
Lycée du Parc
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DS 5 Durée : 4h

Devoir surveillé 5.
Chaque résultat doit être justifié, les réponses doivent être soulignées ou encadrées, vos pages (et pas vos copies)

doivent être numérotées, votre nom et classe doivent être mentionnés et tout ceci doit être fait durant le temps
de composition. Les étapes des éventuels calculs doivent apparaître sur la copie. On peut admettre un résultat

ou une question en le précisant explicitement. La clarté et la précision de la rédaction ainsi que la présentation
de la copie seront prises en compte dans l’évaluation.

Calculatrice interdite.
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Exercice 1. On étudie la fonction de R\ {−1} dans R, donnée par f (x) = x

(1+x)2
.

Partie I

1. Déterminer les valeurs de a pour lesquelles l’équation f (x) = a admet au moins une solution.

2. En déduire l’image de f .

3. Soit a ∈ Im f tel que l’équation f (x) = a admette deux solutions distinctes x1 et x2. Montrer que,
quitte à les renommer, on a |x1| < 1 et |x2| > 1.

4. En déduire que f induit une bijection que l’on notera g .

5. Expliciter g−1.

Partie II

On construit une suite (un)n∈N en posant u0 = 1 et ∀n ∈N, un+1 = f (un).

1. Calculer u1 et u2.

2. Montrer que f est croissante sur [0,1] et en déduire que ∀n Ê 1,0 < un É 1

n
.

3. Montrer que (un) converge et donner sa limite.

4. On pose pour tout n ∈N, vn = 1

un+1
− 1

un
.

(a) Pour tout n ∈N, exprimer vn en fonction de un .

(b) En déduire que, ∀k Ê 1, 2 É vk É 2+ 1

k
.

(c) Soit n ∈N?. En sommant les inégalités de la question précédente pour k variant de 1 à n −1,
montrer que

2(n +1) É 1

un
É 2(n +1)+

n−1∑
k=1

1

k

5. Montrer que , ln(1+x) É x, ∀x >−1.

6. En déduire que ∀k Ê 2, lnk − ln(k −1) Ê 1

k

7. Soit n ∈N?. En sommant ces inégalités, montrer que
n−1∑
k=1

1

k
É 1+ lnn.

8. En déduire que un ∼
n→+∞

1

2n
.

Exercice 2. Soit m un réel strictement positif, soit M la matrice :

M =
 0 1/m 1/m2

m 0 1/m
m2 m 0

 .

On note I la matrice identité d’ordre 3.

1. (a) Montrer qu’il existe a,b ∈R tels que :

M 2 = aM +bI .

(b) En déduire que la matrice M est inversible et préciser son inverse.

(c) Soit λ ∈R. Montrer que pour λ=−1 et λ= 2, M −λI est non inversible et résoudre M X =λX .
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2. On pose : P = 1

3
(M + I ) et Q =−1

3
(M −2I ).

(a) Calculer PQ et QP

(b) Calculer P 2 et Q2, puis, pour tout n ∈N, P n et Qn .

(c) Exprimer M en fonction de P et Q.

(d) En déduire pour tout n ∈N, l’expression de M n en fonction de P et Q.

(e) On note,∀n ∈N, M−n = (
M−1

)n
. La formule précédente reste-t-elle valable si n est dans Z?

(f) Déterminer deux suites réelles (an)n∈N et (bn)n∈N telles que pour tout n ∈N, on ait :

M n = an I +bn M .

Exercice 3. Dans cet exercice, à toute suite réelle t = (tn)n∈N, on associe la suite u = (un)n∈N définie par : u0 = t0

∀n ∈N , un+1 = 1

2
un + tn+1

1. On suppose dans cette question seulement que la suite t est constante à 1.
Déterminer alors l’expression de un en fonction de n, ainsi que la limite de u.

2. On revient au cas général où t est une suite quelconque.

Montrer par récurrence sur n que pour tout n ∈N, un =
n∑

k=0

tk

2n−k
.

3. (a) Montrer que, pour tout n ∈N,
n∑

k=0

1

2n−k
= 2− 1

2n
.

(b) En déduire que si la suite t est bornée, alors u l’est aussi.

4. On suppose dans cette question seulement que t est croissante, à termes tous strictement posi-
tifs.

(a) Montrer que pour tout n ∈N, tn É un É 2tn .

(b) En déduire que u est aussi croissante.

(c) Montrer que si t est majorée, alors les deux suites t et u sont convergentes, et donner une
relation entre leurs deux limites.

