Troisième devoir surveillé

Solutions

Exercice I. Échauffement

On considère les fonctions f et g définies sur $]0, +\infty[$ par :

$$f(x) = x + 1 + \frac{\ln(x)}{x}$$
 et $g(x) = x^2 + 1 - \ln(x)$.

Q.1 Dresser le tableau de variation de g sur $]0, +\infty[$, en détaillant le calcul des limites.

Solution. La fonction g est dérivable sur $]0, +\infty[$ par somme de fonctions dérivables :

$$\forall x \in \mathbb{R}_+^*, \quad g'(x) = 2x - \frac{1}{x} = \left| \frac{2x^2 - 1}{x} \right|.$$

Pour $x \in \mathbb{R}_+^*$, on a donc g'(x) de même signe que le trinôme $2x^2 - 1$.

x	0	$\frac{1}{\sqrt{2}}$	$+\infty$
g'(x)	-	- 0	+
g	$+\infty$ $g(\frac{1}{\sqrt{2}})$		

- $\lim_{x\to 0} g(x) = +\infty \operatorname{car} x^2 + 1 \to 1 \operatorname{et} \ln(x) \to +\infty.$
- $\lim_{x \to +\infty} g(x) = +\infty$ car $g(x) = x^2 \left(1 + \frac{1}{x^2} \frac{\ln x}{x^2} \right)$ avec $x^2 \to +\infty$ d'une part, $\frac{1}{x^2} \to 0$ (passage à l'inverse) et $\frac{\ln x}{x^2} \to 0$ (croissances comparées) d'autre part.

Q.2 Montrer que : $\forall x \in]0, +\infty[\,,\ g(x)>0.$ En déduire les variations de f.

Solution. D'après les variations, g admet un minimum en $\frac{1}{\sqrt{2}}$. Puisque $\sqrt{2} = 2^{\frac{1}{2}}$, les règles de calcul du logarithme conduisent à :

$$g\left(\frac{1}{\sqrt{2}}\right) = \left(\frac{1}{\sqrt{2}}\right)^2 + 1 - \ln\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{2} + 1 - \ln\left(2^{-\frac{1}{2}}\right) = \frac{3}{2} + \frac{1}{2}\ln(2) > 0.$$

Donc g est strictement positive.

La fonction f est dérivable sur $]0, +\infty[$ par somme et quotient (dont le dénominateur ne s'annule pas) de fonctions dérivables :

$$\forall x \in \mathbb{R}_+^*, \quad f'(x) = 1 + \frac{\frac{1}{x}x - \ln(x)}{x^2} = \frac{x^2 + 1 - \ln(x)}{x^2} = \frac{g(x)}{x^2} > 0.$$

Comme f' est strictement positive, f croît strictement sur $]0, +\infty[$.

Q.3 Montrer que f réalise une bijection de $]0,+\infty[$ dans un intervalle I à déterminer.

Solution. La fonction f est strictement croissante donc elle réalise une bijection de $]0, +\infty[$ sur $f(]0, +\infty[)$. Comme f est continue et $]0, +\infty[$ est un intervalle, l'image directe est un intervalle de même type dont les bornes sont les limites de f, d'après le théorème de la bijection :

- $f(x) \xrightarrow[x \to +\infty]{} +\infty$ car $\frac{\ln x}{x} \to 0$ (croissances comparées);
- $f(x) = x + 1 \frac{1}{x} \ln(x) \xrightarrow[x \to 0]{} -\infty \text{ car } \ln(x) \to -\infty \text{ et } \frac{1}{x} \to +\infty.$

En conclusion, $I =]-\infty, +\infty[$

Q.4 Montrer que l'application $f^{-1}: I \to]0, +\infty[$ est dérivable. Calculer $(f^{-1})'(2)$.

Solution. La fonction f est bijective de $]0,+\infty[$ dans I, et dérivable. De plus f' ne s'annule pas. Donc $f^{-1}:I\to]0,+\infty[$ est dérivable :

$$\forall y \in I, \quad (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$

Comme 2 = f(1), il vient $f^{-1}(2) = 1$ et $f(f^{-1})'(2) = \frac{1}{f'(1)} = \frac{1}{2}$.

