6

,

donc lim
x→0

(cos(x))1/x −p
1−x

(1+ sin(x))
1
x −e1− x

2

= 3

2e
.

Correction 47 On écrit :(
1+ 1

x

)x

= exp

(
x ln

(
1+ 1

x

))
= exp

(
x

(
1

x
− 1

2x2 + 1

3x3 +o

(
1

x3

)))
= exp

(
1− 1

2x
+ 1

3x2 +o

(
1

x2

))
= e.exp

(
− 1

2x
+ 1

3x2 +o

(
1

x2

))
= e.

(
1− 1

2x
+ 1

3x2

)
+ 1

2

(
1

2x

)2

+o

(
1

x2

)
= e − e

2x
+ 11e

24x2 +o

(
1

x2

)
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puis : √
1− 1

x
= 1− 1

2x
− 1

8x2 +o

(
1

x2

)
d’où :

x2
(
1+ 1

x

)x

−ex2

√
1− 1

x

= x2
(
e − e

2x
+ 11e

24x2 +o

(
1

x2

))
−ex2

(
1− 1

2x
− 1

8x2 +o

(
1

x2

))
= 7e

12
+o(1)

On en déduit que lim
x→+∞x2

(
1+ 1

x

)x

−ex2

√
1− 1

x
= 7e

12
.

Correction 48 On a cos(x)−1 → 0 donc sin(cos(x)−1) ∼0 x → 0cos(x)−1 et cos(x)−1 ∼0

x → 0− x2

2
d’où sin(cos(x)−1) ∼0 x → 0− x2

2
.

On sait, de plus, que
p

1+x2 −1 ∼0 x → 0
x2

2
. On en déduit que :

lim
x→0

sin(cos(x)−1)p
1+x2 −1

=−1.

Correction 49 On écrit :

3
√

x3 +x2 −x = x

(
3

√
1+ 1

x
−1

)
= x

(
1+ 1

3x
+o

(
1

x2

)
−1

)
= 1

3
+o

(
1

x

)
.

On en déduit que :

lim
x→+∞

3
√

x3 +x2 −x = 1

3
.

Correction 50 On a
p

1+x2 − 1 ∼0 x → 0
x2

2
et cos(x)− 1 ∼0 x → 0− x2

2
. On en déduit

que

p
1+x2 −1

cos(x)−1
∼0 x → 0−1, donc :

lim
x→0

p
1+x2 −1

cos(x)−1
=−1.

Correction 51 On a :

1

x2 − 1

ln(1+x2)
= 1

x2

(
1− x2

ln(1+x2)

)
= 1

x2

1− x2

x2 − x4

2
+o(x4)


= 1

x2

1− 1

1− x2

2
+o(x2)

= 1

x2

(
1−

(
1+ x2

2
+o(x2)

))

= 1

2
+o(1)

On a donc lim
x→0

(
1

x2 − 1

ln(1+x2)

)
= 1

2
.

Correction 52 On pose h = 1

x
. On a :

x sin

(
1

x

)
= sinh

h
= 1− h2

6
+o(h2)

donc :

ln

(
sinh

h

)
=−1

6
h2 +o(h2)

et
1

h2 ln

(
sinh

h

)
=−1

6
+o(1).

On en déduit, par composition des limites, que lim
h→0

(
sin(h)

h

) 1
h2

= e−
1
6 . Comme

lim
h→0

(
sin(h)

h

) 1
h2

= lim
x→+∞

(
x sin

(
1

x

))x2

, on a la limite souhaitée.

Correction 53 La fonction arcsin est de classe C ∞ sur ]−1,1[, elle admet donc un DL en

0 à tout ordre. Pour le déterminer, on va intégrer celui de sa dérivée. On sait que
1p

1−x2
−

1 ∼0 x → 0
x2

2
, donc

1p
1−x2

= 1+ x2

2
+o(x2) et, en intégrant :

arcsin(x) = x + x3

6
+o(x3).

De même, la fonction arctan est de classe C ∞ sur R, elle admet donc un DL en 0 à tout

ordre. Pour le déterminer, on va intégrer celui de sa dérivée. On sait que
1

1+x2 = 1−x2 +
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o(x2) donc arctan(x) = x − x3

3
+o(x3). On écrit :

tan(x)− sin(x)

arcsin(x)−arctan(x)
= x + x3

3 −x + x3

6 +o(x3)

x + x3

6 −x + x3

3 +o(x3)

=
x3

2 +o(x3)
x3

2 +o(x3)
= 1+o(1).

