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TD 14 : Dénombrement et probabilités sur un ensemble fini.

1 Dénombrement

Exercice 1.
Une classe contient 25 élèves.

1. Peut-on former un trinôme d’élèves nés le même mois ?

2. Existe-t-il nécessairement un élève né en janvier ?

Exercice 2.
Soit E un sous-ensemble de [0,1[ de cardinal n +1. Montrer qu’il existe (a,b) ∈ E 2, a 6= b

tel que |a −b| < 1

n
.

Exercice 3. �
Soit n ∈N?. Déterminer le cardinal des ensembles suivants :

1. {(i , j ) ∈ J0,nK2, i < j }.

2. {(i , j ) ∈ J0,nK2, i > j }.

3. {(i , j ) ∈ J0,nK2, i É j }.

4. {(i , j ,k) ∈ J0,nK3, i < j < k}.

Exercice 4.
Soit E un ensemble à n éléments, et A ⊂ E un sous-ensemble à p éléments. Quel est le
nombre de parties de E qui contiennent un et un seul élément de A ?

Exercice 5. �
Une urne contient n ∈N∗ boules numérotées de 1 à n. Soit p ∈ J1,nK, on tire simultané-
ment p boules dans l’urne.

1. Dénombrer le nombre de tirages possibles.

2. Soit k ∈ J1,nK. Dénombrer le nombre de tirages possibles dont le minimum des
numéros tirés est k.

3. Soit (i , j ) ∈ J1,nK2 avec i < j . Dénombrer le nombre de tirages possibles où toutes
les boules tirées ont un numéro compris entre i et j .

4. Soit (k, l ) ∈ J1,nK2 avec k < l . Dénombrer le nombre de tirages possibles dont le
minimum des numéros tirés est k, et le maximum est l .

5. Soit i ∈ J1,nK. Dénombrer le nombre de tirages possibles où la boule i est tirée.

6. Soit i ∈ J1,nK. Dénombrer le nombre de tirages possibles où la boule i n’est pas
tirée.

Exercice 6. �
Soient n Ê 2 et p Ê 2 deux entiers naturels tels que n Ê p. Une urne contient n boules
numérotées de 1 à n. On effectue p tirages avec remise.

1. Quel est le nombre de tirages possibles ?

2. Quel est le nombre de tirages où les numéros des boules tirées sont tous distincts?

3. Quel est le nombre de tirages où au moins deux des boules tirées portent le même
numéro?

4. Quel est le nombre de tirages où exactement deux des boules tirées portent le
même numéro?

Exercice 7.1. Combien un entier de la forme p1 . . . pr , avec les pi des premiers distincts, possède-
t-il de diviseurs?

2. Combien un entier de la forme pm1
1 . . . pmr

r , avec les pi des premiers distincts et les
mi des éléments deN?, possède-t-il de diviseurs?

Exercice 8.
Soit K = {0,1,−1}, déterminer le cardinal des ensembles suivants : M2(K ), GL2(K ), S2(K ),
M3(K ) et A3(K ).
S2(K ) désigne l’ensemble des matrices symétriques (égale à leur transposée) de taille 2 à
coefficients dans K , A3(K ) désigne les matrices antisymétriques (égale à l’opposé de leur
transposée) de taille 3 à coefficients dans K .

2 Calcul de probabilités simples

Exercice 9.
On lance deux dés équilibrés simultanément. Quelle probabilité a-t-on d’obtenir exacte-
ment un six ou deux 5 ?

Exercice 10.
Un enfant permute au hasard les n livres de son étagère.

1. Quelle est la probabilité pour que "tintin au Congo" et "tintin en Amérique" se re-
trouvent côte à côte dans cet ordre ?

2. côte à côte dans n’importe quel ordre?

3. Quelle est la probabilité pour qu’aucun livre n’ait changé de place.

4. Quelle est la probabilité pour qu’exactement un livre ait changé de place ?

5. Quelle est la probabilité pour qu’exactement deux livres aient changé de place ?

Exercice 11.
Combien de fois faut-il lancer un dé à 6 faces pour avoir au moins une chance sur deux
d’avoir un 6?
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Exercice 12.
Soit (n, p) ∈N?×N avec p É n. Une urne contient n boules numérotées de 1 à n.

1. On prélève en une fois une "poignée aléatoire" de p boules dans l’urne.

(a) Soit k ∈ Jp,nK. Calculer la probabilité de l’évènement Ak : "Le plus grand nu-
méro de la poignée est k".

(b) En déduire que
n∑

k=p

(k−1
p−1

)= (n
p

)
.

2. On tire successivement et sans remise p boules dans l’urne. Déterminer la proba-
bilité pour que la p-ième boule tirée ait un numéro supérieur aux p −1 numéros
précédents.

Exercice 13.
Soit n ∈N?. On effectue n lancers indépendants d’une pièce pour laquelle la probabilité
d’obtenir pile est p. On pose q = 1−p.

1. Quelle est la probabilité d’obtenir au moins une fois pile ?
2. Quelle est la probabilité pour qu’au cours de ces n lancers, face ne soit jamais suivi

de pile ?

Exercice 14.
Dans une colocation de trois personnes, on met les chaussettes en commun. Il y a 20
paires de chaussettes et parmi elles, 3 sont trouées. Vaut-il mieux être le premier ou le
dernier à prendre une paire de chaussettes dans le tiroir ?

3 Calcul de probabilités conditionnelles

Exercice 15.
On considère une urne contenant 6 boules rouges et 2 boules bleues. On tire trois boules
sans remise entre chaque tirage.

1. Quelle est la probabilité pour qu’on tire au moins une boule bleue ?
2. Sachant qu’on a tiré une boule bleue, quelle est la probabilité pour qu’on ait tirée

une boule bleue au premier tirage?

Exercice 16.
Un jeu de cartes contient 32 cartes et une main 5 cartes.

1. Quelle est la probabilité pour qu’une main contienne un roi ?
2. Même question sachant qu’elle contient une figure ?
3. Quelle est la probabilité pour qu’elle contienne exactement deux rois?
4. Même question sachant qu’elle contient au moins un roi ?

Exercice 17.
On considère n urnes (n Ê 1) numérotées de 1 à n. L’urne numérotée k contient k boules
blanches et n−k boules noires. On choisit au hasard une urne puis une boule dans cette
urne. Quelle est la probabilité d’obtenir une boule blanche ?

Exercice 18.
On dispose de deux dés A et B . A a 4 faces rouges et deux faces blanches, B a quatre faces
blanches et deux faces rouges. On lance une seule fois une pièce de monnaie telle que la
probabilité d’obtenir pile soit 1/3.

— Si on obtient pile, on joue uniquement avec le dé A.
— Si on obtient face, on joue uniquement avec le dé B .

1. Calculer la probabilité d’obtenir rouge au premier coup.

2. On a obtenu rouge aux deux premiers coups. Calculer la probabilité d’obtenir rouge
au troisième coup.

3. On a obtenu rouge au n premiers coups. Calculer la probabilité pn d’avoir utilisé le
dé A.

4 Formule de Bayes et probabilités totales

Exercice 19.
Dans une classe de PCSI, on a 28% de filles. La probabilité pour choisir PC quand on est
une fille est 60%. La probabilité pour choisir PSI quand on est un garçon est 54%.

Quelle est la probabilité qu’un élève ayant choisi la PC soit une fille?

Exercice 20.
J’ai dans ma poche trois jetons identiques au toucher : l’un a ses deux faces blanches, le
second a ses deux faces noires et le troisième a une face noire et l’autre blanche. Ayant
sorti de ma poche un jeton choisi au hasard, je n’en vois qu’une seule face : elle est
blanche. Quelle est la probabilité que l’autre face de ce jeton soit blanche également?

Exercice 21.
Au moment où chacun possède un tiers du marché de téléphonie mobile, trois opéra-
teurs A, B et C décident de mettre sur le marché un nouveau type de forfait annuel. A la
fin de l’année, l’évolution des parts de marché se fait de la façon suivante :

— Les clients de l’opérateur A se répartissent indifféremment entre A, B et C .
— Les clients de l’opérateur B restent toujours fidèle à cette compagnie.
— Les clients de la compagnie C seront l’année suivante clients de A avec une pro-

babilité de 1/12, clients de B avec une probabilité de 7/12 et clients de C avec une
probabilité de 1/3.

On note, pour n ∈ N, an , bn et cn les probabilités pour qu’à l’issue de la n-ième année,
un consommateur décide de s’abonner chez A, B ou C pour l’année suivante.

1. Déterminer une relation de récurrence entre an ,bn ,cn et an+1,bn+1 et cn+1.

2. Première méthode :

(a) Montrer que (an)n∈N et (cn)n∈N sont des suites récurrentes linéaires d’ordre 2.

(b) En déduire l’expression du terme général de ces deux suites.

3. Deuxième méthode
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(a) Déterminer les réels α tels que (an +αcn)n∈N est une suite géométrique.

(b) En déduire l’expression du terme général de ces deux suites géométriques.

(c) Retrouver le résultat de la question 2b)

4. En déduire l’expression du terme général de (bn)n∈N
5. Déterminer les limites des suites et en donner une interprétation.

Exercice 22. 3
On considère un point qui se déplace sur les sommets d’un triangle A1 A2 A3. On suppose
qu’initialement, il se trouve en A1. Ensuite, les déplacements s’effectuent de la manière
suivante : Si le point est en Ai , alors

— il passe en A j avec j 6= i avec une probabilité de
2

5
dans les deux cas.

— il reste en Ai avec une probabilité de
1

5
.

On introduit l’évènement Un (resp. Vn et Wn) : " être en A1 (resp. A2 et A3) après n dépla-
cements et on note les probabilités de ces évènements un , vn et wn .

1. Déterminer u0, v0 et w0.

2. Pour tout entier n, exprimer (un+1, vn+1, wn+1) en fonction de (un , vn , wn) à l’aide
d’un système.

3. Traduire ce système à l’aide d’un produit matriciel puis déterminer le terme général
de chaque suite en calculant la puissance de la matrice.

————————————————————————————————————–

5 Évènements indépendants, mutuellement indépendants

Exercice 23.
Une boîte contient deux boules : une noire et une rouge. On tire n fois une boule dans
cette boîte en la remettant après avoir noté sa couleur. On note

An l’évènement : ’on obtient des boules des deux couleurs au cours des n tirages’ et
Bn l’évènement : ’on obtient au plus une boule noire’.

1. Calculer P(An) et P(Bn).

2. An et Bn sont-ils indépendants si n = 2 ?

3. Même question si n = 3.

Exercice 24.
On lance deux fois de suite une pièce de monnaie équilibrée. On considère les évène-
ments :
• A : ’le premier jet donne Pile’,
• B : ’le deuxième jet donne Pile’
• C : ’les deux jets donnent le même résultat’
Les événements A, B, C sont-ils indépendants deux à deux? mutuellement indépen-
dants?

Exercice 25.
Soient un espace probabilisé (Ω,P (Ω),P ), et n évènements mutuellement indépendants
A1, A2, . . . , An .

1. Calculer P

(
n⋃

i=1
Ai

)
en fonction de P(A1),P(A2), . . . ,P(An).

2. Application : trois chasseurs aperçoivent un canard d’eau et tirent simultanément
et indépendamment. Leurs probabilités de succès sont respectivement 1/2, 1/3, et
1/4. Calculer la probabilité que le canard soit tué.

6 Si besoin d’encore un peu d’entrainement

Exercice 26.
Dans un village de 700 habitants, montrer que au moins deux personnes ont les mêmes
initiales

Exercice 27.
Un lycée compte 400 élèves. Peut-on affirmer que deux étudiants fêtent leur anniversaire
le même jour?

Exercice 28.
On appelle mot toute suite de lettres ayant un sens ou non. Déterminer le nombre de
mots :

1. de quatre lettres,

2. de quatre lettres distinctes,

3. de quatre lettres distinctes ayant une seule voyelle,

4. de quatre lettres ne contenant pas de " w " .

Exercice 29.
Déterminer le nombre de mots distincts que l’on peut former avec 6 voyelles et 20
consonnes, chaque mot étant composé de 3 consonnes et 2 voyelles, en excluant les mots
qui renferment 3 consonnes consécutives.

