Correction du DM n 5
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Si on veut faire le développement en o <—2>, on écrit :
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Ezxercice 4 On écrit
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Ezxercice 8 1. On utilise la relation de Pascal :
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4. On fait le produit des deux valeurs trouvées a la question précédente :
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Pour calculer 'autre produit, on peut écrire
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