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DS6

Durée : 4h

Devoir d’entrainement 6.

Exercice 1.

On considére dans tout ce probleme la fonction F définie sur R par :

- W N e

© ® N oo

10.

11.

12.

Montrer que F est continue sur R .
Montrer que F est prolongeable par continuité en 0. On notera encore F ce prolongement.
Montrer que F est C! et précisez les valeurs de F'(0).

Montrer que les réels strictement positifs tels que F(x) = 0 constituent une suite (ay) > stricte-
ment croissante. On donnera explicitement la valeur de ay.

Soit k € N*. Montrer sans calcul qu’il existe un réel x; €] ay, ar.1 [ tel que F'(x) = 0.
Montrer que la fonction F’ est de méme signe que h : x — xcos x — sin x sur R7}.
Démontrer que pour tout k € N*, la fonction & est strictement monotone sur [ag, dg+1]-

En déduire I'unicité du réel x; défini dans la question 5).
B /4
Etablir que xj € ] ay, ay + > [

Calculer klim X puis déterminer un équivalent simple de x.
—+00

1
Exprimer x; al’aide de kx et arctan (—)
Xk

En déduire la limite de x; — k7.



Exercice 2.

Soit a et b deux réels tels que a < b et f : [a, b] — R une fonction de classe €2 sur [a, b].

On suppose en outre que :
e f(a)>0et f(b)<O
o f’eststrictement négative sur [a, b].

Partie L. Principe de la méthode de Newton.

1. Montrer que ’équation f(x) = 0 admet une unique solution dans ] a, b[, que I'on notera a.

Le but de ce probleme est de présenter une méthode pour obtenir une valeur approchée de a.
Cette méthode consiste, a partir d'une premiere approximation xy de «, a linéariser I'équation
f(x) =0 au voisinage de xy, donc a remplacer f par sa tangente en x.

2. Soit xp € [a, b]. Déterminer 'abscisse du point d’intersection de I’axe des abscisses et de la tan-
gente a la courbe représentative de f en (xp, f(xp)).

On introduit alors la fonction g : [a, b] — R définie par :

Ac)
)
On obtient ainsi une nouvelle approximation de a en prenant x; = g(xp). En poursuivant, on est

ainsi conduit a étudier I'existence, puis la convergence vers a, de la suite (x,) définie par la rela-
tion x,4+1 = g(x,).

Vxela,bl, gx)=x

Partie II. Etude de la fonction g.

1. Montrer que g est de classe €1 sur [a, b, et calculer sa dérivée.
2. Calculer g(a) et g'(a).
3. On souhaite prouver qu'’il existe K > 0 tel que pour tout x € [a, b], |g(x) — a| < K|x — al?.

(@) Justifier I'existence d'un couple (m, M) € ([R{j)2 tel que
Vxelabl, |fX)=m et |f'x)I<M
(b) Montrer qu’il existe L>0telque Vte [a,b], |f(H)|<L|t— |
(c) Soitx € [a, b]. En utilisant I'inégalité des accroissements finis sur [x, @] (ou [a, x]), justifier que
M 2

lg(x) —al < WLIx— alc.

(d) Conclure.
Partie III. Etude de la suite (x,,) ,en.

X € [a, b]

Soit (x,,) la suite récurrente définie par :
bl P { VneN, xu41 = g(xy)

1. Dans cette question uniquement, on suppose de plus que f” > 0 sur [a, b] et xp = a.
(a) Etudier les variations de g.

(b) Justifier que (x,),en est bien définie, croissante et majorée par a.
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(c) En déduire que la suite (x;),en CcOnverge vers a.
2. Onrevient au cas général.
() Justifier qu’il existe h >0 tel que en notant I = [a —h,a+ h],onait Kh<1letIca,b].

(b) Etablir que: Vx € I, g(x) € I. En déduire que si xj € I alors pour tout n € N, x,, est bien définie
etx,€l.

On suppose dans toute la suite du probléme que xg € 1.

(c) Montrer que :

1 2"
VnenN, Ixn—alsE(leO—al) (%)

(d) En déduire que la suite (x,) ,en CcOnverge vers a.



Exercice 3.

On considere la fonction f définie sur I'intervalle [ = [0, %] par: f(x) =

cosx’

Partie 1 : Etude de la bijection réciproque de f

1.