(d) Montrer que si t n’est pas majorée, ln(tn) et ln(un) sont équivalentes.

5. Soit n ∈N. On pose Sn =
n∑

k=0
k2k .

(a) Montrer qu’il existe (a,b) ∈R2 telles que la suite de terme général vk = (ak +b)2k vérifie :

∀k ∈N, vk+1 − vk = k2k

et déterminer la valeur de Sn .

(b) En déduire un équivalent de Sn .

6. Dans cette question seulement, on suppose que tn = n pour tout n ∈N. Montrer qu’alors un ∼
n→+∞2n.

7. Dans cette question seulement, on suppose que tn ∼
n→+∞n et on va démontrer que un ∼

n→+∞2n.

(a) Soit (wn)n∈N une suite vérifiant wn = o
n→+∞ (n). Montrer qu’alors

n∑
k=0

2k wk = o
n→+∞ (Sn).

Indication : Écrire la négligeabilité de (wn) à l’aide d’une suite qui tend vers 0 et démontrer

que

∑n
k=0 2k wk

Sn
tend vers 0 avec des quantificateurs, en scindant la somme en deux.
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(b) En déduire que un ∼
n→+∞2n.

Exercice 4. Soient p et n deux entiers naturels tels que 0 É p É n.
On rappelle la notation : (

n
p

)
= n!

p !(n −p)!
.

1. Préliminaires : Soit m ∈N?. Soit M = (mi j )1Éi , jÉm une matrice de Mm(R) et (α1, . . . ,αm) des réels.
On note N = (α j mi j )1Éi , jÉm et R = (αi mi j )1Éi , jÉm .

(a) Exprimer det(N ) en fonction de det(M).

(b) A-t-on det(R) = det(N ) ?

2. Déterminant dp .
Soit n ∈N. Pour p ∈ J0,nK, on note Ap = (ai , j ) la matrice carrée de Mn−p+1(R) dont le coefficient

de la ligne i et de la colonne j est égal à ai , j =
(

p + i + j −2
p + i −1

)
avec (i , j ) ∈ J1,n −p +1K2. On note

dp = det(Ap ).

(a) Expliciter les entiers r et s tels que ai , j =
(

s
r

)
pour les quatre coefficients a1,1, a1,n−p+1, an−p+1,1

et an−p+1,n−p+1.

(b) Pour tout entier naturel n Ê 2, calculer les déterminants dn , dn−1 et dn−2.

(c) On suppose que la matrice Ap possède au moins deux lignes. On note Li la ligne d’indice i .

i. Dans le calcul de dp on effectue les opérations suivantes : pour i variant de 2 à n −p +1,
on retranche la ligne Li−1 à la ligne Li (opération codée : Li ← Li −Li−1). Déterminer le
coefficient d’indice (i , j ) de la nouvelle ligne Li .

ii. En déduire une relation entre dp et dp+1, puis en déduire dp .

3. Déterminants Dn et ∆n

Pour n ∈N, on note Dn le déterminant de la matrice carrée Mn+1(R) dont le coefficient de la ligne
i et de la colonne j est (i + j )!, les lignes et les colonnes étant indexées de 0 à n.

On note Dn = det((i + j )!). Avec les mêmes notations, on note ∆n = det

((
i + j

i

))
pour (i , j ) ∈

J0,nK2. On fixe un entier n ∈N?.

(a) Calculer les déterminants D0, D1, D2, ∆0, ∆1 et ∆2.

(b) Donner une relation entre Dn et ∆n .

(c) En déduire ∆n puis Dn .

4



Correction du DS n 5

Correction 1 On étudie la fonction de R\ {−1} dans R, donnée par f (x) = x

(1+x)2
.

Partie I :

1. Déterminer les valeurs de a pour lesquelles l’équation f (x) = a admet au moins une solution.

f (x) = a ⇔ ax2 + (2a −1)x +a = 0.

Si a = 0 il n’y a que x = 0. Si a 6= 0, on calcule le discriminant ∆=−4a+1. Ainsi a admet au moins
un antécédent réel par f ssi a É 1/4.

On peut aussi tracer le tableau de variations de f .

x

f ′(x)

f

−∞ −1 1 +∞

− + −

00

−∞ −∞

1
4
1
4

00

2. En déduire l’image Imf de f , c’est-à-dire f (R\ {−1}).

L’image est donc ]−∞,1/4].

3. Soit a ∈ Imf tel que l’équation f (x) = a admette deux solutions distinctes x1 et x2. Montrer que,
quitte à les renommer, on a |x1| < 1 et |x2| > 1.