Exercice 30.

Dans une finale du 100 mètres, il y a 8 coureurs. Combien y a-t-il de podiums pos-
sibles ?

Exercice 31.
Un facteur arrive dans le hall d’un immeuble. Il doit distribuer 7 prospectus dans 10
boites aux lettres nominatives. De combien de façons peut-il faire dans chacun des cas
suivants :

1. Chaque boite peut contenir au plus un prospectus et les prospectus sont distincts.
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2. Chaque boite peut contenir au plus un prospectus et les prospectus sont iden-
tiques.

3. Chaque boite peut contenir un nombre quelconque de prospectus et les prospec-
tus sont distincts.

4. (dur !) Chaque boite peut contenir un nombre quelconque de prospectus et les
prospectus sont identiques.

Exercice 32.
On considère les mains de 5 cartes que l’on peut extraire d’un jeu de 32 cartes.

1. Combien y a-t-il de mains différentes ?

2. Combien y a-t-il de mains comprenant exactement un as ?

3. Combien y a-t-il de mains comprenant au moins un as ?

4. Combien y a-t-il de mains comprenant au moins un roi et au moins un as?

Exercice 33.
1. Combien le mot ROMAIN possède-t-il d’anagrammes?

2. Combien le mot HERBE possède-t-il d’anagrammes?

3. Combien le mot KAYAK possède-t-il d’anagrammes?

4. Combien le mot ELEVE possède-t-il d’anagrammes ?

Exercice 34.
Combien existe-t-il de dominos différents?

Exercice 35.
On tire 7 cartes d’un jeu de 7 familles qui contient 7 cartes par famille.

1. Quelle est la probabilité pour avoir 7 cartes de 7 familles différentes?

2. Quelle est la probabilité pour avoir 1 famille complète?

Exercice 36.
On lance deux dés à 6 faces. Déterminer la probabilité pour que :

1. les dés donnent des chiffres identiques;

2. la somme des deux dés soit égale à 4 ;

3. l’un des deux dés (au moins) donne 6 ;

4. l’on ait un double six ;

5. les dés soient de parité opposée.

Exercice 37.
On veut servir du café (non décaféiné) à nos invités. Les capsules se trouvent dans une
boîte contenant 8 capsules de décaféiné et 20 capsules normales. Chaque fois qu’on tire
une capsule de décaféiné, on la remet dans la boîte. Quand on tire une capsule normale,
on la met dans la machine pour servir un café.

On procède à trois tirages successifs.

1. Quelle est la probabilité qu’on ne tire que des capsules de décaféiné ?

2. Quelle est la probabilité qu’on ne tire que des capsules normales?

3. Quelle est la probabilité qu’on tire au moins un décaféiné?

4. Quelle est la probabilité qu’on tire au moins un décaféiné sachant qu’on a tiré au
moins une capsule normale ?

5. Quelle est la probabilité qu’on tire exactement un décaféiné?

Exercice 38.

Lorsqu’on est roux, on a une probabilité de
3

4
d’avoir un enfant roux si c’est une fille

et une probabilité de
2

3
si c’est un garçon. Lorsqu’on n’est pas roux mais qu’un de ses

parents l’est, on a 1 chance sur 3 d’avoir un enfant roux.

1. Quelle est la probabilité d’avoir un enfant roux quand on est roux ?

2. Quelle est la probabilité que son aîné(e) ait en enfant roux quand on est roux ?

Exercice 39.
On cherche un paquet de piles dans un meuble à 5 tiroirs. Il se trouve dans l’un des 5

tiroirs avec une probabilité de
p

5
(0 É p É 1).

1. Quelle est la probabilité que le paquet de piles se trouve dans le meuble?

2. On a exploré en vain les quatre premiers tiroirs, quelle est la probabilité que le pa-
quet de piles se trouve dans le dernier tiroir?

Exercice 40.
Dans une urne, on trouve 4 boules blanches et 3 boules noires numérotées respective-
ment de 1 à 4 et de 5 à 7.

1. On tire successivement et sans remise trois boules de l’urne.

(a) Calculer la probabilité d’obtenir, dans cet ordre, deux boules blanches et une
boule noire.

(b) Calculer la probabilité d’obtenir, dans n’importe quel ordre, deux boules
blanches et une boule noire.

2. On tire désormais trois boules avec remise.

(a) Calculer la probabilité d’obtenir, dans cet ordre, deux boules blanches et une
boule noire.

(b) Calculer la probabilité d’obtenir, dans n’importe quel ordre, deux boules
blanches et une boule noire.

3. On effectue un tirage simultané de trois boules, calculer la probabilité d’obtenir
deux boules blanches et une boule noire.

Exercice 41.
On jette deux dés équilibrés, un rouge et un bleu. Montrez que les évènements suivants
sont deux à deux indépendants mais ne sont pas mutuellement indépendants :
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— " le chiffre du dé rouge est impair"
— " le chiffre du dé noir est pair"
— " les chiffres des deux dés ont même parité".

Exercice 42.
Pierre et Paul font des macarons. Pierre rate 8% de sa production et Paul 3%. Sur la four-
née, 2/3 des macarons ont été faits par Paul.

1. Quelle est la probabilité pour qu’un macaron mangé au hasard soit raté?

2. Quelle est la probabilité pour qu’un macaron raté ait été fait par Pierre?

Exercice 43.
Un vigile a, dans sa poche, dix clefs toutes différentes mais indiscernables au toucher. Il
doit ouvrir, dans la quasi-obscurité, une des portes de l’entrepôt qu’il surveille et, pour
ce faire, il essaie les clefs l’une après l’autre, au hasard.
Le vigile ne sait pas que ses faits et gestes sont attentivement observés par un voleur,
qui prépare son coup. Le voleur a remarqué que certaines nuits, le vigile remet dans une
poche différente toute clef essayée et qui n’a pas ouvert le porte, alors que d’autres nuits,
le vigile remet toute clef essayée sans succès dans la même poche avec toutes les clefs.Le

voleur a noté par ailleurs que le vigile emploie la seconde méthode quand, et seulement
quand, il a trop copieusement arrosé son repas, ce qui se produit de façon aléatoire avec
une probabilité 1/10 ; le voleur juge aussi que c’est après un repas copieusement arrosé
qu’il lui faudra agir, car le vigile sera hors d’état de protéger l’entrepôt.
Déterminer la probabilité pk que le voleur, arrivé sur les lieux après le repas du vigile,
puisse agir sans risque quand il a constaté que la porte n’est pas encore ouverte après la
k-ième clef essayée par le vigile.
On pourra noter A l’évènement " le vigile a copieusement arrosé son repas", et Ok l’évè-
nement " la k-ième clef essayée par le vigile ouvre la porte "

7 Une fois qu’on est à l’aise

Exercice 44.
Soit E un ensemble de n élèves avec n ∈N?. On décide de former des groupes de travail.

1. Combien de partitions possibles de la classe en deux groupes non vides?

2. On suppose n = 2p, combien de partitions possibles de la classe en binômes?

3. On suppose n = pq , combien de partitions possibles de la classe en p groupes de q
élèves?

Exercice 45. 3
Un couple décide d’organiser un repas avec 2n convives réparties en n couples mixtes.
On suppose qu’il y a n hommes et n femmes. Combien de possibilités de plan de table
a-t-on

1. au total ?

2. sans séparer les couples ?

3. en alternant les sexes?

4. en supposant les deux derniers
critères?

Exercice 46. 3

Soient E et F deux ensembles à n et p éléments. Combien y a-t-il

1. d’injections de E dans F ?

2. d’applications strictement croissantes de E dans F ?

3. d’applications croissantes de E dans F ?

Exercice 47. 3
Soit n ∈N∗. Combien y a-t-il de surjections de l’ensemble J1,n+1K dans l’ensemble J1,nK.

Exercice 48.
Soit E un ensemble fini de cardinal n ∈N. Calculer le cardinal de l’ensemble G suivant :

G = {
(A,B) ∈P (E)×P (E) tel que A ⊂ B

}
Exercice 49. 3
Montrer que pour tout k ∈ N? et tout n ∈ N?, le nombre de k-listes (x1, . . . , xk ) ∈ (

N?
)k

telles que
k∑

i=1
xk = n est

(n−1
k−1

)
.

Exercice 50. 3
Soit a,b deux entiers non nuls et F un ensemble de cardinal a +b avec a +b > 0 et n tel

que 0 É n É a+b. En dénombrant le nombre de parties à n éléments de F de deux façons
différentes, montrer que (

a +b

n

)
=

min(a,n)∑
k=max(0,n−b

(
a

k

)(
b

n −k

)
,

soit, en posant
(i

j

)= 0 lorsque i < 0 ou i > j :(
a +b

n

)
=

n∑
k=0

(
a

k

)(
b

n −k

)
(formule de vandermonde)

Exercice 51. 3 3
p personnes entrent dans un ascenseur d’un immeuble de n étages (sans compter le rez-
de-chaussée) et descendent chacune à un des n étages. On note A= " À chaque étage, au

moins une personne est descendue". Montrer que P(A) = (−1)n
n∑

k=0
(−1)k

(n
k

)( k

n

)p

.
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Exercice 52. 3 3
On considère une cellule qui peut se diviser en deux (par mitose) avec la probabilité p
ou mourir avec la probabilité 1−p. On veut calculer la probabilité pour que sa lignée soit
éteinte à la n +1-ième génération. On note un cette probabilité. Notons que u0 = 1−p.

1. Montrer que u1 = pu2
0 +1−p.

2. En déduire, pour tout entier n, l’expression de un+1 en fonction de un .

3. En étudiant la fonction définissant cette suite récurrente, déterminer le comporte-
ment de cette probabilité.

Exercice 53. 3 3
Un joueur joue à un jeu d’argent contre le casino. On suppose que, initialement, la for-
tune du joueur est de a ∈N et celle du casino est de N −a avec 0 É a É N et N ∈N. Soit p

un réel vérifiant 0 < p < 1 et p 6= 1

2
.

À chaque répétition du jeu, on suppose que le joueur gagne 1 euros avec la probabilité
p ou perd un euro avec la probabilité 1−p. Si on note xn la fortune du joueur à l’issue du
n-ième jeu, alors :

x0 = a et xn+1 =
{

xn +1 avec la probabilité p
xn −1 avec la probabilité 1−p

Le jeu s’arrête dès que xn prend la valeur 0 (le joueur est ruiné) ou la valeur N (le casino
est ruiné).

1. Soit ua la probabilité pour que le joueur soit ruiné, étant initialement parti d’une
mise de a. On a, en particulier, u0 = 1 et uN = 0.

(a) Montrer que pour tout entier a tel que 1 É a É N −1, on a :

ua = pua+1 + (1−p)ua−1.

(b) Vérifier que :

ua =

(
1−p

p

)a

−
(

1−p

p

)N

1−
(

1−p

p

)N
.

(c) Déterminer la limite de ua lorsque N →+∞ et interpréter ce résultat.

2. Calculer la probabilité va pour que le casino soit ruiné si le joueur part avec une
mise de a.

3. Calculer la somme ua +va . En déduire la probabilité pour que le joueur et le casino
s’affrontent indéfiniment.

4. Reprendre les calculs dans le cas où p = 1

2
.
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Memo

— Comment calculer la probabilité d’un évènement sans condition?
— Compter les cas favorables/possibles
— Calculer la probabilité du contraire
— Décrire l’évènement comme une réunion d’évènements incompatibles
— Utiliser un système complet
— Utiliser la formule des probabilités composées

— Comment calculer la probabilité d’un évènement avec condition?
— Utiliser la définition
— Inverser les conditionnements
— Utiliser la formule de Bayes
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Correction du TD n 14

Correction 1

1. Il y a 25 élèves et 12 mois dans l’année donc il existe au moins un mois durant lequel
trois élèves sont nés.

2. On ne peut, cependant, affirmer qu’un élève est né en janvier (ils pourraient tous
les 25 être nés en décembre).

Correction 2 On divise l’intervalle [0,1[ en n sous-intervalles :

[
k

n
,

k +1

n

[
pour k va-

riant de 0 à n − 1. D’après le principe des tiroirs, il existe au moins un sous-intervalle
contenant deux éléments distincts de E . Autrement dit, il existe k ∈ J0,n−1K et (a,b) ∈ E 2,
a 6= b tels que :

k

n
É a < k +1

n
et

k

n
É b < k +1

n
.