. Justifier que: Vx € J,

Montrer que f réalise une bijection de I dans un intervalle J que 1'on précisera. On note f~! la

bijection réciproque.

Donner sur le méme graphique I'allure des courbes représentatives de f et de f~!. On construira
/4

les tangentes a la courbe de f en 0 et en 1

1
cos(f1(x) = p

. B 1
sin(f1(x) = 1—?

. Montrer que f~! est dérivable sur J\ {1} et montrer que :

! 1
Ve J\ {1}, (fY) (0) = ——

xvVx2-1

5. En déduire le développement limité en v/2 de f~! al'ordre 1.

Partie 2 : Etude des dérivées successives de f

1.
2.

Justifier que f est de classe € sur I, on note f"” la dérivée n-iéme de f sur I.

Montrer que pour tout entier naturel z non nul, il existe un polynome P,, tel que :

P, (sin x)
vxel, fM(x)=2"——-
e cos*t1(x)

et exprimer P, al’aide de P, et P},.

On admet qu’il est unique.

3. Déterminer les polynémes P; et P,. En déduire le polynome Ps.

Déterminer, pour tout entier naturel 7 non nul, le degré et le coefficient dominant du polynéme
Pn-



Correction du DS d’entrainement n 6

Correction 1  On considére dans tout ce probléme la fonction F définie sur R} par :

sin x

F(x) =

1. Montrer que F est continue sur R}.

F est le quotient de deux fonctions continues dont le dénominateur ne s’annule pas sur R}. Elle
est donc continues sur R}.

Tous ceux qui m'ont parlé de la fonction sin(x) ou de la fonction x ont eu 0. A ce stade la, je me dis
que vous le faites expres.

2. Montrer que F est prolongeable par continuité en 0. On notera encore F ce prolongement.

On a 1irr(1) F(x) =1 car sinx ~ x en 0. On peut donc prolonger F par continuité en 0 en posant
X—
F(0)=1.

Attention a ne pas écrire "on a F(0) = 1", F n'est pas définie en 0! C’est vous qui imposez la valeur
en 0 pour obtenir un prolongement continu.

3. Montrer que F est C! et précisez la valeur de F'(0).

La fonction F est C! sur R* en tant que quotient de deux fonctions dérivables dont le dénomina-
teur ne s’annule pas. Pour tout x € R¥, ona:

Xcosx—sinx

Fl) =~

On adonc

x(1+o(x)—x+ o(xz) B o(x)2

/ _
Fi(x) = X2 x2

=o(1),

donc lin}) F'(x) = 0. Par le théoréeme de la limite de la dérivée, on a F dérivable en 0 et F’ continue
x—»

en 0 donc F est de classe C! sur R.

Contrairement a la question précédente, vous n'avez pas votre mot a dire sur F'(0). Le thm de la
limite de la dérivée dit que F est dérivable en 0 et que F'(0) vaut la limite réelle de la dérivée, vous
n'avez pas a poser quoi que ce soit. Si vous calculez la limite du taux d’accroissement, vous montrez
que F est dérivable en 0 mais pas qu'elle est C*.

4. Montrer que les réels strictement positifs tels que F(x) = 0 constituent une suite (ay)x=1 stricte-
ment croissante. On donnera explicitement la valeur de ay.

On a Yk e N*, ay = kn, la suite (ai) r>1 est donc clairement croissante.

5. Soit k € N*. Montrer sans calcul qu'il existe un réel xi €] ay, a1 tel que F'(x) = 0.




Pour tout k € N*, on a F(ay) = F(ax4+1), F est continue sur [ay, ax,1) et dérivable sur lag, ags1!.
Par le théoréme de Rolle, il existe xy €] ag, ar1[ tel que F'(xx) = 0.

Pour avoir tous les points, il fallait citer Rolle et citer correctement ses hypotheses. Certains utilisent
le TAE Ce n'est pas faux mais c'est étrange.

. Montrer que la fonction F’ est de méme signe que h : x — xcos x — sin x sur R}.

h(x) .
On a montré précédemment que, pour tout x € RY, F'(x) = — - On a donc bien F' du méme
X

signe que h.

. Démontrer que pour tout k € N*, la fonction / est strictement monotone sur [ay, dg.1].

La fonction & est dérivable eton a :
Vx>0,h'(x) = —xsinx+cosx—cosx =—xsinx.

