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DS 6 Durée : 4h

Devoir d’entrainement 6.

Exercice 1.

On considère dans tout ce problème la fonction F définie sur R?+ par :

F (x) = sin x

x

1. Montrer que F est continue sur R?+.

2. Montrer que F est prolongeable par continuité en 0. On notera encore F ce prolongement.

3. Montrer que F est C 1 et précisez les valeurs de F ′(0).

4. Montrer que les réels strictement positifs tels que F (x) = 0 constituent une suite (ak )kÊ1 stricte-
ment croissante. On donnera explicitement la valeur de ak .

5. Soit k ∈N?. Montrer sans calcul qu’il existe un réel xk ∈]ak , ak+1[ tel que F ′(xk ) = 0.

6. Montrer que la fonction F ′ est de même signe que h : x 7→ x cos x − sin x sur R?+.

7. Démontrer que pour tout k ∈N?, la fonction h est strictement monotone sur [ak , ak+1].

8. En déduire l’unicité du réel xk défini dans la question 5).

9. Établir que xk ∈
]

ak , ak +
π

2

[
.

10. Calculer lim
k→+∞

xk puis déterminer un équivalent simple de xk .

11. Exprimer xk à l’aide de kπ et arctan

(
1

xk

)
.

12. En déduire la limite de xk −kπ.

1



Exercice 2.

Soit a et b deux réels tels que a < b et f : [a,b] →R une fonction de classe C 2 sur [a,b].
On suppose en outre que :

• f (a) > 0 et f (b) < 0
• f ′ est strictement négative sur [a,b].

Partie I. Principe de la méthode de Newton.

1. Montrer que l’équation f (x) = 0 admet une unique solution dans ]a,b[, que l’on notera α.

Le but de ce problème est de présenter une méthode pour obtenir une valeur approchée de α.
Cette méthode consiste, à partir d’une première approximation x0 de α, à linéariser l’équation
f (x) = 0 au voisinage de x0, donc à remplacer f par sa tangente en x0.

2. Soit x0 ∈ [a,b]. Déterminer l’abscisse du point d’intersection de l’axe des abscisses et de la tan-
gente à la courbe représentative de f en (x0, f (x0)).

On introduit alors la fonction g : [a,b] →R définie par :

∀x ∈ [a,b], g (x) = x − f (x)

f ′(x)
.

On obtient ainsi une nouvelle approximation de α en prenant x1 = g (x0). En poursuivant, on est
ainsi conduit à étudier l’existence, puis la convergence vers α, de la suite (xn) définie par la rela-
tion xn+1 = g (xn).

Partie II. Étude de la fonction g .

1. Montrer que g est de classe C 1 sur [a,b], et calculer sa dérivée.

2. Calculer g (α) et g ′(α).

3. On souhaite prouver qu’il existe K > 0 tel que pour tout x ∈ [a,b], |g (x)−α| É K |x −α|2.

(a) Justifier l’existence d’un couple (m, M) ∈ (R∗+)2 tel que

∀x ∈ [a,b], | f ′(x)| Ê m et | f ′′(x)| É M

(b) Montrer qu’il existe L > 0 tel que ∀t ∈ [a,b], | f (t )| É L|t −α|
(c) Soit x ∈ [a,b]. En utilisant l’inégalité des accroissements finis sur [x,α] (ou [α, x]), justifier que

|g (x)−α| É M

m2
L|x −α|2.

(d) Conclure.

Partie III. Étude de la suite (xn)n∈N.

Soit (xn) la suite récurrente définie par :

{
x0 ∈ [a,b]
∀n ∈N, xn+1 = g (xn)

1. Dans cette question uniquement, on suppose de plus que f ′′ > 0 sur [a,b] et x0 = a.

(a) Étudier les variations de g .

(b) Justifier que (xn)n∈N est bien définie, croissante et majorée par α.
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(c) En déduire que la suite (xn)n∈N converge vers α.

2. On revient au cas général.

(a) Justifier qu’il existe h > 0 tel que en notant I = [α−h,α+h], on ait K h < 1 et I ⊂ [a,b].

(b) Établir que : ∀x ∈ I , g (x) ∈ I . En déduire que si x0 ∈ I alors pour tout n ∈N, xn est bien définie
et xn ∈ I .