On a alors |a −b| < 1

n
.

Correction 3

1. Deux angles d’attaque possible. On peut remarquer que le cardinal de cet ensemble
est égale à la somme de "1" sur cet ensemble c’est-à-dire :∑

0Éi< jÉn
1.

On écrit alors : ∑
0Éi< jÉn

1 =
n∑

j=1

j−1∑
i=0

1 =
n∑

i=1
j = n(n +1)

2
.

On peut également avoir une approche plus intuitive et remarquer la chose sui-
vante :
— Lorsque i = n −1, j ne peut valoir que n, il y a donc un unique choix pour j .
— Lorsque i = n −2, j peut valoir n −1 ou n, il y a donc deux choix.
Par une récurrence immédiate, lorsque i = n − k, il y a k choix pour j donc le

nombre de couples (i , j ) avec i < j est égal à
n∑

k=1
k = n(n +1)

2
.

2. L’ensemble est en bijection avec l’ensemble de la question précédente (et la bijec-
tion est donnée par la permutation des deux coordonnées), il a donc même cardi-

nal égal à
n(n +1)

2
.

3. Cette fois-ci, l’inégalité est large, le cardinal cherché correspond donc à la somme :

∑
0ÉiÉ jÉn

=
n∑

j=0

j∑
i=0

=
n∑

j=0
( j +1) =

n+1∑
k=1

k = (n +1)(n +2)

2
.

4. À nouveau, on raisonne avec une somme (triple !). Le cardinal cherché est égal à la
somme suivante : ∑

0Éi< j<kÉn
1.

On remarque que i varie de 0 à j−1, j varie de 1 à k−1 et k varie de 2 à n. La somme
est donc égale à :

∑
0Éi< j<kÉn

1 =
n∑

k=2

k−1∑
j=1

j−1∑
i=0

1 =
n∑

k=2

k−1∑
j=1

j =
n∑

k=2

k(k −1)

2
.

On remarque que
n∑

k=2

k(k −1)

2
=

n∑
k=1

k(k −1)

2
, on en déduit que

∑
0Éi< j<kÉn

1 = 1

2

(
n∑

k=1
k2 −

n∑
k=1

k

)
= 1

2

(
n(n +1)(2n +1)

6
− n(n +1)

2

)
= n(n +1)(n −1)

6
.

Correction 4 Pour choisir un tel ensemble il faut choisir un élément de A puis choisir
un sous-ensemble du complémentaire. Celui-ci est de cardinal n − p donc le nombre
d’ensembles dans le complémentaire de A est 2n−p .

Pour le choix d’un élément de A nous avons p choix, donc le nombre total d’ensembles
qui vérifie la condition est :

p2n−p .

Correction 5

1. Le tirage des p boules est simultané donc
(n

p

)
tirages.

2. On veut que le plus petit numéro soit k, il faut donc tirer la boule k et tirer p − 1
boules entre k +1 et n donc dans l’ensemble Jk +1,nK contenant n−k éléments, il

y a donc
(n−k

p−1

)
tirages.
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3. On doit choisir les p boules dans l’ensemble Ji , jK, il contient j−i+1 éléments donc( j−i+1
p

)
tirages.

4. On doit avoir la boule numéro k, la boule numéro l et les p −2 autres boules dans
l’ensemble Jk +1, l −1K qui contient l −k −1 éléments donc

(l−k−1
p−2

)
tirages.

5. On a la boule i , les p − 1 autres boules appartiennent à l’ensemble J1,nK \ {i } qui
contient n −1 éléments donc

(n−1
p−1

)
tirages.

6. On a choisi les p boules dans l’ensemble J1,nK\{i } qui contient n−1 éléments donc(n−1
p

)
tirages.

Correction 6

1. On effectue des tirages successifs avec remises, on compte donc les p-uplets à va-
leur dans J1,nK d’où np tirages.

2. On compte les p-uplets de J1,nK dont les coordonnées sont distinctes :
n!

(n −p)!
.

3. Il suffit d’enlever, au nombre de tirages total, les tirages où tous les numéros sont

distincts : np − n!

(n −p)!

4. On choisit les tirages où la boule apparaîtra deux fois :
(p

2

)
, puis la boule qui se répè-

tera : n choix. Enfin, une fois la boule choisie et les deux tirages où elle apparaîtra
fixés, on doit tirer les p − 2 boules restantes parmi les n − 1 numéro différents de
la boule qui se répète et ces boules doivent avoir des numéros différents donc :
n.

(n
p

)
(n −1)!

(n −p +1)!
= n

p !

2

(n−1
p−2

)
.

Correction 7

1. Un diviseur sera un entier de la forme pα1
1 . . . pαr

r avec, pour tout i ∈ J1,r K,αi ∈ {0,1}.
On a donc 2r diviseurs possibles.

2. Un diviseur sera un entier de la forme pα1
1 . . . pαr

r avec, pour tout i ∈ J1,r K, αi ∈
J0,mi K. On a donc :

r∏
i=1

(mi +1)

diviseurs possibles.

Correction 8
— M2(K ) : Pour chaque coefficient, on a trois choix possibles. Il y a 4 coefficients donc

34 éléments dans M2(K ).

— GL2(K ) : Un élément de M2(K ) est inversible s’il est de la forme

(
a b
c d

)
avec ad −

bc 6= 0.
Nous allons dénombrer l’ensemble des matrices non-inversibles c’est-à-dire celles
vérifiant ad −bc = 0, ou, dit autrement, celles dont les lignes sont colinéaires. Cet
ensemble est la réunion de deux ensembles disjoints : l’ensemble des matrices
telles que (b,c) = (0,0) et l’ensemble des matrices telles que (a,b) = λ(b,c) avec
(b,c) 6= 0. Comme a et b sont des éléments de K , on a également λ ∈ K .
Il y a 32 matrices telles que (b,c) = (0,0) (3 choix pour a et 3 choix pour d). Par
ailleurs, le nombre de couples (b,d) tels que (b,d) 6= (0,0) est 32 −1 = 8 et il y a trois
choix pour λ donc l’ensemble es matrices telles que (a,b) =λ(b,c) avec (b,c) 6= 0 et
λ ∈ K a 3×8 = 24 éléments. Ces deux ensembles étant disjoints, on en déduit que
le nombre de matrices non inversibles dans M2(K ) est 24+9 = 33 et, par suite, le
nombre de matrices inversibles est 34 −33 = 48.

— S2(K ) : On s’intéresse maintenant aux matrices symétriques c’est-à-dire aux ma-

trices de la forme

(
a b
b d

)
. Il y a 33 telles matrices.

— M3(K ) : il y a 9 coefficients et 3 choix pour chacun donc 39 éléments dans M3(K ).

— A3(K ) : On cherche les matrices de la forme

 0 b c
−b 0 e
−c −e 0

. Il y a donc trois coeffi-

cients à choisir et trois choix pour chacun donc 33 éléments dans A3(K ).

Correction 9 Les deux évènements sont incompatibles, la probabilité de la réunion est
donc égale à la somme des probabilités.

On commence par calculer la probabilité d’obtenir un six. On a 5 lancers possibles
avec un six obtenu avec le premier dé et 5 lancers possibles avec un six obtenu avec le
deuxième dé. On a donc 10 cas favorables sur un total de 62 cas possibles.

Le nombre de cas favorables d’obtenir deux 5 est 1. On a donc une probabilité de
10

62 +
1

62 = 11

62 .

Correction 10

1. Il y a n −1 choix pour placer "tintin au congo" (il ne peut pas être en dernière po-
sition) et 1 choix pour placer "tintin en Amérique" (juste à côté). Une fois les tin-
tins placés, il y a ensuite n − 2 places pour les n − 2 livres donc autant de choix
que de permutations d’un ensemble avec n − 2 éléments ( (n − 2)). On a donc
(n −1)× (n −2)! = (n −1)! cas favorables. Il y a autant de cas possibles que de per-
mutation d’un ensemble à n éléments donc n!. La probabilité recherchée est donc
1

n
.
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2. On peut reprendre le nombre de cas favorables trouvés à la question précédente
pour bloquer les places où seront les tintins et multiplier par 2 (ce qui correspond
au choix de l’ordre dans lequel ils seront).

On peut aussi dire qu’il y a n choix pour placer le premier mais pour deux de ces
choix (première et dernière position), il n’y a pas de choix pour placer à côté l’autre
volume. Pour les n −2 positions "intérieures", en revanche, il y a deux choix pour
placer le deuxième volume (un de chaque côté). On a donc 2+2(n −2) = 2(n −1)
choix pour placer les tintins. On multiplie ensuite par (n−2) pour obtenir le nombre
total de choix favorables.

Enfin, on peut dire que l’évènement dont on cherche à calculer la probabilité est
la réunion disjointe de deux évènements : celui de la question précédente et " les
livres "tintin en Amérique" et "tintin au Congo" se retrouvent côte à côte dans cet
ordre". Les deux évènements ont la même probabilité.

La probabilité recherchée est donc
2

n
.

3. Il n’est pas possible qu’un seul livre ne change pas de position puisqu’il doit forcé-
ment prendre la place d’un autre, cette probabilité est donc nulle.

4. Il faut choisir les deux livres qui vont changer de place. Si on prend les couples (i , j )

avec i 6= j , on compte deux fois chaque permutation donc
n(n −1)

2
. On peut aussi

dire que l’on considère les couples (i , j ) avec i < j (pour être sûr de ne pas compter
plusieurs fois la même permutation). Cela correspond aux parties à 2 éléments de

J1,nK donc
(n

2

)= n(n −1)

2
.

Les autres livres ne change pas de place donc on a
n(n −1)

2
cas favorables. La pro-

babilité recherchée est donc
n(n −1)

2n!
= 1

2(n −2)!
.

Correction 11 À chaque lancer, on a une probabilité de
5

6
de ne pas obtenir de six. Au

bout de k lancers, on a donc une probabilité de :(
5

6

)k

de ne pas avoir de 6. Pour avoir (au moins) une chance sur 2 d’obtenir un six, il faut que :(
5

6

)k

É 1

2
.

On trouve, à l’aide de la calculatrice (aaaaahhhhh! ! ! ! ! ! ! ! !) , k = 4.

Correction 12

1. (a) Le nombre d’évènements favorables est égal au nombre de parties à p −1 élé-
ments (toute la poignée sauf la boule numérotée k) de J1,k −1K donc

(k−1
p−1

)
. Le

nombre de cas possibles est
(n

p

)
. On a donc

P(Ak ) =
(k−1

p−1

)(n
p

) .

(b) Dans une poignée de p boules, le plus grand numéro vaut au moins p. Les évè-
nements (Ap , . . . , An) forment donc un système complet d’évènements incom-
patibles. On a

P(
n⋃

k=p
Ak ) =

n∑
k=p

P(Ak ) = 1,

donc
n∑

k=p

(k−1
p−1

)= (n
p

)
.

2. On compte le nombre de cas possibles : autant que de p-uplets sans répétition de

J1,nK donc
n!

(n −p)!
. On choisit p numéros différents, on a

(n
p

)
façons de les choi-

sir. Une fois ces p numéros fixés, il y a (p −1)! façons de les ordonner avec le plus
haut numéro en dernière position (autant que de permutations des p−1 premières
boules). On a donc

(n
p

)
(p −1)! cas favorables. En faisant le quotient, on trouve une

probabilité de
1

p
.

Plus tordu : On compte le nombre de cas possibles : autant que de p-uplets sans

répétition de J1,nK donc
n!

(n −p)!
. Les cas favorables s’obtiennent en faisant la

réunion disjointe des cas favorables tels que max=k avec k un entier entre p et n
ce qui nous donne n −p +1 choix pour k. Une fois k fixé, on doit choisir les p −1

premières boules entre 1 et k −1, on a
(k −1)!

(k −p)!
. On somme pour k variant de p à n.

On obtient, grâce à la question précédente
1

p
.