Sur un intervalle de la forme [ay, ai+1] = [k7, (k + 1)7], la fonction sin est de signe constant. On
en déduit que h'(x) est de signe constant sur [ag, ax41], la fonction h est strictement monotone
sur cet intervalle.

Pas besoin de disjonction de cas ici, on ne demande pas le sens de monotonie. Me dire que la fonc-
tion ne s'annule pas sur cet intervalle est incomplet, il faut préciser qu’elle est continue pour avoir
qu'elle est de signe contant.

. En déduire I'unicité du réel x; défini dans la question 5).

Pour tout k € N*, la fonction & est strictement monotone sur l'intervalle [ay, ax.1], elle y est donc
injective et s’annule au plus une fois. Comme F’(x) = 0 & h(x) =0, on en déduit que & et donc F’
s’annule exactement une fois sur I'intervalle [ag, ar,1]. On a montré que F’ s’annulait en xj, on
sait désormais que ce réel x; est unique.

Il est totalement faux de dire que F' est monotone.

3 . b4
. Etablir que xj € ] ay, ay + 3 [

10.

m
Montrons que F'(ay) et F' (ak + E) sont de signes opposés. 1l suffit, pour cela, de montrer que

h(ay) et h(ax+%)lesont.Ona:
h(ay) = ajcosay —sinay = (—l)kak,

et h(ar+%) = (ar+ %) cos(ar + %) —sin(ar + ) = — (ax + £) sin (ax) — cos (ar) = (-1 (a + 5).
7T
Onabien h(ai) eth (ak + %) de signes opposés donc, F’ étant continue, F’ s’annule dans ] ar, aj + > [

b PR . T c s T
(d’apres le théoreme des valeurs intermédiaires). Par unicité de xi, on a xj € ] ay, ay + > [
La encore, pas besoin de faire de disjonction de cas. Certains me montre qu'il existe un unique
Xk € ] ag, ay + ) [ tel que F'(xy) = 0. C'est problématique car xy. est déja défini. Dites que F' s'annule

sur cet intervalle par le TVI puis dites que ce point d’annulation est nécessairement Xy par unicité
de ce dernier.

Calculer klim Xi puis déterminer un équivalent simple de x.
—+00

Ona lim aj = +oodonc, par encadrement, lim xj; = +oo.
k—+o00 k—+00



T X 1 X
Onakn<xp,<kmn+—,doncl< Zk < 1+ —. Par encadrement, ko 1 donc x ~ k.
kn 2k k7 k—+inf

C'est quoi le probléme avec trouver un équivalent?

11. On F'(x;) = 0 © tan(x;) = x;. Evidemment, on ne peut pas dire que x; vaut alors arctan(xy)
T
puisque 'image de arctan est ]—5, E[ et que x; n'appartient pas a cet intervalle. En revanche,

. . ) N . 2 N JT
tan étant r-périodique, on a tan(xy) = tan (x; — k) et, d’apreés ce qui précede, x; — km € ]0, > [
On a donc arctan(xy) = arctanotan (x — kx) = x;. — k7.

T 1 1 =«
Ainsi, x; = kn + arctan(xy) = kmx + E —arctan —, car, pour tout x > 0, arctan(x) + arctan — = E
Xk X

1 b/
12. On sait que xy — +oo donc — — 0. Ainsi, xy — km — >
Xk



Correction 2  Soit a et b deux réels tels que a < b et f : [a, b] — R une fonction de classe €2 sur [a, b].
On suppose en outre que :

e f(a)>0et f(b) <0

o f’eststrictement négative sur [a, b].

Partie I. Principe de la méthode de Newton.

1. La fonction f est continue sur [a, b] et f(a) f(b) < 0 donc, d’apres le théoréme des valeurs inter-
médiaires, f s’annule sur |a, b[. Par ailleurs, comme elle est strictement décroissante, ce point
d’annulation est unique.

2. Soit xq € [a, b]. Léquation de la tangente au graphe de f en (xy, f(xp)) a pour équation

y = f(x0) + f'(x0) (x — x0).

f (xo0)
f'(x0)

Lorsque y=0,0onax = xp—

Partie II. Etude de la fonction g.

1. Lafonction f est de classe C? donc f' est de classe C!. La fonction g est un quotient de fonctions
C! dont le dénominateur ne s’annule pas, elle est donc de classe € Vsur [a, b).

f@?-fOf'x) _ fof" %)
f/(x)z fl(x)Z :

"f est C? donc g est C' "est clairement trop rapide comme justification pour espérer avoir les points.