On suppose dans toute la suite du problème que x0 ∈ I .

(c) Montrer que :

∀n ∈N, |xn −α| É 1

K

(
K |x0 −α|

)2n

(∗)

(d) En déduire que la suite (xn)n∈N converge vers α.
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Exercice 3.

On considère la fonction f définie sur l’intervalle I =
[

0,
π

4

]
par : f (x) = 1

cos x
.

Partie 1 : Étude de la bijection réciproque de f

1. Montrer que f réalise une bijection de I dans un intervalle J que l’on précisera. On note f −1 la
bijection réciproque.

2. Donner sur le même graphique l’allure des courbes représentatives de f et de f −1. On construira

les tangentes à la courbe de f en 0 et en
π

4
.

3. Justifier que : ∀x ∈ J ,


cos

(
f −1(x)

)= 1

x

sin
(

f −1(x)
)=√

1− 1

x2

4. Montrer que f −1 est dérivable sur J \ {1} et montrer que :

∀x ∈ J \ {1},
(

f −1)′ (x) = 1

x
p

x2 −1

5. En déduire le développement limité en
p

2 de f −1 à l’ordre 1.

Partie 2 : Étude des dérivées successives de f

1. Justifier que f est de classe C ∞ sur I , on note f (n) la dérivée n-ième de f sur I .

2. Montrer que pour tout entier naturel n non nul, il existe un polynôme Pn tel que :

∀x ∈ I , f (n)(x) = Pn(sin x)

cosn+1(x)

et exprimer Pn+1 à l’aide de Pn et P ′
n .

On admet qu’il est unique.

3. Déterminer les polynômes P1 et P2. En déduire le polynôme P3.

4. Déterminer, pour tout entier naturel n non nul, le degré et le coefficient dominant du polynôme
Pn .
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Correction du DS d’entrainement n 6

Correction 1 On considère dans tout ce problème la fonction F définie sur R?+ par :

F (x) = sin x

x

1. Montrer que F est continue sur R?+.

F est le quotient de deux fonctions continues dont le dénominateur ne s’annule pas sur R?+. Elle
est donc continues sur R?+.

Tous ceux qui m’ont parlé de la fonction sin(x) ou de la fonction x ont eu 0. À ce stade là, je me dis
que vous le faites exprès.

2. Montrer que F est prolongeable par continuité en 0. On notera encore F ce prolongement.

On a lim
x→0

F (x) = 1 car sin x ∼ x en 0. On peut donc prolonger F par continuité en 0 en posant

F (0) = 1.

Attention à ne pas écrire "on a F (0) = 1", F n’est pas définie en 0 ! C’est vous qui imposez la valeur
en 0 pour obtenir un prolongement continu.

3. Montrer que F est C 1 et précisez la valeur de F ′(0).

La fonction F est C 1 sur R?+ en tant que quotient de deux fonctions dérivables dont le dénomina-
teur ne s’annule pas. Pour tout x ∈R?+, on a :

F ′(x) = x cos x − sin x

x2
.

On a donc

F ′(x) = x(1+o(x))−x +o(x2)

x2
= o(x)2

x2
= o(1),

donc lim
x→0

F ′(x) = 0. Par le théorème de la limite de la dérivée, on a F dérivable en 0 et F ′ continue

en 0 donc F est de classe C 1 sur R.

Contrairement à la question précédente, vous n’avez pas votre mot à dire sur F ′(0). Le thm de la
limite de la dérivée dit que F est dérivable en 0 et que F ′(0) vaut la limite réelle de la dérivée, vous
n’avez pas à poser quoi que ce soit. Si vous calculez la limite du taux d’accroissement, vous montrez
que F est dérivable en 0 mais pas qu’elle est C 1.

4. Montrer que les réels strictement positifs tels que F (x) = 0 constituent une suite (ak )kÊ1 stricte-
ment croissante. On donnera explicitement la valeur de ak .

On a ∀k ∈N?, ak = kπ, la suite (ak )kÊ1 est donc clairement croissante.