On choisit donc a dans Im f , mais non nul (car sinon il n’y a qu’une seule solution) et différent
de 1/4 (car sinon, x1 = x2 et il n’y a donc qu’une solution). Dans ce cas, les deux solutions sont
les deux racines de l’équation de degré 2 ci-dessus, dont on sait que le produit est x1x2 = a/a = 1.
D’où |x1||x2| = 1. Il reste à prouver que ces deux valeurs absolues ne sont pas égales à 1. Mais
puisque −1 n’est pas solution de l’équation, x1 et x2 ne peuvent avoir pour valeur absolue 1, car
sinon elles seraient égales (à 1), ce qui est exclu. Résumons : |x1| et |x2| sont deux réels strictement
positifs, distincts de 1 et dont le produit vaut 1 donc l’un est strictement supérieur à 1 et l’autre
strictement inférieur 1.

On pouvait aussi chercher de manière plus explicite laquelle des deux racines était de module
strictement inférieur à 1 (ce qui sera utile pour la question 5) :

Soit a ∈
]
−∞,

1

4

[
et a 6= 0, les deux antécédents distincts de a par f sont

1−2a ±p
1−4a

2a
. On

raisonne par équivalence :∣∣∣∣∣1−2a −p
1−4a

2a

∣∣∣∣∣< 1

⇔ ∣∣1−2a −p
1−4a

∣∣< 2 |a|
⇔ (1−2a)2 −2(1−2a)

p
1−4a +1−4a < 4a2 par positivité des quantités

⇔ 2(1−4a)−2(1−2a)
p

1−4a < 0
⇔ p

1−4a < (1−2a) car
p

1−4a > 0

⇔ 1−4a < 1−4a +4a2 car 1−2a > 0 pour a É 1

4
⇔ 0 < 4a2
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La dernière inégalité est vraie, on en déduit qu’en posant x1 = 1−2a −p
1−4a

2a
et x2 = 1−2a +p

1−4a

2a
,

on a |x1| < 1 et |x2| > 1.

4. En déduire que f induit une bijection que l’on notera g .

Montrons que g = f |

]
−∞,

1

4

]
[−1,1[ convient. L’application g ainsi définie est bien surjective d’après la

question précédente. En effet, soit a É 1/4 :
— Si a < 1/4 et a 6= 0, f (x1) = a ;
— Si a = 1/4, f (1) = 1/4,
— Si a = 0, f (0) = 0.
g est aussi injective car le deuxième antécédent de a (lorsqu’il existe) est de module strictement
supérieur à 1, donc pas dans ]−1,1].

n’importe quelle bijection induite vous aurait donné les points. Il est très surprenant que même
avec le tableau de variations( pour ceux et celles qui l’ont tracé), vous n’avez pas su me donner
une bijection induite. Niveau rédaction, certains commencent par me dire qu’il faut restreindre
à l’image : NON! on commence par restreindre l’espace de départ pour que la fonction devienne
injective puis on prend l’image de ce nouvel espace de départ pour rendre la fonction bijective.
Donc si vous décidez de restreindre à ]−∞,−1[∪ ]1,+∞[, vous avez le droit mais 0 n’appartient

plus à l’image de cet ensemble ! La bijection induite est donc |
]−∞, 1

4

]
\{0}

]−∞,−1[∪]1,+∞[. Beaucoup m’ont écrit
n’importe quoi en mélangeant espaces de départ et d’arrivée, c’est inquiétant.

5. Expliciter g−1.

J’ai déjà montré que x1 = 1−2a −p
1−4a

2a
donc on en déduit : On en déduit,

g−1 :



]
−∞,

1

4

]
−→ ]−1,1]

x 7−→


1−2x −p
1−4x

2x
, si x 6= 0,

0 sinon.

Si vous n’aviez pas explicité x1 et x2 (en vous appuyant sur le tableau de variations par exemple
pour traiter toutes les questions précédentes), vous auriez pu dire : f est strictement décroissante

sur [1,+∞[ donc injective et f ([1,+∞[) =
]

0,
1

4

]
donc h = f |

]
0,

1

4

]
[1,+∞ est bijective et

∀a ∈
]

0,
1

4

]
,

1−2a +p
1−4a

2a
= 1+ 1−4a +p

1−4a

2a
Ê 1,

donc l’unique antécédent de a ∈
]

0,
1

4

]
appartenant à [1,+∞[ est

1−2a +p
1−4a

2a
d’où

h−1 :


]

0,
1

4

]
−→ [1,+∞[

x 7−→ 1−2x +p
1−4x

2x

.