Correction 13

1. On calcule la probabilité de l’évènement contraire : n’obtenir jamais pile. À chaque
lancer, il y a une probabilité de q = (1−p) d’obtenir face donc une probabilité de
qn d’obtenir toujours face. On en déduit que la probabilité d’obtenir au moins une
fois pile est 1−qn .

2. Si face n’est jamais suivi de pile cela signifie soit qu’il n’y a eu que "pile", soit que
dès qu’on a eu "face", il n’y a ensuite que "face". Notons Ak l’évènement "on obtient
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face pour la première fois au bout de k +1 lancers (An désignant l’évènement "on
obtient que "pile"). L’évènement Ak correspond donc à k lancers où on obtient

pile puis n −k lancers où on obtient face. La probabilité cherchée est P

(
n⋃

k=0

)
. Ces

évènements étant incompatibles, on a :

P

(
n⋃

k=0
Ak

)
=

n∑
k=0

P(Ak ).

La probabilité de l’évènement Ak est pk qn−k donc la probabilité cherchée est :

n∑
k=0

pk qn−k = qn
n∑

k=0

(
p

q

)k

= qn
1− pn+1

qn+1

1− p
q

= qn+1 −pn+1

q −p
.

Correction 14 On numérote les paires de chaussettes de 1 à 20, les trois premières étant

trouées. On identifie un tirage à un triplet d’éléments distincts. Il y a
20!

17!
cas possibles. Le

nombre de cas favorables pour que le premier tire une chaussette trouée correspond au
nb de triplets distincts dont la première coordonnée est un numéro entre 1 et 3. Il y a 3
choix pour la première coordonnée, 19 pour la deuxième et 18 pour la troisième soit un

nb de cas favorables de 3×19×18 et une probabilité de
3

20
. Le nombre de cas favorables

que le deuxième ou le troisième tire une chaussette trouée étant identique, on a la même
probabilité de tirer une paire de chaussettes trouées, qu’on soit le premier ou le dernier
à se servir.

Correction 15

1. On va calculer la probabilité de l’évènement contraire c’est-à-dire le fait de tirer

uniquement des boules rouges à chaque tirage. On a une probabilité de
6

8
pour le

premier tirage, puis
5

7
pour le deuxième et, enfin,

4

6
. La probabilité pour qu’on ne

tire que des boules rouges est :

6

8
× 5

7
× 4

6
= 5

14
.

La probabilité pour qu’on tire au moins une boule bleue est donc :

1− 5

14
= 9

14
.

2. Si l’on note A l’évènement " on a tiré une boule bleue" et B l’évènement " on tire
une boule bleue au premier tirage", on cherche PA(B). Par définition, on a :

PA(B) = P(A∩B)

P(A)
.

Or :

P(A∩B) =P(B) = 2

8
= 1

4
et

P(A) = 9

14
,

d’après la question précédente. On a donc :

PA(B) = 7

18
.

Correction 16

1. La probabilité pour qu’elle ne contienne pas de roi est

(28
5

)(32
5

) , la probabilité pour que

la main contienne au moins un roi est donc

1−
(28

5

)(32
5

) = 1841

3596
' 0.51.

2. Notons A l’évènement " la main contient au moins un roi" et B l’évènement " la
main contient une figure". On cherche PB (A). Par définition, on a :

PB (A) = P(A∩B)

P(B)
.

On sait que :

P(A∩B) =P(A) = 1−
(28

5

)(32
5

)
d’après la question précédente.

Calculons P(B). On va calculer la probabilité de son contraire. La probabilité pour
qu’une main ne contienne aucune figure est :(20

5

)(32
5

) ,

on a donc :

P(B) = 1−
(20

5

)(32
5

) .
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On en déduit :

PB (A) =
1−

(28
5

)(32
5

)
1−

(20
5

)(32
5

) =
(32

5

)− (28
5

)(32
5

)− (20
5

)

' 0.55

.

3. Il y a
(4

2

)
façons de choisir deux rois parmi les 4 et

(28
3

)
façons de compléter la main

sans roi. La probabilité pour avoir exactement 2 rois est donc :(4
2

)(28
3

)(32
5

) = 351

3296
' 0.1.

4. Notons C l’évènement " la main contient exactement deux rois", alors, avec les no-
tations de la première question, on cherche PA(C ). On sait que :

PA(C ) = P(A∩C )

P(A)
= P(C )

P(A)
.

On a calculé P(C ) à la question précédente. On sait donc que :

PA(C ) =

(4
2

)(28
3

)(32
5

)
1−

(28
5

)(32
5

) ' 0.19.

Correction 17 Pour tout k ∈ J1,nK, on note Uk l’évènement "choisir l’urne k" et B dé-
signe l’évènement "tirer une boule blanche. D’après la formule des probabilités totales,
on a :

P(B) =
n∑

k=1
P(Uk )PUk (B) =

n∑
k=1

1

n
× k

n
= 1

n2

n∑
k=1

k = n(n +1)

2n2 .

La probabilité recherchée est donc
n(n +1)

2n2 .

Correction 18 On note Ri l’évènement "obtenir rouge au i -ième coup" et D1 l’évène-
ment jouer avec le dé A.

1. On cherche à déterminer P(R1). On a :

P(R1) =P(D1)PD1 (R1)+P(D1)PD1
(R1) = 1

3
× 4

6
+ 2

3
× 2

6
= 4

9
.

On a donc une probabilité de
4

9
d’obtenir rouge au premier coup.

2. On cherche à calculer PR1∩R2 (R3). Par définition, on a :

PR1∩R2 (R3) = P(R1 ∩R2 ∩R3)

P(R1 ∩R2)
.

Par ailleurs, comme (D1,D1) est un système complet d’évènements, on a :
P(R1 ∩R2) =
P(D1)PD1 (R1 ∩R2)+P(D1)PD1

(R1 ∩R2) = 1

3
× 4

6
× 4

6
+ 2

3
× 2

6
× 2

6
= 2

9
.

et
P(R1 ∩R2 ∩R3) =
P(D1)PD1 (R1 ∩R2 ∩R3)+P(D1)PD1

(R1 ∩R2 ∩R3) = 1

3

(
2

3

)3

+ 2

3

(
1

3

)3

= 10

34 .

On en déduit que

PR1∩R2 (R3) =
10
34

2
9

= 5

9
.

3. On cherche à déterminer P n⋂
k=1

Rk
(D1). On va inverser les conditionnements :

P n⋂
k=1

Rk
(D1) =

P(D1)PD1 (
n⋂

k=1
Rk )

P(
n⋂

k=1
Rk )

.

On a

PD1

(
n⋂

k=1
Rk

)
=

(
2

3

)n

,

P(D1) = 1

3
et

P(
n⋂

k=1
Rk ) =P(D1 ∩

n⋂
k=1

Rk )+P(D1 ∩
n⋂

k=1
Rk ) = 1

3

(
2

3

)n

+ 2

3

(
1

3

)n

.

On a donc :

pn =
1

3

( 2
3

)n

1
3

( 2
3

)n + 2
3

( 1
3

)n = 2n

2+2n .

5



Correction 19 Notons A l’évènement " l’élève est une fille" et B l’évènement " l’élève
choisit la PC". On cherche à déterminer PB (A). On utilise la formule de Bayes :

PB (A) = PA(B)P(A)

PA(B)P(A)+PA(B)P(A)
.

On sait que :

PA(B)P(A) = 60

100

28

100
,

et :
PA(B)P(A) =

(
1−PA(B)

)
(1−P(A))

=
(
1− 54

100

)(
1− 28

100

)

= 46

100
× 72

100
.

On a donc :

PB (A) =
60

100
× 28

100
60

100
× 28

100
+ 46

100
× 72

100

∼ 0.336.

Correction 20 On note Ji l’évènement tirer le jeton i avec i = 1,2,3 et B l’évènement la
face est blanche. On cherche à déterminer PB (J1).

D’après la formule de Bayes, on a :

PB (J1) = P(J1)PJ1 (B)
n∑

i=1
P(Ji )PJi (B)

.

On a :

— P(J1)PJ1 (B) = 1

3
×1 = 1

3

— P(J2)PJ2 (B) = 1

3
×0 = 0,

— P(J3)PJ3 (B) = 1

3
× 1

2
= 1

6
.

On a donc

PB (J1) =
1
3

1
3 + 1

6

= 2

3
.

La probabilité recherchée est
2

3
.

Correction 21

1. Soit n ∈N. On note An (resp. Bn et Cn) l’évènement "être chez l’opérateur A (resp.
B , C ) la n-ième année. On utilise la formule des probabilités totales avec le SCE
d’évènements non négligeables (An ,Bn ,Cn), on a

P(An+1) =P(An)PAn (An+1)+P(Bn)PBn (An+1)+P(Cn)PCn (An+1)

donc :
an+1 = an

3
+ cn

12
.

De même, on trouve bn+1 = an

3
+bn + 7cn

12
, cn+1 = an

3
+ cn

3
.

2. (a) Soit n ∈N. Des expressions trouvées à la question précédente, on en déduit

an+2 = an+1

3
+ cn+1

12
= an+1

3
+ 1

12

( an

3
+ cn

3

)
= an+1

3
+ an

36
+ 1

36
(12an+1 −4an) car an+1 = an

3
+ cn

12
= an+1

3
+ an

36
+ an+1

3
− an

9
= 2

3
an+1 − 1

12
an

et, de la même manière, on trouve cn+2 = 2

3
cn+1 − 1

12
cn . On en déduit que

les suites sont récurrentes linéaires d’ordre 2, avec la même équation carac-

téristique, à savoir x2 − 2

3
x + 1

12
= 0 ou encore (plus simple pour les calculs !),

12x2 −8x +1 = 0. Le discriminant vaut 16 donc les racines sont
1

2
et

1

6
. On en

déduit, qu’il existe λ,µ,λ′,µ′ réels tels que pour tout n ∈N,

an = λ

2n + µ

6n et cn = λ′

2n + µ′

6n .

On a a0 = 1

3
, c0 = 1

3
et donc a1 = 5

36
et c1 = 2

9
. Pour n = 0 et n = 1, on obtient

pour an : 
λ+µ = 1

3
λ

2
+ λ

6
= 5

36

⇔
{

3λ+3µ = 1
18λ+6µ= 5

On fait L1 ← 6L1 −L2 et L2 ← L2 −2L1, on obtient :

{
12µ = 1
12λ = 3

⇔


λ = 1

4
µ = 1

12

6



Ainsi, pour tout n ∈N, on a :

an = 1

4

1

2n + 1

12

1

6n = 1

2n+2 + 1

2×6n+1 .

On raisonne de même pour déterminer λ′ et µ′. On trouve que pour tout entier
n, on a

cn = 1

2

1

2n − 1

6

1

6n = 1

2n+1 − 1

6n+1 .

3. (a) On cherche α réel tel que (an +αcn)n∈N soit géométrique. Soit n ∈N, on a

an+1 +αcn+1 = an

3
+ cn

12
+ αan

3
+ αcn

3
= α+1

3
an + 4α+1

12
cn

= α+1

3
(an +αcn)− (α+1)αcn

3
+ 4α+1

12
cn

La suite (an +αcn)n∈N est géométrique si et seulement si
4α+1

12
= α(α+1)

3
. On

raisonne par équivalence :

4α+1

12
= α(α+1)

3
⇔ 4α2 +4α= 4α+1 ⇔α=±1

2
.

(b) La suite

(
an + 1

2
cn

)
n∈N

est géométrique de raison
1
2 +1

3
= 1

2
donc on a, pour

tout n ∈N, an + 1

2
cn = 1

2

n (
a0 + 1

2
c0

)
= 1

2n+1 .

On a également

(
an − 1

2
cn

)
n∈N

est géométrique de raison
− 1

2 +1

3
= 1

6
donc on

a, pour tout n ∈N, an − 1

2
cn = 1

6

n (
a0 − 1

2
c0

)
= 1

6n+1 .

On en déduit que pour tout n ∈N, on a

an = 1

4

1

2n + 1

12

1

6n et cn = 1

2

1

2n − 1

6

1

6n ,

on retrouve bien les résultats de la question précédente.