Exercice II. Involutions monotones

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que :

$$\forall x \in \mathbb{R}, \quad f(f(x)) = x. \tag{1}$$

Q.5 Préliminaires.

(a) Montrer que f est une bijection et préciser son application réciproque.

Solution. La relation (1) donne directement $g \circ f = \mathrm{id}_{\mathbb{R}}$ et $f \circ g = \mathrm{id}_{\mathbb{R}}$ en posant g = f. D'après la caractérisation des bijections par composition,

f est une bijection et sa réciproque est f elle-même.

(b) Que peut-on en déduire pour le graphe de f?

Solution. Le graphe de f représenté dans un repère (Oxy) est symétrique par rapport à la droite d'équation y=x.

(c) Montrer que si f est croissante, alors f est l'application identité.

Solution. Supposons f croissante et montrons que : $\forall x \in \mathbb{R}, \ f(x) = x$. Soit $x \in \mathbb{R}$. Raisonnons par l'absurde en supposant que $f(x) \neq x$:

- Si f(x) < x, alors $f(f(x)) \le f(x)$ par croissance et donc $x \le f(x) < x$ par hypothèse. C'est contradictoire.
- De même f(x) > x conduit à $x \ge f(x) > x$ (contradictoire aussi).

Par l'absurde, on a donc f(x) = x.

 ${f Q.6}$ On suppose maintenant que f est une fonction $d\'{e}croissante$ et continue.

(a) Montrer que f est strictement décroissante.

Solution. Soient x_1, x_2 réels tels que $x_1 < x_2$. En particulier $x_1 \le x_2$ donc $f(x_1) \ge f(x_2)$ par décroissance. De plus $x_1 \ne x_2$ et f est injective (c'est une bijection) donc $f(x_1) \ne f(x_2)$ par contraposée. Aini, $f(x_1) < f(x_2)$.

(b) On considère la fonction $g: \mathbb{R} \to \mathbb{R}$ définie par $x \mapsto -x$. Trouver un réel $a \in \mathbb{R}_+^*$ tel que la fonction $h: \mathbb{R} \to \mathbb{R}$ définie par $x \mapsto f(x) - ax$ vérifie :

$$h \circ f = g \circ h. \tag{2}$$

Solution. Ces deux composées sont des applications de $\mathbb{R} \to \mathbb{R}$. Étant donné un réel a, on obtient pour tout $x \in \mathbb{R}$:

$$h \circ f(x) = f(f(x)) - af(x) = x - af(x)$$

et de même $g \circ h(x) = -(f(x) - ax) = ax - f(x)$. En posant a = 1, il vient :

$$\forall x \in \mathbb{R}, \quad h \circ f(x) = g \circ h(x),$$

d'où l'égalité (2) des deux applications composées.

(c) Montrer que h est une bijection continue de \mathbb{R} dans \mathbb{R} et que son application réciproque h^{-1} est continue aussi. Exprimer f en fonction de g, h et h^{-1} .

Solution. La fonction $h: x \mapsto f(x) + (-x)$ est strictement décroissante par somme de deux fonctions strictement décroissante. Donc h réalise une bijection de \mathbb{R} dans $h(\mathbb{R})$. De plus, h est continue par somme et $\mathbb{R} =]-\infty, +\infty[$ donc $h(\mathbb{R})$ est un intervalle de même type et $h^{-1}: h(\mathbb{R}) \to \mathbb{R}$ est continue aussi d'après le théorème de la bijection.

Enfin, $h(x) \xrightarrow[x \to +\infty]{} -\infty$ par comparaison car : $\forall x \in \mathbb{R}_+, \ f(x) - x \leqslant f(0) - x$. De même, $h(x) \xrightarrow[x \to -\infty]{} +\infty$ donc finalement $h(\mathbb{R}) =]-\infty, +\infty[= \mathbb{R}$. Pour conclure, la relation (2) se traduit par $h \circ f = g \circ h$, d'où :

$$\underbrace{h^{-1} \circ h}_{\mathrm{id}_{\mathbb{R}}} \circ f = h^{-1} \circ g \circ h, \quad \text{i.e.} \quad \boxed{f = h^{-1} \circ g \circ h}.$$

 $\mathbf{Q.7}$ En déduire l'ensemble des f décroissantes et continues qui vérifient (1).