On en déduit que :

lim
x→0

tan(x)− sin(x)

arcsin(x)−arctan(x)
= 1.

Correction 54 On écrit sin4(x) ∼0 x → 0x4, déterminons un équivalent du numérateur.
On écrit :

ch(sin(x))−ch(x)

= ch

(
x − x3

6
+o(x3)

)
−ch(x)

= 1+ 1

2

(
x − x3

6
+o(x3)

)2

+ 1

4!

(
x − x3

6
+o(x3)

)4

−1− x2

2
− x4

4!
+o(x4)

= 1+ 1

2

(
x2 − 2x4

6
+o(x4)

)
+ x4

4!
−1− x2

2
− x4

4!
+o(x4)

= −x4

6
+o(x4).

On en déduit que ch(sin(x))−ch(x) ∼0 x → 0− x4

6
d’où :

ch(sin(x))−ch(x)

sin4(x)
∼0 x → 0− 1

6
,

ce qui implique lim
x→0

(sin(x))−4(ch(sin(x))−ch(x)) =−1

6
.

Correction 55 On a sin(x)− tan(x) = x − x3

6
−x − x3

3
+o(x3) =−x3

2
+o(x3). On a égale-

ment :

esin x = ex− x3
6 +o(x3)

= 1+
(
x − x3

6

)
+ 1

2

(
x − x3

6

)2 + 1

6

(
x − x3

6

)3 +o(x3)

= 1+x + x2

2
+o(x3)

et

etan x = e
x+

x3

3
+o(x3)

= 1+
(

x + x3

3

)
+ 1

2

(
x + x3

3

)2

+ 1

6

(
x + x3

3

)3

= 1+x + x2

2
+ x3

2
+o(x3)

.

On en déduit que esin(x) − etan(x) = −x3

2
+o(x3). Le quotient est équivalent à 1, c’est par

conséquent sa limite.

Correction 56 On a :

ex −cos x −x = 1+x + x2

2
+ x3

6
−1+ x2

2
−x +o(x3)

= x2 +o(x3).

On en déduit que la limite est 1.

Correction 57 La fonction arcsin est de classe C ∞ sur ]−1,1[, elle admet donc un DL en

0 à tout ordre. Pour le déterminer, on va intégrer celui de sa dérivée. On sait que
1p

1−x2
−

1 ∼0 x → 0
x2

2
, donc

1p
1−x2

= 1+ x2

2
+o(x2) et, en intégrant :

arcsin(x) = x + x3

6
+o(x3).

Le numérateur est donc équivalent à −x3

6
et le dénominateur est équivalent à x3 donc la

limite vaut −1

6
.
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Correction 58 On pose x = 1+h avec h qui tend vers 0. On écrit :

xx −x = exp((1+h) ln(1+h))− (1+h)

= exp

(
(1+h)

(
h − h2

2
+o(h2)

))
−1−h

= exp

(
h − h2

2
+h2 +o(h2)

)
−1−h

= exp

(
h + h2

2
+o(h2)

)
−1−h

= 1+
(
h + h2

2

)
+ 1

2

(
h + h2

2

)2

−1−h +o(h2)

= 1+h + h2

2
+ h2

2
−1−h +o(h2)

= h2 +o(h2)
= (x −1)2 +o ((x −1))2 .

On a donc xx −x ∼0 x → 1(x −1)2.
On écrit ensuite :

1−x + ln(x) =−h + ln(1+h) =−h +h − h2

2
+o(h2) =−h2

2
+o(h2)

=− (x −1)2

2
+o

(
(x −1)2

) .

On en déduit que 1 − x + ln(x) ∼0 x → 1 − (x −1)2

2
. En faisant le quotient, on obtient

xx −x

1−x + ln(x)
∼0 x → 1−2 donc lim

x→1

xx −x

1−x + ln(x)
=−2.

Correction 59 On a tan(x) = 2tan
( x

2

)
1− tan2 x

2

donc :

tan(x) ln
(
tan

( x

2

))
= 2tan

( x
2

)
ln

(
tan

( x
2

))
1− tan2 x

2

.

Quand x tend vers 0, le dénominateur tend vers 1 et le numérateur tend vers 0 par le
théorème de croissances comparées. En passant à l’exponentielle, on en déduit que :

lim
x→0

(
tan

x

2

)tan x
= 1.