Vxelabl, g (x)=1-

2. Onag(a)=acar f(a)=0et g'(a) =0.
3. On souhaite prouver qu'’il existe K > 0 tel que pour tout x € [a, b], |g(x) — a| < K|x — a/|?.

(a) On demande de justifier I'existence d’un couple (m, M) € (R*)? tel que
Vxelabl, |f/X)=m et |f'x)I<M

La fonction f est C 1 donc f' est continue sur le segment [a, b], elle admet donc un maximum :
il existe B € [a, b] tel que Vx € [a, b), f'(x) < f'(f) <0, onaalors Vx € [a,b], | f'(x)| = - f'(f) >0
ce qui donne bien 'existence de m.

Par ailleurs, la fonction f étant C2, f" est continue sur le segment [a, b], elle est donc bornée :
AM =0,Vxe€ [a,bl,|f" (x)| < M. Quitte a prendre un majorant plus grand, on peut supposer
M >0.

Comme convenu, jai pénalisé lorsque le mot segment n'apparaissait pas. Ici, seul m > 0 néces-
site du travail, M pouvant toujours étre choisi strictement positif puisque c’est un majorant.

(b) On a vu a la question précédente que f’ était continue sur le segment [a, b] donc bornée. 11
existe donc L > 0 tel que Vx € [a, b], | f' (x)| < L. Par I'inégalité des accroissements finis, on en
déduit que

Vtela,bl, |f(t)- f(a)l<Llit—al

puis, comme f(a) =0,
Viela,bl, |f(D)<Llt-al



(c) Soit x € [a, b]. En utilisant I'inégalité des accroissements finis sur [x, @] (ou [a, x]), justifier que
M 2
1g(x) —al < Wch— al .

On note I = [min(x, ), max(x, a)]. Alors

rllrol _ M
fl(t)Z = m2 |

- | ’

RIHOIE

on adonc
ML
viel|g'()|< 7 lx-al.

Par I'inégalité des accroissements finis appliquée entre x et &, on a alors

gx)—gla) ML
2| _a|y
X—a m
puis
ML
|g(x)—al| < —rlx- al?,
car g(a) =

ML
2 / . P . .
g'(x) | par—s |x — al. Soit vous écrivez que ceci est vrai pour

tout x (alors que x est fixé!) et on peut imaginer que vous voulez dire
ML
Vi |g' 0] < —7li-al

mais, dans ce cas, vous n'avez pas majoré par une constante donc vous ne pouvez pas appliquer
l'inégalité des accroissements finis. Soit vous majorez seulement |g' (x)| et, la encore, vous ne
pouvez pas utiliser l'inégalité des accroissements finis puisque vous n'avez majoré la dérivée
que pour une valeur donnée et pas pour tout l'intervalle.

On pouvait aussi le rédiger ainsi :

D’apres le théoreme des accroissements finis, on sait qu’il existe c, strictement compris entre
x et a tel que

gx)-gl@) ,  flef"(cx)
X—a =8 (cx) = fPey)
On adonc ML ML
g ~g@) < ey —al < — |x—al,
X—a m? m?

car ¢, est COIan'iS entre x et a.

ML
(d) On abien!'existence de K = P tel que

Vxe€la,bl,|gx) —al < K|x—al.

Partie III. Etude de la suite (x;,) ,en.

Xo € [a, b]

Soit (x,) la suite récurrente définie par : { VReN, X1 = g

1. Dans cette question uniquement, on suppose de plus que f” > 0 sur [a, b] et xy = a.



(a) Onremarque que g’ est du signe de f car f" et f’? sont positives. On a donc

X a a b
g'(x) + 0 -
a
g(a) g(b)
fla)

(b) Onag(a)=a—- > acar f(a)>0et f'(a) <0.0n adonc g([a, b]) = [g(a),a] < [a, b]. On

fl(a)
en déduit que l'intervalle [a, a] est stable par g.
Comme xy € [a, @], on en déduit que Vn e N, x, € [a,a] < [a, b] donc (x;) xen est bien définie.

fxn)
fl(xn)

Soit n € N, alors x, € [a, @] donc f(x;,) =0, on a donc x,+1 = g(x,) = X, — = x,.On en

déduit que la suite (x;) ,en €St croissante.