4. Pour calculer le terme général de (bn)n∈N, il suffit de remarquer que (An ,Bn ,Cn) est
un système complet d’évènements. On a donc, pour tout entier n, an +bn + cn = 1

donc bn = 1−an − cn = 1− 3

2n+2 + 1

2

1

6n+1 .

On peut aussi, si on ne le voit pas, remarquer que, pour tout k, bk+1 −bk = 1

3
ak +

7

12
ck = 3

8

1

2k
− 5

72

1

6k
. On somme pour k variant de 0 à n − 1, on reconnaît une

somme télescopique et on obtient bn −b0 = 3

4

(
1− 1

2n

)
− 1

12

(
1− 1

6n

)
d’où

bn = 1− 3

2n+2 + 1

2

1

6n+1

5. On a lim
n→+∞an = 0 = lim

n→+∞cn et lim
n→+∞bn = 1. Cela signifie que l’opérateur B aura le

monopole du marché au bout d’un certain temps.

Correction 22

1. On a u0 = 1, v0 = 0 et w0 = 0.

2. On a, pour tout n ∈N,


un+1 = 1

5
un + 2

5
vn + 2

5
wn

vn+1 = 2

5
un + 1

5
vn + 2

5
wn

wn+1 = 2

5
un + 2

5
vn + 1

5
wn

3. On se retrouve avec un produit matriciel donné par la matrice A = 1

5

1 2 2
2 1 2
2 2 1

 =

1

5
(2U − I3) , avec U la matrice avec uniquement des 1. Pour tout entier n, on a donc

un

vn

wn

= An

u0

v0

w0



Si, pour tout entier n, on note Xn =
un

vn

wn

, on a Xn+1 = AXn donc, par une récur-

rence immédiate :

∀n ∈N, Xn = An X0.

Reste à calculer la puissance de A. On va utiliser le fait que pour tout k Ê 1, U k =

7



3k−1U et la formule du binôme de Newton (puisque U et I3 commutent). On écrit :

(2U − I3)n =
n∑

k=0

(n
k

)
2kU k (−I3)n−k

=
n∑

k=0

(n
k

)
2k (−1)n−kU k

= (−1)n I3 +
n∑

k=1

(n
k

)
(−1)n−k 2kU k

= (−1)n I3 +
n∑

k=1

(n
k

)
(−1)n−k 2k 3k−1U car pour toutk Ê 1,U k = 3−1U

= (−1)n I3 +
(

n∑
k=1

(n
k

)
(−1)n−k 2k 3k−1

)
U

= (−1)n I3 + 1

3

(
n∑

k=1

(n
k

)
(−1)n−k 6k

)
U

= (−1)n I3 + 1

3

((
n∑

k=0

(n
k

)
(−1)n−k 6k

)
− (−1)n

)
U

= (−1)n I3 + 1

3
((6−1)n − (−1)n)U d’après le binôme de Newton

= (−1)n I3 + 1

3
(5n − (−1)n)U

= (−1)n I3 + 5n + (−1)n+1

3
U

On a donc

An = 1

5n

(
(−1)n I3 + 5n + (−1)n+1

3
U

)
=

(
−1

5

)n

I3 + 5n + (−1)n+1

3×5n U .

On en déduit que, pour tout n,

Xn = An X0 =
(
−1

5

)n

X0 + 5n + (−1)n+1

3×5n U X0.

Le vecteur U X0 est celui ne contenant que des 1, on a donc, pour tout n ∈N,
un =

(
−1

5

)n

+ 5n + (−1)n+1

3×5n = 2(−1)n +5n

3×5n

vn = 5n + (−1)n+1

3×5n

wn = 5n + (−1)n+1

3×5n

Correction 23

1. On effectue n tirages successifs avec remise, l’univers des possibles est donc les
n-uplets à valeur dans l’ensemble {N ,R}. Il y a 2n cas possibles. L’évènement An

est réalisé lorsque l’on tire n boules noires ou n boules rouges donc il y a deux cas

favorables. On en déduit que P(An) = 1−P(An) = 1− 2

2n = 2n−1 −1

2n−1 .

L’évènement Bn est réalisé lorsque l’on ne tire que des boules rouges ou bien
lorsque l’on tire exactement 1 boule noire, il y a un n+1 cas favorables doncP(Bn) =
n +1

2n .

2. On se place dans le cas où n = 2. On a donc P(A2) = 1

2
et P(B2) = 3

4
. Calculons

P(A2∩B2). L’évènement A2∩B2 est réalisé si on tire une boule noire puis une boule

rouge ou le contraire. Il y a donc deux cas favorables. Ainsi P(A2 ∩B2) = 2

22 = 1

2
et

les évènements ne sont pas deux à deux indépendants.

3. On se place dans le cas où n = 3. On a donc P(A3) = 3

4
et P(B3) = 4

8
. L’évènement

A3 ∩B3 est réalisé lorsque l’on tire exactement une boule noire, il y a donc 3 cas

favorables. On a doncP(A3∩B3) = 3

8
donc les deux évènements sont indépendants.

Correction 24 La pièce étant équilibrée, on a P(A) = 1

2
et P(B) = 1

2
. Pour calculer P(C ),

on identifie les deux lancers à un couple, il y a un deux cas favorables ( (P,P ) ou (F,F )) et

4 cas possibles donc P(C ) = 1

2
.

Calculons maintenant les probabilités des intersections. On a (A ∩B) correspond au

lancer (P,P ) donc un seul cas favorable. Ainsi P(A∩B) = 1

4
. Il en est de même de A∩C et

B ∩C . Les évènements sont donc deux à deux indépendants.

En revanche, A∩B∩C = A∩B doncP(A∩B∩C ) = 1

4
ce qui montre que les évènements

ne sont pas mutuellement indépendants.

Correction 25

1. On a
n⋃

i=1
Ai =

n⋂
i=1

Ai . Les évènements A1, . . . , An étant mutuellement indépendants,

il en est de même de A1, . . . , An donc

P(
n⋃

i=1
Ai ) = 1−P

(
n⋂

i=1
Ai

)
= 1−

n∏
i=1
P(Ai ) = 1−

n∏
i=1

(1−P(Ai )) .

8



2. On note respectivement Ci le i -ème chasseur tue le canard. On cherche à calculer

P(
3⋃

i=1
Ci ). D’après la question précédente, on a :

P(
3⋃

i=1
Ci ) = 1−

3∏
i=1

(1−P(Ci )) = 1−
(
1− 1

2

)(
1− 1

3

)(
1− 1

4

)
= 1− 1

2

2

3

3

4
= 3

4
.

La probabilité pour que le canard soit tué est
3

4
.

Correction 26
On a 262 = 676, par le principe des tiroirs, au moins deux personnes ont les mêmes

initiales.

Correction 27 Il y a 366 dates d’anniversaire différentes. Comme 400 > 366, on peut
affirmer que deux élèves (au moins) ont la même date d’anniversaire.

Correction 28

1. Il y a 26 choix possibles pour chaque lettres 264.

2. Il y a 26 choix pour la première, 25 pour la deuxième, 24 pour la troisième et 23 pour

la dernière donc
26!

22!
3. On choisit la position de la voyelle : 4 choix. On choisit la voyelle : 6 choix On place

les consonnes qui doivent être distinctes :
20!

17!
. On a donc

20!24

17!
.

4. Il y a 25 choix possibles pour chaque lettres donc 254.

Correction 29
Si l’on se donne deux voyelles et trois consonnes, il existe

(5
2

) = 10 mots possibles (il suf-
fit de choisir, par exemple, où on place les voyelles). Il existe trois répartitions où trois
consonnes sont consécutives, il y a donc 7 répartitions possibles.

Comptons maintenant combien de choix pour choisir 2 voyelles et trois consonnes.
Il n’est pas précisé que les lettres doivent être différentes, il y a donc 62 choix pour les
voyelles et 203 choix pour les consonnes.

Au total, il existe 7.62.203 = 2 016 000 mots.

Correction 30 Il y a 8 choix pour le premier, 7 pour le second et 6 pour le troisième
donc 336.

Correction 31

1. Le premier prospectus "choisit" une boîte aux lettres, il a 10 choix. Le suivant n’a

que 9 choix etc. On a donc
10!

3!
façons.

2. Il faut choisir 7 boites aux lettres parmi les 10 donc il y a autant de façons que de
parties à 7 éléments de J1,10K soit

(10
7

)
.

3. Le premier prospectus "choisit" une boîte aux lettres, il a 10 choix. Le suivant a
également 10 choix puisqu’il peut y avoir plusieurs prospectus dans la même boîte.
On obtient 107 façon.

4. Le plus simple est de faire un dessin. On place d’abord les prospectus entre les deux
murs du hall d’entrée :

P P P P P P

répartir ces 7 prospectus dans 10 boîtes aux lettres revient à placer les séparations
des boîtes aux lettres.

Par exemple, le dessin

P P P P P P P

correspond au cas où on a placé un prospectus dans les chacun des sept premières
boîtes.

Ainsi, le problème revient à compter comment répartir 7 " p" et 9 traits verticaux
sur les 16 emplacements possibles (16 étant égal à 9+7), ce qui revient encore à
placer les 7 "p" parmi les 16 places possibles : il y a

(16
7

)
façons.

On peut aussi dire qu’il y a 10 boîtes aux lettres pouvant contenir de 0 à 7 prospec-
tus. Si on note ai le nb de prospectus dans la boîte i , on cherche donc les 10-uplets
dont la somme vaut 7.

Si on pose xi = ai +1, on a

card{(a1, . . . , a10) ∈ J0,7K10,
10∑

i=1
ai = 7} = card{(x1, . . . , x10) ∈ J1,7K10,

10∑
i=1

xi = 17}.

D’après l’exercice 49, il y en a
(16

9

)
.

Correction 32

1. Il y a autant de mains possibles que de parties à 5 éléments d’un ensemble à 32
éléments c’est-à-dire

(32
5

)
.

2. Pour un as fixé, on a autant de mains possibles que de parties à 4 éléments d’un
ensemble à 28 éléments (puisqu’on ne peut pas avoir un autre as). Comme il y a 4
as, on a 4

(28
4

)
mains possibles.

3. Il y a
(28

5

)
mains ne contenant pas d’as. Il y a donc

(32
5

)− (28
5

)
mains contenant au

moins un as.

9



4. Il y a
(28

5

)
mains ne contenant aucun roi et autant ne contenant aucun as. Le nombre

de mains ne contenant pas de roi ou pas d’as est égal à la somme des mains ne
contenant aucun roi et celles ne contenant aucune as à laquelle il faut retrancher
le nombre de mains ne contenant ni as ni roi (qui a été compté deux fois). Il y a

(24
5

)
mains ne contenant ni as ni roi. Il y a donc

(32
5

)− 2
(28

5

)+ (24
5

)
mains contenant au

moins un roi et un as.

Correction 33

1. Il existe autant de mots contenant les lettres R,O,M,A,I,N que de permutations d’un
ensemble à 6 éléments. Le mot ROMAIN possède donc 6! anagrammes.

2. Il y a 5! permutations possibles des lettres. Cependant, comme la lettre E apparaît
deux fois, un même mot est obtenu par deux permutations différentes. On a donc
5!

2
mots différents donc

5!

2
anagrammes.

3. Il y a 5! permutations possibles des lettres. Comme les lettres K et A apparaissent
chacune deux fois, un même mot peut être obtenu par 4 permutations différentes.

On a donc
5!

4
= 30 mots différents donc 30 anagrammes.

4. Il y a 5! permutations possibles des lettres. La lettre E apparaît apparaît 3 fois ; il y a
autant de permutations de lettres envoyant sur le même mot que de permutations

de J1,3K. On a donc
5!

3!
= 20 mots différents avec ces lettres donc 20 anagrammes

du mot ELEVE.

Correction 34 On a 7 faces possibles : de zéro à 6 points, on a donc 7 choix pour un
côté et 7 choix pour l’autre soit 49. Cependant, les dominos qui ne sont pas symétriques
ont été comptés deux fois. Il y a 49-7=42 dominos non-symétriques, on en enlève la
moitié. On a donc 21+7 = 28 dominos différents.