Solution. Montrons que les solutions sont toutes les fonctions f qui se décomposent sous la forme $h^{-1} \circ g \circ h$ pour une certaine bijection h de \mathbb{R} dans \mathbb{R} continue et strictement décroissante.

- D'après les questions précédentes, toute solution est de ce type.
- Réciproquement, soit h une bijection de \mathbb{R} dans \mathbb{R} continue et strictement monotone de \mathbb{R} dans \mathbb{R} . Posons $f = h^{-1} \circ g \circ h$. D'après le théorème de la bijection, h^{-1} est aussi une bijection de \mathbb{R} dans \mathbb{R} continue et strictement monotone. Donc f est continue et strictement décroisante par composition.

En outre $g \circ g = \mathrm{id}_{\mathbb{R}} \operatorname{car} : \forall x \in \mathbb{R}, \ -(-x) = x.$ Donc par composition :

$$f \circ f = h^{-1} \circ g \circ \underbrace{h \circ h^{-1}}_{\mathrm{id}_{\mathbb{R}}} \circ g \circ h = h^{-1} \circ \underbrace{g \circ g}_{\mathrm{id}_{\mathbb{R}}} \circ h = h^{-1} \circ h = \mathrm{id}_{\mathbb{R}},$$

ce qui montre que f est bien solution de (1).

Exercice III. Fonctions circulaires réciproques

Soit f la fonction de \mathbb{R} dans \mathbb{R} définie par :

$$f(x) = \operatorname{Arccos}\left(\frac{2x}{1+x^2}\right) + 2\operatorname{Arctan}(x).$$

Q.8 Justifier que f est bien définie de \mathbb{R} dans \mathbb{R} . Est-elle continue?

Solution. La fonction Arctan est définie sur \mathbb{R} mais Arccos seulement sur [-1,1]. Cependant, pour tout $x \in \mathbb{R}$,

$$\left| \frac{2x}{1+x^2} \right| \le 1 \iff 2|x| \le 1+x^2 \iff 0 \le (|x|-1)^2.$$

Tout carré est positif dans \mathbb{R} , donc $2x/(1+x^2) \in [-1,1]$ quel que soit $x \in \mathbb{R}$.

La fonction f est bien continue par composition de fonctions continues et opérations.

Q.9 Réduction du domaine.

(a) Montrer que : $\forall x \in [-1, 1], \ \operatorname{Arccos}(-x) = \pi - \operatorname{Arccos}(x).$

Solution. Soit $x \in [-1, 1]$.

Posons $\theta = \operatorname{Arccos} x$. Alors $\cos \theta = x$ et $\theta \in [0, \pi]$, donc :

$$cos(\pi - \theta) = -cos \theta = -x$$
, et $\pi - \theta \in [0, \pi]$,

ce qui montre que $Arccos(-x) = \pi - \theta$.

(b) Calculer $f(0), f(1), f(\sqrt{3}), f(-1)$ et $f(-\sqrt{3})$.

Solution. D'après les valeurs usuelles :

$$f(0) = \operatorname{Arccos}(0) + 2 \operatorname{Arctan}(0) = \frac{\pi}{2} + 0 = \left\lfloor \frac{\pi}{2} \right\rfloor$$
$$f(1) = \operatorname{Arccos}(1) + 2 \operatorname{Arctan}(1) = 0 + \frac{\pi}{2} = \left\lfloor \frac{\pi}{2} \right\rfloor$$
$$f(\sqrt{3}) = \operatorname{Arccos}(\frac{\sqrt{3}}{2}) + 2 \operatorname{Arctan}(\sqrt{3}) = \frac{\pi}{6} + 2\frac{\pi}{3} = \left\lfloor \frac{5\pi}{6} \right\rfloor.$$

En utilisant la relation précédente et l'imparité d'Arctan :

$$f(-1) = \pi - \operatorname{Arccos}(1) - 2\operatorname{Arctan}(1) = \boxed{\frac{\pi}{2}}$$
$$f(-\sqrt{3}) = \pi - \operatorname{Arccos}(\frac{\sqrt{3}}{2}) - 2\operatorname{Arctan}(\sqrt{3}) = \boxed{\frac{\pi}{6}}.$$

(c) Justifier que la courbe de f admet un centre de symétrie en un point à déterminer.