Partie II :

On construit une suite (un)n∈N en posant u0 = 1 et un+1 = f (un), ∀n ∈N.

1. u1 = 1/4 et u2 = 4/25.
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2. Montrer que f est croissante sur [0,1] et en déduire par récurrence que 0 < un É 1
n ,∀n Ê 1.

Pour tout x ∈ [0,1], f ′(x) = (1+x)2 −2x(1+x)

(1+x)4
= 1−x2

(1+x)4
Ê 0 et f ′(x) = 0 ⇔ x = 1, donc f est stric-

tement croissante.

Pour n = 1, je vous le laisse. Si le prédicat est vrai au rang n, alors par stricte croissance de f ,

f (0) < f (un) É f (1/n), et donc 0 < un+1 É n

(n +1)2
É n +1

(n +1)2
= 1

n +1
. La propriété est héréditaire,

par le principe de récurrence, elle est vraie pour tout entier n.

Si f est seulement croissante, 0 < un É 1

n
⇒ 0 É f (un) É f

(
1

n

)
et vous n’obtenez pas l’inégalité

stricte.

3. Montrer que (un) converge et donner sa limite.

Par le théorème d’encadrement, la suite (un)n∈N est convergente et tend vers 0.

J’ai vu beaucoup de thm de limite monotone puis unicité de la limite, ce qui est juste mais très
complique !

4. On pose vn = 1
un+1

− 1
un

.

(a) Pour tout n ∈N, exprimer vn en fonction de un .

vn = 1

f (un)
− 1

un
= (1+un)2

un
− 1

un
= 2+un .

(b) En déduire que 2 É vk É 2+ 1
k ,∀k Ê 1.

Il suffit d’utiliser la question précédente et le fait que uk É 1

k
d’après ce qui précède.

(c) En sommant les inégalités de la question précédente pour k variant de 1 à n −1, montrer que

2(n +1) É 1

un
É 2(n +1)+

n−1∑
k=1

1

k

Commençons par remarquer la série télescopique :
n−1∑
k=1

vk =
n−1∑
k=1

(
1

uk+1
− 1

uk

)
= 1

un
− 1

u1
=

1

un
−4.

Maintenant, obéissons docilement. De la double inégalité précédente, nous tirons :

2(n −1) É
n−1∑
k=1

vk É 2(n −1)+
n−1∑
k=1

1

k

⇒ 2(n −1) É un −4 É 2(n −1)+
n−1∑
k=1

1

k
,

et ça tombe tout seul.

Attention à ne pas écrire seulement une suite d’équivalences sans conclure. Par ailleurs,

∀k ∈ J1,n −1K,2 É vk É 2+ 1

k
⇒

n−1∑
k=1

2 É
n−1∑
k=1

vk É
n−1∑
k=1

(
2+ 1

k

)
mais ce n’est PAS une équivalence.
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5. Montrer que ln(1+x) É x, ∀x >−1.

La dérivée de la fonction x 7→ x − ln(1+x) nous montre qu’elle décroit de −1 à 0, où elle s’annule,
puis elle croit, donc elle est toujours positive. On pouvait aussi dire "par concavité du ln" ou bien
montrer que l’inégalité souhaitée était équivalente à ∀x >−1,1+x É ex qui est vraie par convexité
de la fonction exponentielle.

6. En déduire que lnk − ln(k −1) Ê 1

k
, ∀k Ê 2.

lnk − ln(k −1) =− ln

(
1− 1

k

)
Ê−

(
−1

k

)
, car −1/k >−1.

C’est ultra-classique (et on l’a déjà vu), à savoir refaire les yeux fermés.

7. En sommant ces inégalités pour k variant de 1 à n, montrer que
n−1∑
k=1

1

k
É 1+ lnn.

n−1∑
k=1

1

k
É 1+

n−1∑
k=2

(
lnk − ln(k −1)

)
= 1+ ln(n −1)− ln1 É 1+ lnn.

4! Il faut sommer de 2 à n puis rajouter le terme en 1 car ln(k −1) n’est pas défini pour k = 1

On peut aussi sommer de 1 à n (enfin de 2 à n puis rajouter 1) et remarquer que
n∑

k=1

1

k
Ê

n−1∑
k=1

1

k
.

8. Déduire des questions précédentes que un ∼
n→+∞2n.

De la question 4(c), nous tirons :

2(n +1)

n
É 1

nun
É 2(n +1)

n
+

n−1∑
k=1

1
k

n
.