On peut aussi commencer par compter les dominos dont un des côtés ne contient pas
de points : il y en a 7. Pour compter ceux qui ont un point, on a 6 choix possible pour
l’autre côté : de 1 à 6 points. Ainsi, on a 7+6+5+4+3+2+1 = 28 dominos différents.

Correction 35

1. Comptons les cas favorables. On a 7 choix possibles par famille donc 77 choix pos-
sibles. La probabilité d’avoir une carte de chaque famille est donc :

77(49
7

) ' 0,0096.

2. Il n’y a que 7 familles donc 7 choix possibles. La probabilité d’avoir une famille
complète est donc :

7(49
7

) ' 8.1×10−8.

Correction 36

1. On a 6 cas favorables sur un total de 36 cas possibles. On a donc une probabilité de
1

6
.

2. On a trois cas favorables : (1,3), (2,2) et (3,1). Il y a donc une probabilité de :

3

36
= 1

12
.

3. Il y a 6 cas où le premier dé vaut 6, et 6 cas où le deuxième vaut 6. On a donc 11 cas
où un des deux dés vaut 6 car il faut enlever le cas du double six qui a été compté

deux fois. On a donc une probabilité de
11

36
.

4. On a un cas favorable donc une probabilité de
1

36
.

5. On a 3×3 cas où le premier dé est pair et le deuxième est impair et autant où c’est
le contraire. On a donc 18 cas favorables ce qui nous donne une probabilité de
18

36
= 1

2
.

Correction 37

1. On note Ai l’évènement " on tire une capsule de décaféiné au i -ème tirage". On
cherche P(A1 ∩ A2 ∩ A3). On a :

P(A1 ∩ A2 ∩ A3) =
(

8

28

)3

=
(

2

7

)3

' 0.023.

2. On cherche P(A1 ∩ A2 ∩ A3). On a :

P(A1 ∩ A2 ∩ A3)

= P(A1)PA1
(A2)PA1∩A2

(A3)

= 20

28
× 19

27
× 18

26

= 95

273
' 0.348,

car on enlève une capsule normale de la boîte chaque fois qu’on en pioche une.
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3. On cherche P(A1∪A2∪A3). L’évènement contraire est " on ne tire que des capsules
normales" et sa probabilité a été calculée à la question précédente. On a donc :

P(A1 ∪ A2 ∪ A3) = 1− 95

273

= 178

273
' 0.652.

4. Notons :

C = A1 ∪ A2 ∪ A3

et

B = A1 ∪ A2 ∪ A3.

On cherche PC (B). On a :

PC (B) = P(B ∩C )

P(C )
= P(B)

1−P(C )
.

D’après la question 2), on a :

P(B) = 95

273

et d’après la question 1), on a :

P(C ) =
(

2

7

)3

.

On a donc :

PC (B) = 1−PC (B)

= 1−
95

273

1−
(

2

7

)3 ' 0.644.

5. L’évènement est égal à la réunion des évènements suivants : A1∩A2∩A3, A1∩A2∩
A3 et A1 ∩ A2 ∩ A3. Ces trois évènements sont incompatibles, la probabilité de la

réunion est donc égale à la somme des probabilités. On a :

P(A1 ∩B2 ∩B3) = 8

28
× 20

28
× 19

27

= 10.19

27.72 ,

P(A1 ∩ A2 ∩ A3) = 20

28
× 8

27
× 19

27

= 40.19

7.272 ,

P(A1 ∩ A2 ∩ A3) = 20

28
.
19

27
.

8

26

= 20.19

7.27.13
.

La probabilité cherchée est donc :

274360

464373
' 0.59.

Correction 38

1. Sous l’hypothèse qu’on est roux, on note F l’évènement " avoir une fille" et E l’évè-
nement " avoir un enfant roux" . D’après la loi de probabilité totale, on a :

P(E) =P(E ∩F )+P(E ∩F ).

On a :

P(E ∩F ) =P(F )PF (E) = 1

2
.
3

4
= 3

8
,

et :

P(E ∩F ) =P(F )PF (E) = 1

2
.
2

3
= 1

3
.

On a donc :

P(E) = 17

24
' 0.71.

On peut aussi noter R l’évènement "être roux" et considérer que l’énoncé nous

donne PR∩F (E) = 3

4
et PR∩F (E) = 2

3
. On cherche alors PR (E) = P(R ∩E)

P(R)
Comme

(F,F ) est un S.C.E, on a

PR (E) = P(R ∩E ∩F )+P(R ∩E ∩F )

P(R)

11



On écrit maintenant

P(R ∩E ∩F ) =P(R)PR (F )PR∩F (E) et P(R ∩E ∩F ) =P(R)PR (F )PR∩F (E)

et on remplace dans l’expression de PR (E). On obtient

PR (E) =PR (F )PR∩F (E)+PR (F )PR∩F (E) = 1

2

3

4
+ 1

2

2

3
= 17

24

2. Sous l’hypothèse qu’on est roux, on note R ′ l’évènement " notre aîné(e) a un enfant
roux". On a :

P(R ′) =P(R ′∩R)+P(R ′∩R).

On sait que :

P(R ′∩R) =PR (R ′)P(R) =
(

17

24

)2

' 0.5,

et
P(R ′∩R) =PR (R ′)P(R)

= 1

3

(
1− 17

24

)
' 0.097.

La probabilité pour que notre aîné(e) ait un enfant roux lorsqu’on est roux est donc
de : (

17

24

)2

+ 1

3

(
1− 17

24

)
∼ 0.6.

Correction 39

1. On note Ai l’évènement "le paquet de piles se trouve dans le i -ième tiroir. On

cherche P

(
5⋃

i=1

)
. Les évènements étant incompatibles, on a :

P

(
5⋃

i=1

)
=

5∑
i=1
P(Ai ) = p.

2. On cherche à calculer P 4⋂
i=1

Ai

(A5). On a :

P 4⋂
i=1

Ai

(A5) =
P(A5 ∩

4⋂
i=1

Ai )

P(
4⋂

i=1
Ai )

.

On remarque que
4⋂

i=1
Ai =

4⋃
i=1

Ai donc

P(
4⋂

i=1
Ai ) = 1− 4p

5
.

Par ailleurs, si l’évènement A5 est réalisé, alors
4⋂

i=1
Ai l’est également puisque le pa-

quet ne peut se trouver dans deux tiroirs. On a donc A5 ⊂
4⋂

i=1
Ai et, par conséquent,

A5 ∩
4⋂

i=1
Ai = A5.

Ainsi, la probabilité cherchée est
p
5

1− 4p
5

= p

5−4p
.

Correction 40 On note B1,B2 et B3 les évènements "obtenir une boule blanche au ti-
rage 1, 2 ou 3.

1. (a) On cherche à calculerP(B1∩B2∩B 3). On a, par la formule des probabilités com-
posées :

P(B1 ∩B2 ∩B 3) =P(B1)PB1 (B2)PB1∩B2 (B 3) = 4

7
× 3

6
× 3

5
= 6

35
.

La probabilité recherchée est donc
6

35
.

(b) Cet évènement correspond à :(
B1 ∩B2 ∩B 3

)
∪

(
B1 ∩B 2 ∩B3

)(
B1 ∩B2 ∩B3

)
Cette réunion est disjointe et on a :

P(B1 ∩B 2 ∩B3) = 4

7
× 3

6
× 3

5
= 6

35
,

et

P
(
B1 ∩B2 ∩B3

)
= 3

7
× 4

6
× 3

5
= 6

35
.

La probabilité recherchée est donc
18

35
.

2. (a) On cherche à calculer P(B1 ∩B2 ∩B 3). Cette fois-ci les évènements sont indé-
pendants, on a donc :

P(B1 ∩B2 ∩B 3) =P(B1)P(B2)P(B 3) =
(

4

7

)2 (
3

7

)
= 48

73 .
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(b) Avec le même raisonnement que précédemment, on remarque que l’évène-
ment "une et une seule boule noire" est la réunion de trois évènements incom-

patibles donc la probabilité est égale à
48

73 . La probabilité recherchée est donc

144

343
.

3. Le tirage est désormais simultané, l’univers des possibles est donc celui des parties
à 3 éléments, il y a donc

(7
3

)= 35 cas possibles.
Parmi ces parties à trois éléments de J1,7K, on recherche celle qui contienne deux
éléments de J1,4K et un élément de J5,7K. Une telle partie est composée d’une par-
tie à deux éléments de J1,4K (il y en a

(4
2

)= 6) et d’une partie à 1 élément de J5,7K (il

y en a
(3

1

)= 3). Il y a donc 18 cas favorables donc
18

35
.

Correction 41 On note
— A :" le chiffre du dé rouge est impair"
— B :" le chiffre du dé noir est pair"
— C :" les chiffres des deux dés ont même parité".

L’univers des possibles est l’ensemble des couples (i , j ) ∈ J1,6K2, le nombre de cas pos-
sibles est 62 = 36.

Pour que l’évènement A soit réalisé, il y a trois choix pour le dé rouge et, pour chacun

de ces choix, 6 pour le dé noir donc 18 cas favorables. On a donc P(A) = 1

2
.

De même, pour que l’évènement B soit réalisé, il y a 3 choix possibles pour le dé noir

et, pour chacun de ces choix, 6 choix possibles pour le dé rouge. On a donc P(B) = 1

2
.

Pour que l’évènement C soit réalisé, on a 6 choix pour le dé rouge. Une fois la valeur
du dé rouge, il y a trois choix pour le dé noir (pour avoir même parité). On a donc 18 cas

favorables donc P(C ) = 1

2
.

Calculons maintenant les probabilités des intersections. Pour réaliser l’évènement A∩
B , on a trois choix pour le dé rouge (2,4 ou 6) et trois choix pour le dé noir (1,3 ou 5) donc

9 choix en tout soit P(A ∩B) = 9

36
= 1

4
= P(A)×P(B). Les évènements A et B sont bien

indépendants.
Pour réaliser l’évènement A ∩C , on a trois choix pour le dé rouge (2,4 ou 6) et trois

choix pour le dé noir (2,4 ou 6) donc 9 choix. On a donc P(A∩C ) = 9

36
= 1

4
=P(A)×P(C ).

Les évènements A et C sont bien indépendants. On montre de même que B et C sont
indépendants.

En revanche, si A et B sont réalisés, alors les deux dés ne peuvent avoir la même parité
donc A ∩B ∩C = ; ce qui montre que les trois évènements ne sont pas mutuellement
indépendants.

Correction 42

1. On note A l’évènement " on mange un macaron raté" et B l’évènement " on mange
un macaron fabriqué par Pierre". Le système (B ,B) est complet. On a donc :

P(A) =P(A∩B)+P(A∩B).

On sait que :

P(A∩B) =P(B)PB (A) = 1

3
× 8

100
= 8

300
,

et :

P(A∩B) =P(B)PB (A) = 2

3
× 3

100
= 1

50
.

On a donc :

P(A) = 8

300
+ 1

50
= 7

150
' 0.047.

2. On souhaite désormais calculer la probabilité PA(B). D’après la formule de Bayes,
on a :

PA(B) = PB (A)P(B)

P(A)
.

On sait que :

PB (A)P(B) = 8

100
× 1

3
,

et

P(A) = 7

150
,

d’après la question précédente. On a donc :

PA(B) =
8

100
× 1

3
7

150

= 4

7
.

Correction 43 On note A l’évènement "le vigile a trop arrosé son repas" et Fk " la porte
est toujours fermé après k essais.

On cherche à calculer pk =PFk (A). D’après la formule de Bayes, on a :

PFk (A) = P(A)PA(Fk )

P(A)PA(Fk )+P(A)PA(Fk )
.

On sait que P(A) = 1

10
donc P(A) = 9

10
. On remarque que PA(Fk ) correspond à k tirages

successifs de la mauvaise clé avec remise tandis que PA(Fk ) correspond à k tirages suc-
cessifs sans remise de la mauvaise clé.
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On a PA(Fk ) = ( 9
10

)k
et PA(Fk ) =

(9
k

)(10
k

) . En effet, k tirages sans remise correspond à une

partie à k éléments. Il y a dix clés donc
(10

k

)
cas possibles et 9 "mauvaises clés" donc

(9
k

)
cas

favorables. On a

(9
k

)(10
k

) = 9!(10−k)!k !