On peut aussi dire que x < x; et g est croissante sur [a, @] donc, comme Vn e N, x, € [a,al],
on montre, par récurrence sur 7 et croissance de g sur cet intervalle, que Vn e N, x,, < x,,41.

Enfin, on a montré que Vn e N, x, € [a, a] donc la suite est bien majorée par a.

Beaucoup m'écrivent " l'intervalle est stable donc la suite est bien définie" ce qui est correct mais
est-ce que vous comprenez pourquoi ? est-ce que vous voyez que c'est parce que si l'intervalle est
stable, x,, appartiendra toujours a l'ensemble de définition de g, on pourra donc calculer x,+1 ?
Par ailleurs, si vous ne dites pas queVn e N, x,, € [a, a], vous ne pouvez pas montrer que la suite
(xn) nen est croissante. En effet, que ce soit par le raisonnement direct ou pour I’hérédité, vous
avez besoin soit du signe de f(x,), soit de la monotonie de g et vous ne pouvez donc conclure
que si vous savez que tous les termes de la suite (x,) nen appartiennent a a, ).

Enfin, certains me balancent encore des " la fonction est croissante donc la suite est monotone"
sans aucun argument ni preuve. Si ¢a vous amuse de ne pas prendre les points.

(c) La suite (x,)en €st croissante et majorée donc, par le théoréme de la limite monotone, elle
converge. Par continuité de g, elle converge vers un point fixe de g. Or

)
f'(x)

On en déduit que (x,) ,en CONverge vers a.

gx)=xex =xo f(x)=0ex=a.

Vous devez justifier que la suite converge vers un point fixe de g puis que « est le seul point fixe
de g. Il est inacceptable de voir encore des " la suite est croissante, majorée par a donc converge
versa'".

2. Onrevient au cas général.

(@) Onveut montrer qu’il existe h >0telque Kh<1let[a—h,a+ h]c|a,b].
1
On choisit h tel que 0 < & < min (E’ a—a,b- a) ce qui est possible car le minimum est stric-

tement positif. On a bien 7 comme on le souhaite.

(b) On va montrer que pour un tel h fixé, on a I = [@ — h,a + h] stable par g. Soit x € I, alors
X—ae€[-h,h]et

|g(x)—a| <K|x-al?,

donc
|g(x) —a| < Kh* puis |g(x) —a| < h,
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puisque Kh < 1. On a donc
-h<gx)—a<hdoua-h<gx)<h+a.

On a bien g(x) € I donc I est un intervalle stable par g.

Si xp € I, par récurrence sur n, on montre que VYn € N, x, € I donc (x,),en est bien définie et
tous les termes de la suite appartiennent a 1.

On suppose dans toute la suite du probléme que xg € 1.

(c) Onveut montrer que :

1 2"
VnenN, Ixn—aISE(leo—al) (%)

. . 1 . . .
On raisonne par récurrence sur n. Pour n=0,0na |xy — a| < E(K | X0 — al) qui est vraie. Soit n

un entier tel que

n

1
|xp —al < §(le0 - al)
On a alors

|Xn+1—al <Klx,—al?
<K (E(K | X0 — al) ) par hypothése de récurrence

1 2n+l
< KF(KIxO— a|)

< %(leo—al)

n+l

La propriété est vraie au rang n+1. Par le principe de récurrence, elle est vraie pour tout entier.

(d) Parle théoréme des gendarmes, |x, — a| — 0 donc la suite (x;) ,en COnverge vers a.

11
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Correction3 On considere la fonction f définie sur l'intervalle I = [OZ] par: f(x) = .
COS X

Partie 1 : Etude de la bijection réciproque de f

1. Lafonction f est de classe €' sur I (Vx € [0,71/4], cosx >0 et:

vxel, fi(x) = (cos)z'(x) _ sinzx '
COS“X  COS*X

La fonction dérivée f’ est strictement positive sur ]0,7/4] et ne s’annule qu’en 0 : f continue sur [
est alors strictement croissante sur cet intervalle. D’apres le théoréme du méme nom, la fonction
[ réalise alors une bijection de I = [0,%] dans [ f(0), f(n/4)] = [1,v2] = J.

2. On rappelle que la courbe de f~! s'obtient a partir de celle de f par symétrie orthogonale par
rapport a la droite D: y = x. La tangente a 6 au point d’abscisse 0 (resp. 7/4) a pour coefficient
directeur f'(0) = 0 (tangente horizontale) (resp. f'(/4) = v/2).