Correction 60 On écrit f (x) = ex2 −cos x

x2 = 3

2
+ 11

24
x2 +o(x2). Il est alors clair que f est

continue en 0 et, comme elle admet un DL à l’ordre 1 en 0, elle est dérivable en 0. On
peut, de plus, affirmer que f ′(0) = 0 car le coefficient devant x est nul.

Correction 61 On a cos(x)−1 =−x2

2
+o(x3) et sin2(x) = x2 +o(x3). On en déduit que :

f (x) = − x2

2 +o(x3)

x2 +o(x3)
= − 1

2 +o(x)

1+o(x)
=−1

2
+o(x).

On en déduit que f admet une limite finie en 0 égale à −1

2
, elle est donc prolongeable

par continuité en 0 en posant f (0) = −1

2
. De plus, la fonction prolongée est continue et

admet un DL1 en 0, on peut donc affirmer qu’elle est dérivable.

Correction 62 On écrit f (x) = ln(1+x)− sin x

x
=−1

2
x +o(x). Il est alors clair que f est

continue en 0 et, comme elle admet un DL à l’ordre 1 en 0, elle est dérivable en 0. On

peut, de plus, affirmer que f ′(0) =−1

2
en identifiant le coefficient devant x.

Correction 63 On écrit :

ecos(x) = e1− x2
2 +o(x2) = e.e−

x2
2 +o(x2) = e

(
1− x2

2
+o(x2)

)
= e − ex2

2
+o(x2).

On en déduit que l’équation de la tangente à f en x = 0 est la droite d’équation y = e. Au

voisinage de 0, on a x 7→ f (x)−e du même signe que son équivalent (qui est −ex2

2
) donc

la tangente est au-dessus de la courbe.

Correction 64 On écrit :

1

3+ sin(x)
= 1

3

1

1+ sin(x)
3

= 1

3

1

1+ x
3 +o(x2)

= 1

3

(
1− x

3
+

( x

3

)2
+o(x2)

)
= 1

3
− x

9
+ x2

27
+o(x2).

On en déduit que l’équation de la tangente à f en x = 0 est y = 1

3
− x

9
. On a, de plus,

f (x)−
(

1

3
− x

9

)
∼0 x → 0

x2

27
donc, au voisinage de 0, on a f (x) Ê 1

3
− x

9
et la courbe est

au-dessus de la tangente.
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Correction 65 On a f dérivable de dérivée positive s’annulant ponctuellement donc
f est strictement croissante. Ainsi, f est injective. De plus, ∀x ∈ R, x − 1 É f (x) É x + 1
donc lim

x→+∞ f (x) =+∞ et lim
x→−∞ f (x) =−∞. La fonction f étant continue, son image vaut

R donc elle est surjective. On a montré que f est bijective, déterminons un DL3 de sa
réciproque en 0. On a f (0) = 0 donc f −1(0) = 0.

On a f (x) = x+x− x3

6
+o(x4) donc f (x) ∼0 x → 02x. On pose y = f (x), on a y → 0 quand

x → 0 ce qui permet d’obtenir f −1(y) ∼0 y → 0
y

2
. Cherchons maintenant un équivalent

de f −1(y)− y

2
. Avec le même changement de variable, on a f −1(y)− y

2
= x − f (x)

2
et on

sait que x − f (x)

2
∼0 x → 0

x3

12
en utilisant le DL de f . On a donc :

f −1(y)− y

2
∼0 y → 0

(
f −1(y)

)3

12
,

et comme on a montré que f −1(y) ∼0 y → 0
y

2
, on a en déduit que

(
f −1(y)

)3

6
∼0 y → 0

y3

96
.

Ainsi, on a le DL suivant :

f −1(y) = y

2
+ y3

96
+o(y3).

On peut aussi dire que sur ]−π,π[, la dérivée de f ne s’annule pas donc f −1 est déri-
vable 3 fois et admet donc un DL3 de la forme f −1(x) = ax +bx3 +o(x4) puisque f est
impaire (et donc f −1 aussi).

On a f (x) = 2x − x3

6
+o(x4) donc

f ◦ f −1(x) = 2 f −1(x)− 1

6
f −1(x)3 +o( f −1(x4))

= 2(ax +bx3 +o(x4))− 1

6

(
ax +bx3 +o(x4)

)+o(x4)

car f −1(x) ∼ x

2

= 2ax +2bx3 − a3x3

x3 +o(x4)

Comme f −1 ◦ f (x) = x, on a, par unicité du DL (de f ◦ f −1),2a = 1

2b − a3

6
= 0

d’où a = 1

2
et b = 1

12×8
= 1

96
. On retrouve bien le même DL que ci-dessus.