10!(9−k)!k !
= 10−k

10
car 10 = 10×9! et (10−k)! = (10−k)×(9−k)!.

On en déduit que la probabilité cherchée est

pk =
1

10

( 9
10

)k

1

10

( 9
10

)k + 9

10

10−k

10

= 9k

9k + (10−k)10k−1
.

Correction 44

1. On cherche à dénombrer l’ensemble {{A,E \ A}, A ∈P (E) \ {;}}. On commence par
dénombrer l’ensemble : {(A,E \ A) , A ∈P (E)\{;}}. On sait que P (E) est de cardinal
2n donc P (E) \ {;} est de cardinal 2n − 1 et c’est aussi le nombre d’éléments de
{(A,E \ A) , A ∈ P (E) \ {;}}. L’ordre des groupes n’ayant pas d’importance, on doit

diviser par 2 donc le cardinal cherché est
2n −1

2
.

2. On cherche à dénombrer l’ensemble
{
{A1, . . . , Ap }, Ai ∈P2(E)

}
. On commence par

dénombrer l’ensemble
{
(A1, . . . , Ap ), Ai ∈P2(E)

}
. Il y a

(n
2

)
choix pour A1,

(n−2
2

)
choix pour A2,

(n−4
2

)
choix pour A3 et ainsi de suite. Le nombre d’éléments de{

(A1, . . . , Ap ), Ai ∈P2(E)
}

est donc :

p−1∏
k=0

(
n −2k

2

)
=

p−1∏
k=0

(n −2k)!

2(n −2k −2)!
= 1

2p

p−1∏
k=0

(n −2k)!

(n −2(k +1))!
.

On reconnaît un produit télescopique. On en déduit que :

p−1∏
k=0

(
n −2k

2

)
= n!

2p .

Enfin, comme l’ordre des groupes n’a pas d’importance, il faut diviser par p !. Ainsi,

le nombre de partitions en binômes est
n!

p !2p .

On peut aussi raisonner ainsi : on ordonne les élèves de 1 à 2p. On choisit qui sera
avec l’élève 1, on a n − 1 choix. On prend ensuite, parmi les n − 2 élèves restants,
l’élève possédant le plus petit nombre et on choisit son binôme. Comme un binôme
a déjà été formé, il reste n −3 choix.

En itérant, on obtient le produit des impairs :
p−1∏
k=0

(2k +1). On multiplie cette quan-

tité par
p∏

k=1
(2k), on obtient (2p)! et, comme

p∏
k=1

(2k) = 2p p !, on retrouve le résultat

(2p)!

2p p !
.

3. On généralise le raisonnement précédent. On commence par compter les p-uplets
(A1, . . . , Ap ) avec Ai ∈ Pq (E). Il y a

(n
q

)
choix pour A1,

(n−q
q

)
choix pour A2,

(n−2q
q

)
choix pour A3 et ainsi de suite. Le nombre de tels p-uplets est donc :

p−1∏
k=0

(
n −kq

q

)
=

p−1∏
k=0

(n −kq)!

q !(n −kq −q)!
= 1

(q !)p

p−1∏
k=0

(n −kq)!

(n − (k +1)q)!
.

À nouveau, on reconnaît un produit télescopique. On a donc

p−1∏
k=0

(
n −kq

q

)
= n!

(q !)p .

L’ordre de ces p groupes n’ayant pas d’importance, on trouve que le cardinal cher-

ché est
n!

(q !)p p !
.

On peut aussi raisonner en ordonnant les élèves. On prend l’élève numéro 1, on
choisit son groupe, on a

(n−1
q−1

)
choix. Il faut, en effet, choisir q−1 élèves pour former

avec lui un groupe de q élèves et il y a n −1 choix (la classe sauf lui).

On prend ensuite l’élève restant ayant le plus petit numéro, on lui choisit ses q −1
partenaires. Il ne reste que n − q −1 élèves disponibles (ni ceux du 1er groupe, ni
cet élève), on a donc

(n−q−1
q−1

)
choix. En itérant, on obtient que le nombre de choix

possibles est

p−1∏
k=0

(
n −kq −1

q −1

)
.
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Voyons maintenant comment calculer ce produit :

p−1∏
k=0

(n−kq−1
q−1

) =
p−1∏
k=0

(n −kq −1)!

(q −1)!(n −kq −q)!

=
p−1∏
k=0

(n −kq)(n −kq −1)!

(q −1)!(n −kq)(n −kq −q)!

=
p−1∏
k=0

(n −kq)!

(q −1)!q(p −k)(n −kq −q)!
car n=pq

=
p−1∏
k=0

(n −kq)!

q !(p −k)(n −kq −q)!

= 1

(q !)p

(
p−1∏
k=0

1

p −k

)(
p−1∏
k=0

(n −kq)!

(n − (k +1)q)!

)

= 1

(q !)p p !

(
p−1∏
k=0

(n −kq)!

(n − (k +1)q)!

)
car

p−1∏
k=0

(p −k) = p !

= n!

(q !)p p !
car on reconnaît un produit télescopique

On retrouve bien le même résultat.

Correction 45

1. Le premier invité à 2n choix, le deuxième 2n −1 et le dernier 1 choix donc au total
(2n)!.

2. La première femme a 2n choix tandis que son conjoint n’a que 2 choix (à sa gauche
ou à sa droite). La deuxième femme a 2n − 2 choix, son conjoint en revanche
n’a aucun choix. En effet, une fois placé, il doit rester un nombre pair de places
de chaque côté du couple. Faisons un petit dessin pour n = 4. On numérote les
femmes F1,F2 . . . et H1, . . . les hommes. Sur le dessin de gauche, on a placé le pre-
mier couple. F2 se met où elle veut (disons en face de H1), en revanche, H2 ne peut
se mettre que tel qu’il est placé sur le dessin de droite. En effet, s’il se place de l’autre
côté, il n’y a qu’une place entre H1 et F2 donc un couple devra être séparé.

F1•

H1• • •
•H2

•
F2••

Ainsi, le premier couple (2n).2 choix, le deuxième (2n − 2), le troisième (2n − 4)...
On a donc 2n .n! plan de tables.

3. On commence par placer les femmes. La première femme a 2n choix. Une fois
qu’elle est placée, les autres femmes doivent laisser un nombre impair de places
entre elles donc la deuxième a (n−1) choix, la troisième (n−2) etc. Les femmes ont
donc 2n×(n−1)! = 2(n!) choix. Une fois qu’elles sont placées, il reste n places pour
les hommes qui peuvent se mettre comme ils veulent donc n! choix soit au total
2(n!)2.

4. On suppose maintenant que les couples ne doivent pas être séparés ET on veut
alterner les sexes. On va reprendre notre dessin de tout à l’heure pour n = 4. On
place d’abord (dessin de gauche) les femmes F1,F2,F3,F4 qui ont 2.n! choix pour
se placer. Le premier conjoint a 2 choix, à gauche ou à droite de F1 mais une fois
placé, les hommes n’ont plus aucun choix ! en effet, une fois H1 placé (par exemple
à droite de F1), H3 est obligé de se mettre entre F2 et F3 ainsi de suite.

F1•
• •F3

•
•F2

••
F4

•
F1•

•H3 •F3

•H2

•F2

•
H4•

F4

•
H1

Ainsi, il y a 2.n! choix pour les filles et 2 choix pour les garçons donc 4.n! choix au
total.

Correction 46
1. Il y a autant d’images possibles que parties à n éléments de F donc

(p
n

)
(avec

(p
n

)= 0
si n > p et, pour chaque image, autant d’injections ayant cette image que de bijec-
tions de [|1,n|]. On a donc n!

(p
n

)
.

2. Il y a autant d’applications strictement croissantes que d’images possibles puis-
qu’étant donnée un ensemble image, on sait exactement comment affecter les élé-
ments (le plus petit est l’image de 1, le second l’image de 2 etc) donc

(p
n

)
.

3. Quitte à introduire des bijections, on suppose désormais E = [|1,n|] et F = [|1, p|].
Le plus simple est de se ramener au cas précédent. Pour cela, on considère l’ap-
plication g (k) = f (k)+k −1 où f est croissante. Alors g est strictement croissante
et va de [|1,n|] dans [|1,n +p −1|]. Il y a

(n+p−1
n

)
telles fonctions. Étant donnée une

fonction strictement croissante g de [|1,n|] dans [|1,n + p − 1|], on peut lui asso-
cier une fonction croissante de [|1,n|] dans [|1, p|] en posant f (k) = g (k)− k + 1.
Cette fonction est bien définie dans [|1, p|] car g (1) Ê 1, ce qui implique g (k) Ê k par
croissance de g et, de même, g (n) É n+p−1 implique, toujours par croissance de g ,
g (k) É n+p−1−(n−k) = p−1+k. Il y donc autant de fonctions croissantes de [|1,n|]
dans [|1, p|] que de fonctions strictement croissantes de [|1,n|] dans [|1,n +p −1|],
soit

(n+p−1
n

)
.
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Correction 47 Tous les éléments de J1,nK doivent avoir au moins un antécédent par f .
Par ailleurs, exactement l’un d’entre eux doit avoir deux antécédents distincts. On choisit
quel élément de J1,nK a deux antécédents : n choix On détermine quels sont ses deux
antécédents :

(n+1
2

)
.

Il reste n−1 éléments de E à qui on doit attribuer une image parmi les n−1 éléments de

F restants : il y a (n−1)! choix. On a donc n× n(n −1)

2
× (n−1)! = n(n −1).n!

2
surjections.

Correction 48 On va écrire

G =
n⋃

k=0
= {

(A,B) ∈P (E)×P (E) tel que A ⊂ B et card(B) = k
}

La réunion est disjointe, le cardinal de G sera donc la sommes des cardinaux. Pour k ∈
J1,nK fixé, on a

(n
k

)
choix pour B et une fois B fixé, on a 2k choix pour A (autant que de

sous-parties de B , B étant de cardinal k).
On a donc

card(G) =
n∑

k=0

(
n

k

)
2k = 3n .

Correction 49 On va raisonner par récurrence sur k. Soit donc HRk la propriété " pour

tout entier n, le nombre de k-listes (x1, . . . , xk ) telles que
k∑

i=1
xk = n est

(n−1
k−1

)
".

Montrons que ce résultat est vrai au rang 1. Pour tout n, (n) est l’unique 1-liste dont la
somme de ses éléments vaut n, c’est bien égal à

(n−1
0

)
.

On va montrer le rang 2 pour comprendre un peu comment ça fonctionne. L’ensemble
dont on cherche le cardinal peut s’écrire

{(i ,n − i ), i ∈ J1,n −1K}.

Il est de cardinal n −1, ce qui correspond bien à
(n−1

1

)
.

Soit maintenant k tel que le résultat est vrai au rang k, montrons qu’il est vrai au rang
k +1. Soit n ∈N. On écrit

{(x1, . . . , xk+1) ∈ (
N?

)k+1 ,
k+1∑
j=1

x j = n}

=
n−k⋃
i=1

{(x1, . . . , xk+1) ∈ (
N?

)k+1 ,
k+1∑
j=1

x j = nETxk+1 = i }.

La somme varie entre 1 et n−k car la dernière coordonnée vaut au plus n−k (dans le cas
où les k premières valent 1). Par ailleurs, la réunion est disjointe, le cardinal recherché

vaut donc

card{(x1, . . . , xk+1) ∈ (
N?

)k+1 ,
k+1∑
j=1

x j = n}

=
n−k∑
i=1

card{(x1, . . . , xk+1) ∈ (
N?

)k+1 ,
k+1∑
j=1

x j = nETxk+1 = i }.

Pour tout i ∈ J1,n −kK,

card{(x1, . . . , xk+1) ∈ (
N?

)k+1
,

k+1∑
j=1

x j = nETxk+1 = i } = card{(x1, . . . , xk ) ∈ (
N?

)k
,

k∑
j=1

x j = n−i } =
(

n − i −1

k −1

)
.

On a donc

card{(x1, . . . , xk+1) ∈ (
N?