Et de la précédente,

2+ 2

n
É 1

nun
É 2+ 2

n
+ 1

n
+ lnn

n
.

On conclut avec le théorème d’encadrement car lim
n→+∞

ln(n)

n
= 0 par le thm de croissances com-

parées.

Correction 2 1. (a) Le calcul matriciel donne :

M 2 =
 m/m +m2/m2 0+0+m/m2 0+1/m2 +0

0+0+m2/m m/m +0+m/m m/m2 +0+0
0+m2 +0 m2/m +0+0 m2/m2 +m/m +0

=
 2 1/m 1/m2

m 2 1/m
m2 m 2

 ,

soit M 2 = M +2.I

(b) On en déduit : M 2 −M −2 · I = 0 donc M(M − I ) = 2I . La matrice M est donc inversible et son

inverse vaut
1

2
(M − I ).

C’est vraiment dommage d’avoir perdu du temps à calculer la matrice inverse alors que cela
tombe tout seul.

(c) On a M 2 −M −2I = (M + I )(M −2I ) = (0). On en déduit que les deux matrices M + I et M −2I
sont non inversibles. La plupart d’entre vous ont calculé le déterminant, ont trouvé un déter-
minant nul et en ont déduit que les deux matrices étaient non inversibles.
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Ce n’était pas nécessaire de se pencher sur le côté non inversible avant de résoudre le système (la
non-inversibilité va apparaître en résolvant le système) mais comme vous avez majoritairement
échoué à résoudre les deux systèmes, c’était un bon moyen de prendre une partie des points.

On peut aussi les expliciter : M + I =
 1 1/m 1/m2

m 1 1/m
m2 m 1

 est clairement non-inversible,

puisque les trois lignes de cette matrice sont proportionnelles : L3 = m.L2 = m2.L1.

On résout le système associé :

(M + I )

 x
y
z

=
 0

0
0

⇔ x +1/m · y +1/m2 · z = 0 ⇔ x =−y/m − z ·m2.

Ainsi l’ensemble des solutions est


 −y/m − z/m2

y
z

∣∣∣∣∣∣ (y, z) ∈R2

.

M −2I =
 −2 1/m 1/m2

m −2 1/m
m2 m −2

. On résout le système : (M −2I )

 x
y
z

=
 0

0
0


⇐⇒


−2x + y/m + z/m2 = 0

mx −2y + z/m = 0
m2x +my −2z = 0

⇔


−2x + y/m + z/m2 = 0
−3y +3z/m = 0L2 ← 2L2 +mL1

3my −3z = 0L3 ← 2L3 +m2L1

Les deux dernières lignes étant redondantes, on supprime par exemple la dernière, et on ob-

tient le système équivalent :

{
x = y/2m + z/2m2 = z/m2

y = z/m
. On en déduit que M−2I est bien

non inversible car le système homogène associé admet une infinité de solutions au système.
L’ensemble des solutions est 

 z/m2

z/m
z

∣∣∣∣∣∣ z ∈R


2. On pose :

P = 1

3
(M + I ) et Q =−1

3
(M −2I ).

(a) On a PQ =−1

0
(M 2 −M −2I ) = (0) =QP .

(b) On a P 2 = P donc par récurrence immédiate, P n = P pour tout n Ê 1 (et P 0 = I ). De même,Q2 =
Q , donc par récurrence immédiate, Qn =Q pour tout n Ê 1 (et Q0 = I ).

En allant un peu vite, vous vous êtes tirés une balle dans le pied car la question avec Newton
nécessitait d’avoir remarqué que la formule était différente pour n = 0 (wait a sec... je vous avais
pas dit que c’était ultra-classique une formule qui ne marche pas en 0 et qui implique qu’il faut
faire attention en appliquant Newton... ?)

(c) On a 2P −Q = M .
En fonction de P et Q ne veut pas dire " en fonction de P, Q et I ".
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(d) Soit n ∈N?. Comme P et Q commutent, on peut appliquer le binôme de Newton :

M n =
n∑

k=0

(
n
k

)
2k P k (−1)n−kQn−k

=
n∑

k=0

(
n
k

)
2k (−1)n−k P kQn−k

= 2nP n +
n−1∑
k=1

(
n
k

)
2k (−1)n−k P kQn−k

︸ ︷︷ ︸
=0 car PQ=(0)

+(−1)nQn

= 2nP + (−1)nQ

Si n = 0, M 0 = I .