5. Soit k ∈N?. Montrer sans calcul qu’il existe un réel xk ∈]ak , ak+1[ tel que F ′(xk ) = 0.
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Pour tout k ∈ N?, on a F (ak ) = F (ak+1), F est continue sur [ak , ak+1] et dérivable sur ]ak , ak+1[.
Par le théorème de Rolle, il existe xk ∈]ak , ak+1[ tel que F ′(xk ) = 0.

Pour avoir tous les points, il fallait citer Rolle et citer correctement ses hypothèses. Certains utilisent
le TAF. Ce n’est pas faux mais c’est étrange.

6. Montrer que la fonction F ′ est de même signe que h : x 7→ x cos x − sin x sur R?+.

On a montré précédemment que, pour tout x ∈ R?+, F ′(x) = h(x)

x2
. On a donc bien F ′ du même

signe que h.

7. Démontrer que pour tout k ∈N?, la fonction h est strictement monotone sur [ak , ak+1].

La fonction h est dérivable et on a :

∀x > 0,h′(x) =−x sin x +cos x −cos x =−x sin x.

Sur un intervalle de la forme [ak , ak+1] = [kπ, (k +1)π], la fonction sin est de signe constant. On
en déduit que h′(x) est de signe constant sur [ak , ak+1], la fonction h est strictement monotone
sur cet intervalle.

Pas besoin de disjonction de cas ici, on ne demande pas le sens de monotonie. Me dire que la fonc-
tion ne s’annule pas sur cet intervalle est incomplet, il faut préciser qu’elle est continue pour avoir
qu’elle est de signe contant.

8. En déduire l’unicité du réel xk défini dans la question 5).

Pour tout k ∈N?, la fonction h est strictement monotone sur l’intervalle [ak , ak+1], elle y est donc
injective et s’annule au plus une fois. Comme F ′(x) = 0 ⇔ h(x) = 0, on en déduit que h et donc F ′

s’annule exactement une fois sur l’intervalle [ak , ak+1]. On a montré que F ′ s’annulait en xk , on
sait désormais que ce réel xk est unique.

Il est totalement faux de dire que F ′ est monotone.

9. Établir que xk ∈
]

ak , ak +
π

2

[
.

Montrons que F ′(ak ) et F ′
(
ak +

π

2

)
sont de signes opposés. Il suffit, pour cela, de montrer que

h(ak ) et h
(
ak + π

2

)
le sont. On a :

h(ak ) = ak cos ak − sin ak = (−1)k ak ,

et h
(
ak + π

2

)= (
ak + π

2

)
cos

(
ak + π

2

)−sin
(
ak + π

2

)=−(
ak + π

2

)
sin(ak )−cos(ak ) = (−1)k+1

(
ak + p

2

)
.

On a bien h(ak ) et h
(
ak + π

2

)
de signes opposés donc, F ′ étant continue, F ′ s’annule dans

]
ak , ak +

π

2

[
(d’après le théorème des valeurs intermédiaires). Par unicité de xk , on a xk ∈

]
ak , ak +

π

2

[
.

Là encore, pas besoin de faire de disjonction de cas. Certains me montre qu’il existe un unique

xk ∈
]

ak , ak +
π

2

[
tel que F ′(xk ) = 0. C’est problématique car xk est déjà défini. Dites que F ′ s’annule

sur cet intervalle par le TVI puis dites que ce point d’annulation est nécessairement xk par unicité
de ce dernier.

10. Calculer lim
k→+∞

xk puis déterminer un équivalent simple de xk .

On a lim
k→+∞

ak =+∞ donc, par encadrement, lim
k→+∞

xk =+∞.
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On a kπÉ xk É kπ+ π

2
, donc 1 É xk

kπ
É 1+ 1

2k
. Par encadrement,

xk

kπ
−→

k→+ inf
1 donc xk ∼ kπ.

C’est quoi le problème avec trouver un équivalent ?

11. On F ′(xk ) = 0 ⇔ tan(xk ) = xk . Évidemment, on ne peut pas dire que xk vaut alors arctan(xk )

puisque l’image de arctan est
]
−π

2
,
π

2

[
et que xk n’appartient pas à cet intervalle. En revanche,

tan étant π-périodique, on a tan(xk ) = tan(xk −kπ) et, d’après ce qui précède, xk −kπ ∈
]

0,
π

2

[
.