Enfin, on peut utiliser la dérivée.

On a f ′(x) = 2− x2

2
+o(x2) donc

f ′ ◦ f −1(x) = 2− f −1(x)2

2
+o

(
f −1(x)2

)
= 2− x2

8
+o(x2)

car f −1(x) ∼ x

2

On en déduit que
1

f ′ ◦ f −1(x)
= 1

2− x2

8
+o(x2)

= 1

2
× 1

1− x2

16
+o(x2)

= 1

2

(
1+ x2

16
+o(x2)

)
= 1

2
+ x2

32
+o(x2)

On intègre :

f −1(x) = x

2
+ x3

96
+o(x3).

Correction 66 On a :(
1+ 1

x

)x

= exp

(
x ln

(
1+ 1

x

))
= exp

(
x

(
1

x
− 1

2x2 + 1

3x3 +o

(
1

x2

)))
= exp

(
1− 1

2x
+ 1

3x2 +o

(
1

x

))
= e.exp

(
− 1

2x
+ 1

3x2 +o

(
1

x

))
= e

(
1− 1

2x
+ 1

3x2 + 1

2

(
− 1

2x
+ 1

3x2

)2

+o

(
1

x2

))
= e

(
1− 1

2x
+ 1

3x2 + 1

8x2 +o

(
1

x2

))
= e

(
1− 1

2x
+ 11

24x2 +o

(
1

x2

))
.

On en déduit que :

e −
(
1+ 1

x

)x

= e

2x
− 11e

24x2 +o

(
1

x2

)
.
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On écrit :

1

x
ln

(
e

2x
− 11e

24x2 +o

(
1

x2

))
= 1

x
ln

( e

2x

)
+ 1

x
ln

(
1− 11

12x
+o

(
1

x

))
.

On a
1

x
ln

(
1− 11

12x
+o

(
1

x

))
∼0 +∞− 11

12x2 et, par le théorème de croissances comparées,

lim
x→+∞

1

x
ln

( e

2x

)
= 0 donc la limite est également nulle. En passant à l’exponentielle, on

obtient que la limite recherchée est 1.

Correction 67

1. On a lim
x→0

f (x) = 0 donc f est continue en 0. On forme le taux d’accroissement en

0, on a
f (x)− f (0)

x −0
= f (x)

x
= x1/x ce qui tend, à nouveau, vers 0 en 0 donc f est

dérivable en 0 (et f ′(0) = 0. Sur R?+, f est dérivable par les théorèmes usuels.

2. On pose x = 1+ y , y → 0. On a donc :

(
x + 1

x

)
ln(x) =

(
1+ 1

1+ y

)
ln(1+ y)

= (
1+ (

1− y + y2 − y3 +o(y3)
))(

y − y2

2
+ y3

3
+o(y3)

)
= 2y −2y2 + 13

6
y3 +o(y3).

d’où :

exp

((
1+ 1

1+ y

)
ln(1+ y)

)
= 1+2y −2y2 + 13

6
y3 + 1

2

(
4y2 −8y3

)+ 1

6
8y3 +o(y3)

= 1+2y − 1

2
y3 +o(y3).

On en déduit que :

f (x) = 1+2(x −1)− 1

2
(x −1)3 +o((x −1)3).

3. On a f (x)−(1+2(x−1)) ∼−1

2
(x−1)3 et x 7→ −1

2
(x−1)3 change de signe au voisinage

de 1. Le graphe de f admet un point d’inflexion en 1.

Correction 68

1. Pour tout n ∈N?, on pose fn : x 7→ xn +x −1. La fonction est strictement croissante
sur R+ et fn(0) =−1, fn(1) = 1. On en déduit, par le TVI, que fn s’annule entre 0 et
1. Comme elle est strictement croissante, ce point d’annulation est unique.

2. Pour tout n ∈ N?, xn ∈]0,1[ donc xn+1
n < xn

n . On a donc fn+1(xn) < fn(xn). Or
fn(xn) = 0 = fn+1(xn+1). On en déduit, comme fn+1 est croissante, que xn < xn+1

donc la suite (xn)n∈N est bien croissante. On a déjà montré à la question précé-
dente qu’elle était majorée par 1.

3. D’après le thm de limite monotone, la suite converge vers un réel ` É 1. Si on
suppose, par l’absurde, que ` 6= 1, alors xn

n = en ln(xn ) → 0 d’où xn
n + xn → `. Or,

xn
n +xn = 1, on obtient une contradiction. On a donc bien xn → 1.