(e) On remarque que P +Q = I et M−1 = 1

2
(M − I ) = 1

2
(2P −Q − I ) = 1

2
(P −2Q) = 1

2
P −Q. Avec un

raisonnement similaire au précédent, on obtient :

(
M−1)n = 1

2n
P + (−1)nQ,

et la formule précédente reste bien valable si n appartient à Z.

(f) On remplace P et Q dans l’expression obtenue à la question précédente :

M n = 2n

3
(M + I )− (−1)n

3
(M −2I ) = 2(−1)n +2n

3
I + 2n − (−1)n

3
M .

Ainsi, en posant pour tout n ∈N, an = 2(−1)n +2n

3
et bn = 2n − (−1)n

3
, on a pour tout n ∈N,

M n = an I +bn M .

Correction 3 1. u vérifie

{
u0 = 1
∀n ∈N , un+1 = 1

2 un +1
.

Il s’agit d’une suite arithmético-géométrique. L’équation λ= 1
2λ+1 a pour solution λ= 2.

On pose donc, pour tout n ∈N, vn = un −2. La suite v ainsi définie est géométrique de raison 1
2 .

Donc pour tout n ∈N :

vn = v0 ·
(

1

2

)n

= (u0 −2) · 1

2n
= − 1

2n
.

D’où :

un = vn +2 = 2− 1

2n
.

On a donc un −→
n→+∞ 2.

Certains ont pris comme premier terme u0 et non pas v0. Beaucoup ont oublié de me donner la
limite.

2. Récurrence. ∀n ∈N, on pose H (n) : " un =
n∑

k=0

tk

2n−k
".

Ï Initialisation. H (0) signifie que u0 =
0∑

k=0

tk

20−k
= t0

1
, ce qui est vrai.
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Ï Hérédité. Soit n ∈N. Supposons H (n). On écrit :

un+1 = 1

2
un + tn+1

= 1

2

n∑
k=0

tk

2n−k
+ tn+1 (d’après H (n))

=
n∑

k=0

tk

2n+1−k
+ tn+1︸︷︷︸

terme en k=n+1

=
n+1∑
k=0

tk

2n+1−k

ce qui démontre H (n +1).
Ï Conclusion : ∀n ∈N, H (n) est vraie.

3. (a) Soit n ∈N. On fait le changement d’indice i = n −k (ou k = n − i ) :

n∑
k=0

1

2n−k
=

n∑
i=0

1

2i
= 1− (1

2

)n+1

1− 1
2

= 2

(
1− 1

2n+1

)
= 2− 1

2n
.

Alternative : on utilise les questions 1 et 2 : on a en fait déterminé (un) lorsque t est constante
égale à 1, ce qui correspond à la somme demandée sans plus de calcul.

Je ne veux pas voir de récurrence pour cette question ! ! !

(b) Supposons que t est bornée, mettons par M Ê 0. Autrement dit, ∀n ∈N, |tn | É M . On a ∀n ∈N :

|un | =
∣∣∣∣∣ n∑
k=0

tk

2n−k

∣∣∣∣∣ (question 2)

É
n∑

k=0

|tk |
2n−k

(inégalité triangulaire)

É
n∑

k=0

M

2n−k
= M

(
2− 1

2n

)
(question précédente)

É 2M

u est donc bornée par 2M .

Certains m’ont écrit : ∀n ∈ N ,α É tn É β donc, après sommation, α

(
2− 1

2n

)
É un É β

(
2− 1

2n

)
,

et conclut que (un) est majorée " car les deux bornes convergent (et alors ? ) ou bien, passent à la
limite dans les bornes (mais pas au milieu, c’est bien connu qu’on peut passer à la limite seule-
ment là où ça nous arrange). Pour rappel, la suite est bornée si son terme général est borné par

des CONSTANTES. La façon correcte de conclure était d’écrire β

(
2− 1

2n

)
É β et α

(
2− 1

2n

)
Ê α car

1

2n
É 1.

4. (a) Soit n ∈N. Avec la question 2 et comme les tk sont positifs, on a : /2

un =
n∑

k=0

tk

2n−k
Ê tn

2n−n︸ ︷︷ ︸
terme en k = n

= tn .

D’autre part, comme t est croissante, on a ∀k ∈ J0,nK, tk É tn . Donc :

un =
n∑

k=0

tk

2n−k
É

n∑
k=0

tn

2n−k
= tn

(
2− 1

2n

)
É 2tn .
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(b) Soit n ∈N. On a :

un+1 −un = 1

2
un + tn+1 −un = tn+1 − 1

2
un

Or, un É 2tn . Donc −1
2 un Ê−tn . Donc :

un+1 −un Ê tn+1 − tn Ê 0 car t est croissante.

u est donc croissante.