On a donc arctan(xk ) = arctan◦ tan(xk −kπ) = xk −kπ.

Ainsi, xk = kπ+arctan(xk ) = kπ+ π

2
−arctan

1

xk
, car, pour tout x > 0, arctan(x)+arctan

1

x
= π

2
.

12. On sait que xk →+∞ donc
1

xk
→ 0. Ainsi, xk −kπ→ π

2
.
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Correction 2 Soit a et b deux réels tels que a < b et f : [a,b] →R une fonction de classe C 2 sur [a,b].
On suppose en outre que :

• f (a) > 0 et f (b) < 0
• f ′ est strictement négative sur [a,b].

Partie I. Principe de la méthode de Newton.

1. La fonction f est continue sur [a,b] et f (a) f (b) < 0 donc, d’après le théorème des valeurs inter-
médiaires, f s’annule sur ]a,b[. Par ailleurs, comme elle est strictement décroissante, ce point
d’annulation est unique.

2. Soit x0 ∈ [a,b]. L’équation de la tangente au graphe de f en (x0, f (x0)) a pour équation

y = f (x0)+ f ′(x0)(x −x0).

Lorsque y = 0, on a x = x0 − f (x0)

f ′(x0)
.

Partie II. Étude de la fonction g .

1. La fonction f est de classe C 2 donc f ′ est de classe C 1. La fonction g est un quotient de fonctions
C 1 dont le dénominateur ne s’annule pas, elle est donc de classe C 1 sur [a,b].

∀x ∈ [a,b], g ′(x) = 1− f ′(x)2 − f (x) f "(x)

f ′(x)2
= f (x) f "(x)

f ′(x)2
.

" f est C 2 donc g est C 1" est clairement trop rapide comme justification pour espérer avoir les points.

2. On a g (α) =α car f (α) = 0 et g ′(α) = 0.

3. On souhaite prouver qu’il existe K > 0 tel que pour tout x ∈ [a,b], |g (x)−α| É K |x −α|2.

(a) On demande de justifier l’existence d’un couple (m, M) ∈ (R∗+)2 tel que

∀x ∈ [a,b], | f ′(x)| Ê m et | f ′′(x)| É M

La fonction f est C 1 donc f ′ est continue sur le segment [a,b], elle admet donc un maximum :
il existeβ ∈ [a,b] tel que ∀x ∈ [a,b], f ′(x) É f ′(β) < 0, on a alors ∀x ∈ [a,b],

∣∣ f ′(x)
∣∣Ê− f ′(β) > 0

ce qui donne bien l’existence de m.

Par ailleurs, la fonction f étant C 2, f " est continue sur le segment [a,b], elle est donc bornée :
∃M Ê 0, ∀x ∈ [a,b],

∣∣ f "(x)
∣∣ É M . Quitte à prendre un majorant plus grand, on peut supposer

M > 0.

Comme convenu, j’ai pénalisé lorsque le mot segment n’apparaissait pas. Ici, seul m > 0 néces-
site du travail, M pouvant toujours être choisi strictement positif puisque c’est un majorant.

(b) On a vu à la question précédente que f ′ était continue sur le segment [a,b] donc bornée. Il
existe donc L > 0 tel que ∀x ∈ [a,b],

∣∣ f ′(x)
∣∣É L. Par l’inégalité des accroissements finis, on en

déduit que

∀t ∈ [a,b], | f (t )− f (α)| É L|t −α|
puis, comme f (α) = 0,

∀t ∈ [a,b], | f (t )| É L|t −α|
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(c) Soit x ∈ [a,b]. En utilisant l’inégalité des accroissements finis sur [x,α] (ou [α, x]), justifier que

|g (x)−α| É M

m2
L|x −α|2.

On note I = [min(x,α),max(x,α)]. Alors

∀t ∈ I ,
∣∣g ′(t )

∣∣= ∣∣ f (t )
∣∣ ∣∣ f "(t )

∣∣
f ′(t )2

É ML

m2
|t −α| ,

on a donc

∀t ∈ I ,
∣∣g ′(t )

∣∣É ML

m2
|x −α| .