L

ENENY

3. Pourtoutxe J:x=f(f1(x)= ,donc cos(f1(x) = i

1
cos(f~1(x)
Vxe ], f~1(x) € [0,m/4] doncsin(f~1(x)) = 0et:

sin (f_l(X)) = \/Sinz (f—l(x)) — \/1 — cos? (cosz(f‘l(x))) =,/1- %

sinx
4. Lafonction f est dérivable sur ]0,7/4] et: Vx €]0,7/4], f'(x) = 5
COS* X

f‘1 est donc dérivable sur f(]0,7/4]) =]1, V2] =J\ {1} et:

1 oSy X1 X2 1
flof-1(x) sin(f~l(x) Vi-1/x2 X2\ x2-1 x22_1
Mais comme x est positif: | Vx e J\ {1}, (f7) (x) =

> 0. La fonction réciproque

vxe A1, (FY) ) =

1
xWx2—1|

Remarque : f'(0) = 0, et linll (f1'(x) = +oo, donc : f~! n'est pas dérivable en 1, et sa courbe
xX— +

représentative admet une demi-tangente verticale au point d’abscisse 1.

5. f~! est dérivable en v'2, cette fonction posséde donc un développement limité d’ordre 1 au voi-
sinage de v/2 qui est :
=V + (Y V2 - v2) +olx - v2),

1 1
Avec f‘l(\/Z) =7/4, (f_l)’(\/z) = ————————— = — on obtient alors au voisinage de V2.

V2\/(V2)2 -1 v2
7

2
f_l(x)=%+7(x—\/§)+o\/§(x—\/§).

Partie 2 : Etude des dérivées successives de f

1. La fonction cos est de classe € et ne s’annule pas sur I, donc par inverse, f est de classe €
sur I.

12



2. Montrons par récurrence sur n € N que : pour tout n € N, il existe un polynéme P,, tel que :

P, (sinx)
Vxel, (n) —_n="
xel, f7 cos™*1(x)

*Pourn=0:Vxel, fOw=Ffx)=——m
T =10 cos9*1(x)

* Supposons la propriété vraie pour un certain n € N.
vxel: f+(x) = (F™) (x)
_ cosx.Py(sinx) cos"*! (x) — P, (sinx).(n +1)(—sin x) cos” (x)

, la propriété est vraie en posant Py = 1.

n C052n+2 (x)
- %- [cos? (x) P}, (sinx) + (n + 1) sin x Py, (sin x) |
- T [(1 —sin?(x)) P}, (sinx) + (n+ 1) sin x Py, (sin x)].
En posant alors

Puy1=(0-X?P, +((n+1)XP,, onabien:

p .
Vxe I, f(n+l)(x) — n+1(SanC)

— 7, La propriété est donc héréditaire, ce qui acheve la récurrence.
cos™ 1+ (x)

De plus, on a montré que pour tout n €N, | P11 = (1— XZ)P;Z +(n+1)XP,

sinx  Pp(sinx)

3. Vxel: f'(x) = avec Py = X.

cos?(x) cos'*1(x)

Vxel: f"(x) = —— [cosxcos®(x) — (sin x).2(-sin x) cos x|
cos*(x)

_(1- sin?(x)) +2sin? x

- cos3(x) '

P5(sinx)

Finalement : Vx € I, f"(x) = avec P, = X2 + 1. On utilise I'égalité P,,; = (1 — X?)P}, +

cos2tl(x)
(n+1)XPyavec n=2:Py=(1- X2+, +3XP; = (1 - X2)(2X) +3X (1 + X?) =| X3 +5X |

4. Montrons par récurrence que, pour tout n € N*, le terme dominant de P, est X" (ce qui donne a
la fois son degré et son coefficient dominant!)
* La propriété est vraie pour n=0,1,2,3.
* Supposons la propriété vraie pour un certain n € N* :
le terme dominant de XP,, est alors X"*!, celui de (X* — 1) P}, est nX"*!. Le coefficient de X"*!
dans P, est alors (n+1).1 —n = 1, ainsi le terme de plus haut degré de P, est X"**!, ce qui
acheve la récurrence :
Pour tout n € N*, P, est de degré n, son coefficient dominant étant 1.
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