Certains m’ont soustrait les deux inégalités ce qui est TRES faux. On multiplie par −1 puis on
additionne !

(c) Supposons que t est majorée, mettons par M . Comme elle est de plus croissante, elle converge.
On note `t sa limite.
En ce qui concerne u, on a un É 2tn É 2M , donc u est aussi majorée. D’après la question pré-
cédente, u est aussi croissante, donc u converge. On note `u sa limite.

Certains m’ont dit que u convergeait car encadrée entre deux suites convergentes, c’est très faux !

On passe alors à la limite n →+∞ dans l’égalité : un+1 = 1
2 un + tn+1, pour obtenir :

`u = 1

2
`u +`t ce qui implique : `u = 2`t .

J’ai compté une partie des points à ceux qui m’ont simplement dit que `v É `u É 2`v .

(d) Si (tn) n’est pas majorée, alors tn →∞d’après la théorème de convergence monotone, puisque
(tn) est croissante. Comme ln est une fonction croissante, on a ln(tn) É ln(un) É ln(2tn) =
ln(2)+ ln(tn). Comme (tn) tend vers l’infini,(ln(tn)) aussi et il existe un rang N à partir duquel
tn Ê 1. On a donc

∀n Ê N ,1 É ln(un)

ln(tn)
É 1+ ln(2)

l n(tn)
.

Par encadrement, on obtient donc ln(un) ∼ ln(tn).

,

5. (a) Soit (a,b) ∈R2 et v la suite de terme général vk = (ak +b)2k . Alors si k ∈N,

vk+1 − vk = (ak +a +b)2k+1 − (ak +b)2k = (ak +2a +b)2k .

La suite vérifie la relation de récurrence proposée pour tout k ∈N si et seulement si

{
a = 1

2a +b = 0
c’est-à-dire si et seulement si (a,b) = (1,−2). On choisit ces constantes. On obtient alors Sn en
télescopant :

Sn =
n∑

k=0
k2k =

n∑
k=0

vk+1 − vk = vn+1 − v0 = (n +1−2)2n+1 +2 = (n +1)2n+1 −2n+2 +2.

Le nombre d’erreurs de calculs sur la simplification de "ak +a −b − (ak +b) " est effarant.

(b) Vérifions que 2n+2 = o((n +1)2n+1) : 2n+2

(n+1)2n+1 = 2
n+1 → 0.

Comme 2 est également négligeable devant cette quantité qui tend vers +∞, on a donc

Sn ∼ (n +1)2n+1 ∼ n2n+1.

6. Si tn = n pour tout n ∈N, on a alors un = Sn d’après la question 2. Alors par produit d’équivalents,

un ∼ n2n+1

2n
∼ 2n.
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7. (a) Soit (wn)n∈N une suite négligeable devant (n)n∈N : wn = o(n). Cela veut dire qu’il existe une
suite εn qui tend vers 0 telle que wn = εnn.

Soit ε> 0. Comme εn → 0, il existe un rang N ∈N tel que pour tout n Ê N , |εn | É 1
2ε. On scinde

la somme à ce rang, et on applique l’inégalité triangulaire à deux reprises : si n Ê N∣∣∣∣∣
∑n

k=0 2k wk

Sn

∣∣∣∣∣É 1

Sn

∣∣∣∣∣N−1∑
k=0

2k wk

∣∣∣∣∣+ 1

Sn

∣∣∣∣∣ n∑
k=N

2k wk

∣∣∣∣∣
É C

Sn
+ 1

Sn

n∑
k=N

k2k |εk |︸︷︷︸
É ε

2

É C

Sn
+ ε

2

1

Sn

n∑
k=N

k2k ,

en notant C = ∑N−1
k=0 2k wk et en utilisant dans la somme de droite wk = kεk , avec |εk | É 1

2ε

puisque k Ê N .

De plus 0 É 1
Sn

∑n
k=N k2k É 1

Sn

∑n
k=0 k2k = 1 : on obtient l’inégalité en rajoutant des termes tous

positifs dans la somme.

Comme Sn →∞, il existe un rang Ñ (qu’on peut choisir supérieur à N ) tel que pour tout n Ê
Ñ ,

C

Sn
É ε

2
.