Par l’inégalité des accroissements finis appliquée entre x et α, on a alors∣∣∣∣g (x)− g (α)

x −α

∣∣∣∣É ML

m2
|x −α| ,

puis ∣∣g (x)−α
∣∣É ML

m2
|x −α|2 ,

car g (α) =α.

Ici x est fixé. Beaucoup ont majoré
∣∣g ′(x)

∣∣ par
ML

m2
|x −α|. Soit vous écrivez que ceci est vrai pour

tout x (alors que x est fixé !) et on peut imaginer que vous voulez dire

∀t ,
∣∣g ′(t )

∣∣É ML

m2
|t −α|

mais, dans ce cas, vous n’avez pas majoré par une constante donc vous ne pouvez pas appliquer
l’inégalité des accroissements finis. Soit vous majorez seulement

∣∣g ′(x)
∣∣ et, là encore, vous ne

pouvez pas utiliser l’inégalité des accroissements finis puisque vous n’avez majoré la dérivée
que pour une valeur donnée et pas pour tout l’intervalle.

On pouvait aussi le rédiger ainsi :

D’après le théorème des accroissements finis, on sait qu’il existe cx strictement compris entre
x et α tel que

g (x)− g (α)

x −α
= g ′(cx) = f (cx) f "(cx)

f ′2(cx)
,

On a donc ∣∣∣∣g (x)− g (α)

x −α

∣∣∣∣É ML

m2
|cx −α| É ML

m2
|x −α| ,

car cx est compris entre x et α.

(d) On a bien l’existence de K = ML

m2
tel que

∀x ∈ [a,b], |g (x)−α| É K |x −α|2.

Partie III. Étude de la suite (xn)n∈N.

Soit (xn) la suite récurrente définie par :

{
x0 ∈ [a,b]
∀n ∈N, xn+1 = g (xn)

1. Dans cette question uniquement, on suppose de plus que f ′′ > 0 sur [a,b] et x0 = a.
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(a) On remarque que g ′ est du signe de f car f " et f ′2 sont positives. On a donc

x

g ′(x)

g

a α b

+ 0 −

g (a)g (a)

αα

g (b)g (b)

(b) On a g (a) = a − f (a)

f ′(a)
> a car f (a) > 0 et f ′(a) < 0. On a donc g ([a,b]) = [g (a),α] ⊂ [a,b]. On

en déduit que l’intervalle [a,α] est stable par g .

Comme x0 ∈ [a,α], on en déduit que ∀n ∈N, xn ∈ [a,α] ⊂ [a,b] donc (xn)n∈N est bien définie.

Soit n ∈N, alors xn ∈ [a,α] donc f (xn) Ê 0, on a donc xn+1 = g (xn) = xn − f (xn)

f ′(xn)
Ê xn . On en

déduit que la suite (xn)n∈N est croissante.

On peut aussi dire que x0 É x1 et g est croissante sur [a,α] donc, comme ∀n ∈ N, xn ∈ [a,α],
on montre, par récurrence sur n et croissance de g sur cet intervalle, que ∀n ∈N, xn É xn+1.

Enfin, on a montré que ∀n ∈N, xn ∈ [a,α] donc la suite est bien majorée par α.

Beaucoup m’écrivent " l’intervalle est stable donc la suite est bien définie" ce qui est correct mais
est-ce que vous comprenez pourquoi ? est-ce que vous voyez que c’est parce que si l’intervalle est
stable, xn appartiendra toujours à l’ensemble de définition de g , on pourra donc calculer xn+1 ?
Par ailleurs, si vous ne dites pas que ∀n ∈N, xn ∈ [a,α], vous ne pouvez pas montrer que la suite
(xn)n∈N est croissante. En effet, que ce soit par le raisonnement direct ou pour l’hérédité, vous
avez besoin soit du signe de f (xn), soit de la monotonie de g et vous ne pouvez donc conclure
que si vous savez que tous les termes de la suite (xn)n∈N appartiennent à [a,α].
Enfin, certains me balancent encore des " la fonction est croissante donc la suite est monotone"
sans aucun argument ni preuve. Si ça vous amuse de ne pas prendre les points.

(c) La suite (xn)n∈N est croissante et majorée donc, par le théorème de la limite monotone, elle
converge. Par continuité de g , elle converge vers un point fixe de g . Or

g (x) = x ⇔ x − f (x)

f ′(x)
= x ⇔ f (x) = 0 ⇔ x =α.

