Correction du DM n 6

FEzxercice 1

ii.

1. (a) i Onnote N = (a;mi;)i<ij<m- La j-éme colonne de NNV est égale a la j-éme
colonne de M multipliée par le réel a;. Le déterminant étant linéaire par rapport a
chaque colonne, on obtient

det(N) = (ﬁ Ozj) det(M).

On pose R = (a;ymij)i<ijem- On remarque que R = (a;jm;;)1<ij<m done, d’aprés

la question précédente, det(R") = (H aj> det(MT). Or det(R") = det(R) et
=1

det(M ") = det(M), on en déduit donc que det(R) = det(N).
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On sait que (§ ) + (Oﬁl) = (2]:) que l'on va utiliser sous la forme

B+1\ (B _( 8
a+1 a a+1
En notant A = (aj;) la nouvelle matrice, la formule précédente donne (on doit

distinguer le cas de la premiére colonne)

L i_3
Vi>2, a;, =0 et a;’j:(p%—l%—] )

p+i—1

Les opérations effectuées laissant le déterminant invariant, on a det(A,) = det(A;).
En effectuant un développement par rapport a la premiére colonne, on obtient

d, = det(A) = det (<p+z+.j - 3))
pt+i—1 2<i,j<n—p+1
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En opérant un changement d’indice (¢/ =i — 1 et j' = j — 1) ceci s’écrit
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On en déduit immédiatement que

Vp e [|0,n]], dy=d, =1
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colonne par ik Le déterminant étant multilinéaire, on a alors
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(b) Comme (Z 1._‘7 ) = ( +])', on peut factoriser chaque ligne de A, par % puis chaque

(c) On a

et donc