Pour n Ê Ñ , on a alors en reprenant la majoration précédente.∣∣∣∣∣
∑n

k=0 2k wk

Sn

∣∣∣∣∣É C

Sn
+ 1

Sn

n∑
k=N

k2k |εk | É
ε

2
+ ε

2

1

Sn

n∑
k=N

k2k

︸ ︷︷ ︸
É1

É ε.

On a ainsi démontré que
n∑

k=0
2k wk = o(Sn).

(b) Comme tn ∼ n, en notant wn = tn −n, wn = o(n). On a donc

n∑
k=0

2k tk =
n∑

k=0
k2k +

n∑
k=0

wk 2k = Sn +
n∑

k=0
wk 2k ∼ Sn

d’après la question précédente, puisque
n∑

k=0
2k wk = o(Sn). On a donc par produit d’équiva-

lents, puis comme dans la question 6. :

un = 1

2n

n∑
k=0

2k tk ∼ 1

2n
Sn ∼ 2n.

Correction 4 1. (a) i. On note N = (α j mi j )1Éi , jÉm . La j -ème colonne de N est égale à la j -ème
colonne de M multipliée par le réelα j . Le déterminant étant linéaire par rapport à chaque
colonne, on obtient

det(N ) =
(

n∏
j=1

α j

)
det(M).

Pensez à justifier votre résultat !

ii. On pose R = (αi mi j )1Éi , jÉm . On remarque que R> = (α j m j i )1Éi , jÉm donc, d’après la ques-

tion précédente, det(R>) =
(

n∏
j=1

α j

)
det(M>). Or det(R>) = det(R) et det(M>) = det(M), on

en déduit donc que det(R) = det(N ).
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(b) On a

a1,1 =
(

p

p

)
, a1,n−p+1 =

(
n

p

)
, an−p+1,1 =

(
n

n

)
, a1,n−p+1 =

(
2n −p

n

)
(c) On a

dn = det(1) = 1

dn−1 =
∣∣∣∣1 n
1 n +1

∣∣∣∣= 1

dn−2 =

∣∣∣∣∣∣∣
1 n −1 n(n−1)

2
1 n n(n+1)

2
1 n +1 (n+1)(n+2)

2

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣
1 n −1

n(n −1)

2
0 1 n
0 1 n +1

∣∣∣∣∣∣∣∣L3 ← L3 −L2,L2 ← L2 −L1

=
∣∣∣∣1 n
1 n +1

∣∣∣∣ dvpt p/C1

= 1.

(d) i. On sait que
(β
α

)+( β
α+1

)= (β+1
α+1

)
que l’on va utiliser sous la forme

(β+1
α+1

)−(β
α

)= ( β
α+1

)
En notant

A′
p = (a′

i , j ) la nouvelle matrice, la formule précédente donne (on doit distinguer le cas de
la première colonne)

∀i Ê 2, a′
i ,1 = 0 et a′

i , j =
(

p + i + j −3

p + i −1

)
ii. Les opérations effectuées laissant le déterminant invariant, on a det(Ap ) = det(A′

p ). En
effectuant un développement par rapport à la première colonne, on obtient

dp = det(A′
p ) = det

((
p + i + j −3

p + i −1

))
2Éi , jÉn−p+1

En opérant un changement d’indice (i ′ = i −1 et j ′ = j −1) ceci s’écrit

dp = det

((
p +1+ i ′+ j ′−2

p +1+ i ′−1

))
1Éi ′, j ′Én−(p+1)+1

= dp+1

On en déduit immédiatement que ∀p ∈ [|0,n|], dp = dn = 1

2. (a) On a

D0 =
∣∣1∣∣= 1, D1 =

∣∣∣∣1 1
1 2

∣∣∣∣= 1, D2 =
∣∣∣∣∣∣
1 1 2
1 2 3
2 6 24

∣∣∣∣∣∣= 4,∆0 =
∣∣1∣∣= 1, ∆1 =

∣∣∣∣1 1
1 2

∣∣∣∣= 1, ∆2 =
∣∣∣∣∣∣
1 1 1
1 2 3
1 3 6

∣∣∣∣∣∣= 1

(b) Comme

(
i + j

i

)
= (i + j )!

i ! j !
, on peut factoriser chaque ligne de ∆n par 1

i ! puis chaque colonne

par 1
j ! . Le déterminant étant multilinéaire, on a alors

∆n =
(

n∏
k=0

1

k !

)2

Dn

(c) On a

∆n =
((

i + j
i

))
0Éi , jÉn

=
((

i ′+ j ′−2
i ′−1

))
1Éi ′, j ′Én+1

= d0 = 1

et donc

Dn =
n∏

k=0
(k !)2
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