On en déduit que (xn)n∈N converge vers α.

Vous devez justifier que la suite converge vers un point fixe de g puis que α est le seul point fixe
de g . Il est inacceptable de voir encore des " la suite est croissante, majorée par α donc converge
vers α".

2. On revient au cas général.

(a) On veut montrer qu’il existe h > 0 tel que K h < 1 et [α−h,α+h] ⊂ [a,b].

On choisit h tel que 0 < h < min

(
1

K
,α−a,b −α

)
ce qui est possible car le minimum est stric-

tement positif. On a bien h comme on le souhaite.

(b) On va montrer que pour un tel h fixé, on a I = [α−h,α+h] stable par g . Soit x ∈ I , alors
x −α ∈ [−h,h] et

∣∣g (x)−α
∣∣< K |x −α|2 ,

donc ∣∣g (x)−α
∣∣< K h2 puis

∣∣g (x)−α
∣∣< h,
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puisque K h < 1. On a donc

−h < g (x)−α< h d’où α−h < g (x) < h +α.

On a bien g (x) ∈ I donc I est un intervalle stable par g .

Si x0 ∈ I , par récurrence sur n, on montre que ∀n ∈N, xn ∈ I donc (xn)n∈N est bien définie et
tous les termes de la suite appartiennent à I .

On suppose dans toute la suite du problème que x0 ∈ I .

(c) On veut montrer que :

∀n ∈N, |xn −α| É 1

K

(
K |x0 −α|

)2n

(∗)

On raisonne par récurrence sur n. Pour n = 0, on a |x0 −α| É 1

K

(
K |x0−α|

)
qui est vraie. Soit n

un entier tel que

|xn −α| É 1

K

(
K |x0 −α|

)2n

.

On a alors

|xn+1 −α| É K |xn −α|2

É K

(
1

K

(
K |x0 −α|

)2n )2

par hypothèse de récurrence

É K
1

K 2

(
K |x0 −α|

)2n+1

É 1

K

(
K |x0 −α|

)2n+1

La propriété est vraie au rang n+1. Par le principe de récurrence, elle est vraie pour tout entier.

(d) Par le théorème des gendarmes, |xn −α|→ 0 donc la suite (xn)n∈N converge vers α.
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Correction 3 On considère la fonction f définie sur l’intervalle I =
[

0
π

4

]
par : f (x) = 1

cos x
.

Partie 1 : Étude de la bijection réciproque de f

1. La fonction f est de classe C 1 sur I (∀x ∈ [0,π/4], cos x > 0 et :

∀x ∈ I , f ′(x) =− (cos)′(x)

cos2 x
= sin x

cos2 x
.

La fonction dérivée f ′ est strictement positive sur ]0,π/4] et ne s’annule qu’en 0 : f continue sur I
est alors strictement croissante sur cet intervalle. D’après le théorème du même nom, la fonction
f réalise alors une bijection de I = [

0, π4
]

dans
[

f (0), f (π/4)
]= [1,

p
2] = J .

2. On rappelle que la courbe de f −1 s’obtient à partir de celle de f par symétrie orthogonale par
rapport à la droite D : y = x. La tangente à C f au point d’abscisse 0 (resp. π/4) a pour coefficient
directeur f ′(0) = 0 (tangente horizontale) (resp. f ′(π/4) =p

2).

3. Pour tout x ∈ J : x = f
(

f −1(x)
)= 1

cos( f −1(x))
, donc cos

(
f −1(x)

)= 1

x
.

∀x ∈ J , f −1(x) ∈ [0,π/4] donc sin
(

f −1(x)
)Ê 0 et :

sin
(

f −1(x)
)=√

sin2
(

f −1(x)
)=√

1−cos2
(
cos2( f −1(x))

)=√
1− 1

x2
.

4. La fonction f est dérivable sur ]0,π/4] et : ∀x ∈]0,π/4], f ′(x) = sin x

cos2 x
> 0. La fonction réciproque

f −1 est donc dérivable sur f (]0,π/4]) =]1,
p

2] = J \ {1} et :

∀x ∈ J \ {1},
(

f −1
)′

(x) = 1

f ′ ◦ f −1(x)
= cos2( f −1(x))

sin( f −1(x))
= 1/x2

p
1−1/x2

= 1

x2
.