4. On a xn
n = 1−xn donc n ln(xn) = ln(1−xn). En posant yn = 1−xn , on a yn → 0 donc

ln(1− yn) ∼ −yn . Comme n ln(1− yn) = ln(yn) on en déduit ln(yn) ∼ −nyn . On a

donc bien yn ∼− ln(yn)

n
.

On écrit nyn ∼− ln(yn), on a donc nyn =− ln(yn)+o
(
ln(yn)

)
puis

ln(nyn) = ln
(− ln(yn)+o

(
ln(yn)

))
,

ou encore

ln(n)+ ln(yn) = ln
(− ln(yn)+o

(
ln(yn)

))
.

On divise par ln(yn) l’égalité précédente, on a

ln(n)

ln(yn)
+1 = ln

(− ln(yn)+o
(
ln(yn)

))
ln(yn)

.

Reste à montrer que le membre de droite tend vers 0 ce qui peut se voir en posant

an = ln
(− ln(yn)+o

(
ln(yn)

))
. Alors

ln
(− ln(yn)+o

(
ln(yn)

))
ln(yn)

∼ ln(an)

−an
et comme

lim
n→+∞an =+∞ puisque yn → 1, on a, par croissances comparées, lim

n→+∞
ln(an)

an
= 0.

Ainsi,
ln(n)

ln(yn)
+1 → 0 d’où ln(n) ∼− ln(yn).

5. En combinant les deux équivalents de la question précédente, on obtient yn ∼
ln(n)

n
donc

yn = ln(n)

n
+o

(
ln(n)

n

)
,

on en déduit que

xn = 1− ln(n)

n
+o

(
ln(n)

n

)
.
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Correction 69 On écrit

1

x −1
= 1

x
.

1

1− 1
x

= 1

x

(
1+ 1

x
+o

(
1

x

))
= 1

x
+ 1

x2 +o

(
1

x2

)
.

On fait ensuite un DL de exponentielle en 0 :

e
1

x−1 = e

1

x
+

1

x2 +o

(
1

x2

)

= 1+
(

1

x
+ 1

x2 +o

(
1

x2

))
+ 1

2

(
1

x
+ 1

x2 +o

(
1

x2

))2

= 1+ 1

x
+ 1

x2 + 3

2x2 +o

(
1

x2

)
.

Enfin, on multiplie par x +1. On obtient :

(x +1)e
1

x−1 = (x +1)

(
1+ 1

x
+ 1

x2 + 3

2x2 +o

(
1

x2

))
= x +1+1+ 1

x
+ 3

2x
+o

(
1

x

)
= x +2+ 5

2x
+o

(
1

x

)
.

On en déduit que f (x)− (x +2) → 0 donc le graphe de f admet pour asymptote la droite

d’équation y = x + 2. De plus, f (x) − (x + 2) ∼+∞
5

2x
donc f (x) − (x + 2) est positif au

voisinage de +∞. On en déduit que le graphe de f est au-dessus de l’asymptote.

Correction 70 On écrit arctan

√
x +2

x +1
= arctan

√√√√1+ 2
x

1+ 1
x

.

On a
1

1+ 1
x

= 1− 1

x
+ 1

x2 +o

(
1

x2

)
donc :

1+ 2
x

1+ 1
x

=
(
1+ 2

x

)(
1− 1

x
+ 1

x2 +o

(
1

x2

))
= 1+ 2

x
− 1

x
− 2

x2 + 1

x2 +o

(
1

x2

)
= 1+ 1

x
− 1

x2 +o

(
1

x2

)
.

On en déduit que :√√√√1+ 2
x

1+ 1
x

=
√

1+ 1

x
− 1

x2 +o

(
1

x2

)
= 1+ 1

2

(
1

x
− 1

x2 +o

(
1

x2

))
− 1

8

(
1

x
− 1

x2 +o

(
1

x2

))2

= 1+ 1

2x
− 1

2x2 − 1

8x2 +o

(
1

x2

)
= 1+ 1

2x
− 5

8x2 +o

(
1

x2

)
.

Enfin, on doit calculer un DL à l’ordre 2 de h 7→ arctan(1+h) en 0. Pour cela, on fait un

DL à l’ordre 1 en 0 de h 7→ 1

1+ (1+h)2 . On écrit :

1

1+ (1+h)2 = 1

2+2h +h2

= 1

2

(
1

1+h + h2

2

)
= 1

2

(
1−

(
h + h2

2

)
+o(h)

)
= 1

2
(1−h +o(h))

= 1

2
− h

2
+o(h).