)k+1 ,
k+1∑
j=1

x j = n} =
n−k∑
i=1

(n−i−1
k−1

)
=

n−k−1∑
i=1

(n−i−1
k−1

)+ (k−1
k−1

)
= 1+

n−k−1∑
i=1

((n−i
k

)− (n−i−1
k

))
= d’après la formule de Pascal

= 1+ (n−1
k

)− (k
k

)
= (n−1

k

)
La formule est donc vraie au rang k +1. Par le principe de récurrence, elle est vraie pour
tout entier k strictement positif.

On peut aussi raisonner de manière plus combinatoire en remarquant que (1+1+1+
. . .+ 1) = n, il faut donc placer k − 1 symboles )( dans les n − 1 places entre les 1 pour
scinder notre somme en k facteurs. Il y a donc

(n−1
k−1

)
tels k-uplets.

Correction 50 Le nombre de parties à n éléments de F est
(a+b

n

)
. Par ailleurs, on peut

écrire F = A∪B avec card(A) = a et card(B) = b. Une partie à n éléments de F est alors la
réunion disjointe d’une partie à k éléments de A et d’une partie à n−k éléments de B . On
doit avoir k ∈ J0, aK et n −k ∈ J0,bK, ce qui impose k ∈ J0, aK et k ∈ Jn −b,nK, autrement
dit

k ∈ Jmax(0,n −b),min(a,n)K.

Pour un tel entier k, on a
(a

k

)
choix de parties à k éléments de A et

( b
n−k

)
choix pour une

partie de B à n −k éléments.
L’ensemble des parties à n éléments de F est la réunion disjointe, pour k variant de

max(0,n−b) à min(a,n), de l’ensemble des parties s’écrivant comme l’union d’une partie
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à k éléments de A et d’une partie à n −k éléments de B . Ainsi, on a bien(
a +b

n

)
=

min(a,n)∑
k=max(0,n−b)

(
a

k

)(
b

n −k

)
.

Correction 51 Pour tout k ∈ J1,nK, on note Ak l’évènement " une personne est des-
cendu au k-ième étage", alors Ak = {w : J1, pK→ J1,nK\ {k}}.

On a

P(A) = 1−P
(

n⋃
k=1

Ak

)
= 1−

n∑
k=1

(−1)k−1

( ∑
1Éi1<i2<...<ikÉn

P(Ai1 ∩ Ai2 ∩ . . .∩ Aik

)
.

On remarque que l’évènement Ai1 ∩Ai2 ∩. . .∩Aik signifie que personne n’est descendu
aux étages i1, . . . , ik , il y a autant de cas favorables que d’applications de J1, pK dans J1,n−
kK c’est-à-dire (n −k)p (et np cas possibles).

Le nombre de termes de la somme, c’est-à-dire le nombre de k-uplets (i1, . . . , ik ) tels
que i1 < i2 < . . . < ik est égal au nombre de parties à k éléments de J1, NK donc

(n
k

)
.

On a donc

P(A) = 1−
n∑

k=1
(−1)k−1

(
n

k

)(
n −k

n

)p

=
n∑

k=0
(−1)k

(
n

k

)(
n −k

n

)p

.

On fait un changement d’indice dans la somme ( j = n −k) et on retrouve la formule ci-
dessus. C’est aussi la probabilité qu’une application aléatoire de J1, pK vers J1,nK soit une
surjection.

Correction 52 On note D l’évènement "la cellule se divise" et, pour tout i , Ei l’évène-
ment "la lignée est éteinte à la i +1-ième génération.

1. On cherche à calculer E1. On a :

u1 =P(E1) =P(D)PD (E1)+P(D)PD (E1).

On remarque si la cellule ne s’est pas divisée, elle est morte donc PD (E1) = 1. Par
ailleurs, si elle s’est divisée, la probabilité pour que la lignée s’éteigne à la 2ème
génération est égale à la probabilité de l’évènement "les deux cellules meurent".
Cet évènement est l’intersection de deux évènements indépendants ("la première
cellule meurt" et "la deuxième cellule meurt"), sa probabilité vaut donc le produit
des probabilités à savoir (1−p)2.

On a donc u1 = p(1−p)+(1−p) ou encore u1 = pu2
0 +1−p.

2. On reprend le même raisonnement que ci-dessus. On a une cellule et deux choix
possibles : elle se divise ou elle meurt. L’évènement En+1 est donc la réunion dis-
jointe des évènements "la cellule meurt dès la première étape" et "la cellule com-
mence par se diviser" ET A : "les deux lignées issues de ces cellules sont éteintes à
la n +1-ième génération".

Ainsi,
un+1

=P(D)PD (A)+P(D).

À nouveau, l’évènement A est l’intersection de deux évènements indépendants
donc

PD (A) = u2
n .

On a donc, pour tout n Ê 0,

un+1 = pu2
n + (1−p).

3. On pose fp la fonction définie sur [0,1] par fp : x 7→ px2 +1−p. On a montré que
∀n Ê 0, un+1 = fp (un).

Cette fonction est croissante. Par ailleurs, on a fp (u0) = fp (1−p) = p(1−p)2 + (1−
p) = (1−p)

(
p(1−p)+1

)Ê 1−p car p(1−p) > 0.

On montre donc, par une récurrence immédiate sur n, que ∀n Ê 0,un+1 Ê un car la
fonction fp est croissante.

Par ailleurs, on a fp (0) = 1− p Ê 0 et fp (1) = 1 donc [0,1] est un intervalle stable
par fp . On en déduit que : ∀n ∈ N,un ∈ [0,1] donc la suite est bornée et on peut
affirmer, compte tenu de sa monotonie, qu’elle est convergente.

Pour déterminer sa limite, on cherche les points fixes de fp . En effet, si un → l , alors
fp (un) → fp (l ) par continuité de fp . Or un+1 → l et ∀n ∈N,un+1 = fp (un) donc, par
unicité de la limite, on a fp (l ) = l . On raisonne par équivalence :

fp (l ) = l ⇔ pl 2 + (1−p) = l ⇔ pl 2 − l + (1−p) = 0 ⇔ l = 1 ou l = 1−p

p
.

Si p É 1

2
, on a

1−p

p
Ê 1, il n’y a donc qu’un seul point fixe dans l’intervalle [0,1]

et un → 1. Cela signifie que la lignée de la cellule va finir par s’éteindre de manière
quasi-certaine.

En revanche, si p > 1

2
, alors 1−p É 1−p

p
< 1 car p ∈

]
1

2
,1

]
. On a u0 < 1−p

p
donc,

par croissance de fp , on montre, avec une récurrence sur n que :

∀n ∈N,un É 1−p

p
.
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On en déduit que la limite de (un)n∈N doit être inférieur ou égale à
1−p

p
, ce qui

n’est pas le cas de 1 donc un → 1−p

p
. Dans ce cas, la probabilité pour que la lignée

s’éteigne tend vers une limite non nulle et cette limite est d’autant plus faible que
la valeur de p est grande (ce qui est cohérent !).

Correction 53

1. (a) Pour tout entier n, on note Fn l’évènement "la fortune du joueur s’élève à n" et
G l’évènement "le joueur gagne".

Quand on cherche à calculer ua , on part donc de l’évènement Fa et on cherche
à calculer la probabilité pour que, au bout d’un certain nombre de tours, on ait
F0. Pour tout a fixé, lorsque la fortune du joueur vaut a, il peut gagner ou perdre.
Par la formule des probabilités totales, on a donc :

P(Fa) =P(G)PG (Fa+1)+P(G)PG (Fa−1) = p ×PG (Fa+1)+ (1−p)×PG (Fa−1).

Revenons au calcul de ua . On cherche à calculer les probabilités des différents
chemins menant à 0 en partant d’une fortune a. D’après le travail ci-dessus, on
voit qu’il suffit de compter les chemins passant par Fa+1 et ceux passant par
Fa−1. Or, la probabilité des chemins passant par Fa+1 est exactement égale à la
probabilité de se retrouver ruiné en partant d’une fortune de a +1 (donc ua+1)
et, de même, la probabilité des chemins passant par Fa−1 vaut ua−1.

On a donc, pour tout entier a :

ua = pua+1 + (1−p)ua−1.

(b) On se retrouve avec l’étude d’une suite récurrente linéaire d’ordre 2 :{
u0 = 1, uN = 0
∀a Ê 1,ua = pua+1 + (1−p)ua−1

L’équation caractéristique est pr 2 − r + (1−p) = 0. On remarque que 1 est une

solution évidente donc l’autre racine vaut
1−p

p
. On en déduit qu’il existe deux

réels α et β tels que :

∀a ∈N,ua =α+β

(
1−p

p

)a

.

En utilisant les valeurs connues de u0 et uN , on trouveα+β= 1 etα+ 1−p

p
β= 0

donc α=−
(

1−p
p

)N

1−
(

1−p
p

)N
et β= 1

1−
(

1−p
p

)N
.

Ainsi, pour tout a ∈N,

ua =
(

1−p
p

)a −
(

1−p
p

)N

1−
(

1−p
p

)N
,

ce qui est bien la formule donnée dans l’énoncé.

Lorsque N →+∞, la limite va dépendre de p. En effet, si 1−p < p c’est-à-dire

p > 1

2
, alors

(
1−p

p

)N

→ 0 et ua →
(

1−p
p

)a
. La probabilité de finir ruiné va donc

tendre vers une valeur non nulle et qui sera d’autant plus élevée que l’on part
avec une mise de départ a élevée.

En revanche, si p < 1

2
, alors ua → 1 et la probabilité de finir ruiné tend vers 1,

on est donc quasiment certain de finir ruiné.

2. On cherche maintenant à calculer la probabilité va pour que le casino finisse ruiné.
On reprend le raisonnement fait à la question 1a) et l’égalité donnée par la formule
des probabilités totales. Cette fois-ci, on cherche à calculer la probabilité des diffé-
rents chemins menant à FN . On se retrouve donc à avoir :{

v0 = 0, vN = 1
∀a Ê 1, va = pva+1 + (1−p)va−1

On sait déjà, d’après les calculs effectués, qu’il existe deux réels λ et µ tels que

∀a ∈N, va =λ+µ

(
1−p

p

)a

.

Avec les conditions initiales, on a α+β = 0 et α+Nβ = 1. On suppose que N 6= 1
(sinon le jeu ne démarre pas ou bien s’arrête au bout d’un tour). On a donc

α= N

N −1
=−β.

Ainsi, pour tout a ∈N, on a

va =
(

1−p
p

)a −1(
1−p

p

)N −1
.

3. On remarque que, pour tout a ∈ N, ua + va = 1. La probabilité pour que le ca-
sino et le joueur s’affronte indéfiniment correspond à la probabilité de l’évène-
ment "le joueur n’est jamais ruiné ET le casino n’est jamais ruiné". Les évènements
contraires ( "le joueur est ruiné" et "le casino est ruiné") sont incompatibles donc
leur réunion vaut la somme des probabilités. D’après ce qui précède, quelle que
soit la mise a de départ du joueur, la somme de ces probabilités vaut 1 donc la
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probabilité de l’évènement "le joueur n’est jamais ruiné ET le casino n’est jamais
ruiné" est 0.

Il y a donc une probabilité nulle pour que le joueur et le casino s’affronte indéfini-
ment.

4. On reprend le travail fait ci-dessus avec p = 1

2
. On a, ∀a ∈ N, ua = 1

2
ua+1 + 1

2
ua−1

donc ua+1 −2ua +ua−1 = 0.

L’équation caractéristique est r 2 − 2r + 1 = 0 qui a une racine double égale à 1. Il
existe donc deux réels α et β tels que

∀a ∈N,ua =α+aβ.

On a u0 = 1 et uN = 0 donc α= 1 et β=− 1

N
. On en déduit que pour tout a ∈N,

ua = 1− a

N
.

On remarque que la probabilité de finir ruiné lorsque N tend vers +∞ tend vers 0.

On a également, pour tout a ∈N : va+1 −2va + va−1 = 0 donc il existe deux réels λ
et µ tel que

∀a ∈N, va =λ+aµ.

Comme v0 = 0 et vN = 1, on a α= 0 et β= 1

N
d’où

∀a ∈N, va = a

N
.

À nouveau, on a, ∀a ∈ N, ua + va = 1 donc la probabilité pour que le casino et le
joueur s’affronte indéfiniment est nulle.
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