√
x2

x2 −1
= 1

x2

|x|p
x2 −1

.

Mais comme x est positif : ∀x ∈ J \ {1},
(

f −1)′ (x) = 1

x
p

x2 −1
.

Remarque : f ′(0) = 0, et lim
x→1+

( f −1)′(x) = +∞, donc : f −1 n’est pas dérivable en 1, et sa courbe

représentative admet une demi-tangente verticale au point d’abscisse 1.

5. f −1 est dérivable en
p

2, cette fonction possède donc un développement limité d’ordre 1 au voi-
sinage de

p
2 qui est :

f −1(x) = f −1(
p

2)+ ( f −1)′(
p

2)(x −p
2)+o(x −p

2).

Avec f −1(
p

2) =π/4, ( f −1)′(
p

2) = 1
p

2
√

(
p

2)2 −1
= 1p

2
, on obtient alors au voisinage de

p
2 :

f −1(x) = π

4
+
p

2

2
(x −p

2)+op
2(x −p

2).

Partie 2 : Étude des dérivées successives de f

1. La fonction cos est de classe C ∞ et ne s’annule pas sur I , donc par inverse, f est de classe C ∞

sur I .
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2. Montrons par récurrence sur n ∈ N que : pour tout n ∈ N, il existe un polynôme Pn tel que :

∀x ∈ I , f (n)(x) = Pn(sin x)

cosn+1(x)
.

? Pour n = 0 : ∀x ∈ I , f (0)(x) = f (x) = 1

cos0+1(x)
, la propriété est vraie en posant P0 = 1.

? Supposons la propriété vraie pour un certain n ∈N.
∀x ∈ I : f (n+1)(x) = (

f (n)
)′

(x)

= cos x.P ′
n(sin x)cosn+1(x)−Pn(sin x).(n +1)(−sin x)cosn(x)

cos2n+2(x)

= cosn(x)

cos2n+2(x)
.
[
cos2(x)P ′

n(sin x)+ (n +1)sin xPn(sin x)
]

= 1

cosn+2(x)
.
[
(1− sin2(x))P ′

n(sin x)+ (n +1)sin xPn(sin x)
]
.

En posant alors
Pn+1 = (1−X 2)P ′

n + (n +1)X Pn , on a bien :

∀x ∈ I , f (n+1)(x) = Pn+1(sin x)

cosn+1+1(x)
. La propriété est donc héréditaire, ce qui achève la récurrence.

De plus, on a montré que pour tout n ∈N, Pn+1 = (1−X 2)P ′
n + (n +1)X Pn

3. ∀x ∈ I : f ′(x) = sin x

cos2(x)
= P1(sin x)

cos1+1(x)
avec P1 = X .

∀x ∈ I : f ′′(x) = 1

cos4(x)

[
cos x cos2(x)− (sin x).2(−sin x)cos x

]
= (1− sin2(x))+2sin2 x

cos3(x)
.

Finalement : ∀x ∈ I , f ′′(x) = P2(sin x)

cos2+1(x)
avec P2 = X 2 +1. On utilise l’égalité Pn+1 = (1− X 2)P ′

n +
(n +1)X Pn avec n = 2 : P3 = (1−X 2)+′

2 +3X P2 = (1−X 2)(2X )+3X (1+X 2) = X 3 +5X .

4. Montrons par récurrence que, pour tout n ∈N∗, le terme dominant de Pn est X n (ce qui donne à
la fois son degré et son coefficient dominant !)
? La propriété est vraie pour n = 0,1,2,3.
? Supposons la propriété vraie pour un certain n ∈N∗ :
le terme dominant de X Pn est alors X n+1, celui de (X 2 −1)P ′

n est nX n+1. Le coefficient de X n+1

dans Pn+1 est alors (n + 1).1−n = 1, ainsi le terme de plus haut degré de Pn+1 est X n+1, ce qui
achève la récurrence :
Pour tout n ∈N∗, Pn est de degré n, son coefficient dominant étant 1.
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