On intègre le développement limité, on obtient :

arctan(1+h) = arctan(1)+ h

2
− h2

4
+o

(
h2)= π

4
+ h

2
− h2

4
+o(h2).

On pose h = 1

2x
− 5

8x2 +o

(
1

x2

)
. Ainsi, o

(
h2

)= o

(
1

x2

)
d’où :

arctan

√
x +2

x +1
= π

4
+ 1

2

(
1

2x
− 5

8x2 +o

(
1

x2

))
− 1

4

(
1

2x
− 5

8x2 +o

(
1

x2

))2

= π

4
+ 1

4x
− 5

16x2 − 1

16x2 +o

(
1

x2

)
= π

4
+ 1

4x
− 3

8x2 +o

(
1

x2

)
.

Le graphe admet la droite y = π

4
pour asymptote horizontale (ce que l’on savait déjà) et

grâce au développement asymptotique, on sait que le graphe est au-dessus de l’asymp-

tote au voisinage de +∞ car la fonction x 7→ f (x)− π

4
est du même signe que x 7→ 1

4x
au

voisinage de +∞.

18



Correction 71

1. On écrit

tan
(

y + π

4

)
= tan y +1

1− tan y
= (1+ tan y)(1+ tan y + tan2 y +o(tan2 y))
= (

1+ y +o(y2)
)(

1+ y + y2 +o(y2)
)

= 1+2y +2y2 +o(y2)

On en déduit que tan
(

y + π

4

)
−1 ∼ 2y quand y tend vers 0.

2. On pose y + π

4
= arctan(X + 1). On a bien y → 0 quand X → 0. De plus, on

a X + 1 = tan
(

y + π

4

)
et y = arctan(X + 1) − π

4
. D’après ce qui précède, on a

tan
(

y + π

4

)
−1 ∼ 2y . On en déduit que (X +1)−1 ∼ 2

(
arctan(X +1)− π

4

)
soit encore

arctan(X +1)−π
4
∼ X

2
quand X tend vers 0. On a donc arctan(X +1) = π

4
+ X

2
+o(X ).

On recommence : tan
(

y + π

4

)
−1−2y ∼ 2y2 donc (X +1)−1−2(arctan(X +1)− π

4
) ∼

2
(
arctan(X +1)− π

4

)2
, et, en utilisant la question précédente, on obtient :

(X +1)−1−2(arctan(X +1)− π

4
) ∼ X 2

2

On en déduit que

arctan(X +1) = π

4
+ X

2
− X 2

4
+o(X 2)

3. On cherche à déterminer l’équation de l’asymptote en −∞. On écrit :

x

x −1
= 1

1− 1
x

= 1+ 1

x
+o

(
1

x

)

quand x →−∞. On pose X = x

x −1
−1. On a bien X → 0 quand x →−∞ et d’après

la question précédente, on a donc :

arctan
( x

x −1

)
= π

4
+ 1

2

(
1

x
+o

(
1

x

))
+o

(
1

x

)
= π

4
+ 1

2x
+o

(
1

x

)
.

On a donc x arctan
( x

x −1

)
= 1

2
+ xπ

4
+o(1). On en déduit que la droite d’équation

y = 1

2
+ πx

4
est asymptote au graphe de la fonction quand x tend vers −∞.

4. Pour déterminer la position de l’asymptote par rapport au graphe, il faut détermi-

ner le signe de x arctan
( x

x −1

)
−

(
1

2
+ xπ

4

)
au voisinage de −∞. D’après la question

2, on sait que

arctan(X +1) = π

4
+ X

2
− X 2

4
+o

(
X 2) .

On va y injecter le développement en o

(
1

x2

)
de

x

x −1
. On a

x

x −1
= 1

1−1/x
= 1+ 1

x
+ 1

x2 +o

(
1

x2

)
,

donc :

arctan
( x

x −1

)
= π

4
+ 1

2x
+ 1

2x2 − 1

4x2 +o

(
1

x2

)
,

d’où :

x arctan
( x

x −1

)
= xπ

4
+ 1

2
+ 1

4x
+o

(
1

x

)
.

On en déduit que la différence entre la fonction et l’équation de l’asymptote est

équivalente, en −∞ à
1

4x
. La fonction x 7→ 1

4x
étant négative au voisinage de −∞,

on en déduit que le graphe est en-dessous de l’asymptote.
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