Solution. On généralise les calculs précédents. Pour tout $x \in \mathbb{R}$,

$$\operatorname{Arccos}\left(\frac{-x}{1+(-x)^2}\right) = \operatorname{Arccos}\left(\frac{-x}{1+x^2}\right) = \pi - \operatorname{Arccos}\left(\frac{x}{1+x^2}\right)$$

et de plus Arctan(-x) = -Arctan(x), donc $f(-x) = \pi - f(x)$.

Autrement dit, la fonction $x\mapsto f(x)-\frac{\pi}{2}$ est impaire. La courbe de f est donc

invariante par symétrie centrale de centre
$$(0, \frac{\pi}{2})$$
.

Q.10 Étude de dérivée.

(a) Sur quels intervalles la fonction f est-elle dérivable? Calculer sa dérivée.

Solution. La fonction Arctan est sur \mathbb{R} . Mais Arccos n'est dérivable que sur]-1,1[. En reprenant le calcul précédent,

$$\frac{2x}{1+x^2} \in \{1, -1\} = 1 \iff (|x|-1)^2 = 0 \iff x \in \{1, -1\}.$$

Finalement, f est donc dérivable par opérations et composition sur les inter-

valles $]-\infty, -1[,]-1, 1[$ et $]1, +\infty[$. Pour tout x dans ces intervalles,

$$f'(x) = \frac{-1}{\sqrt{1 - (\frac{2x}{1+x^2})^2}} \frac{2(1+x^2) - 4x^2}{(1+x^2)^2} + 2\frac{1}{1+x^2}$$
$$= \frac{-2(1-x^2)}{\sqrt{(x^2-1)^2}(1+x^2)} + \frac{2}{1+x^2}$$
$$= \frac{2}{1+x^2} \left(1 + \frac{x^2-1}{|x^2-1|}\right).$$

(b) Monter que f est constante sur [-1,1].

Solution. Soit $x \in]-1,1[$. Alors $x^2 - 1 < 0$ donc :

$$f'(x) = \frac{2}{1+x^2} \left(1 + \frac{x^2 - 1}{1-x^2} \right) = 0.$$

La dérivée f' est nulle sur]-1,1[donc f est constante sur cet intervalle :

$$\forall x \in]-1, 1[, \quad f(x) = f(0) = \frac{\pi}{2}.$$

Or
$$f(1) = f(-1) = \frac{\pi}{2}$$
, donc f est bien constante sur $[-1, 1]$.

(c) Démontrer que : $\forall x \in [1, +\infty[, f(x) = 4 \operatorname{Arctan}(x) - \frac{\pi}{2}]$.

Solution. Posons $g:[1,+\infty[\to\mathbb{R}$ définie par $x\mapsto f(x)-4\operatorname{Arctan}(x)$. Cette fonction est dérivable sur $]1,+\infty[$ par combinaison linéaire :

$$\forall x \in]1, +\infty[, \quad g'(x) = \frac{2}{1+x^2} \left(-1 + \frac{x^2 - 1}{x^2 - 1}\right) = 0$$

elle est donc constante sur cet intervalle :

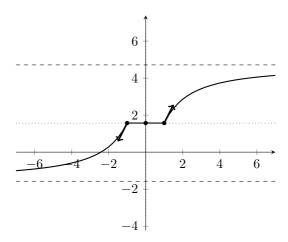
$$\forall x \in]1, +\infty[, \quad g(x) = g(\sqrt{3}) = \frac{5\pi}{6} - 4\frac{\pi}{3} = -\frac{\pi}{2}.$$

Or $g(1) = \frac{\pi}{2} - 4\frac{\pi}{4} = -\frac{\pi}{2}$ aussi, donc :

$$\forall x \in [1, +\infty[, f(x) - 4 \operatorname{Arctan}(x) = -\frac{\pi}{2}].$$

Q.11 Tracer l'allure de la courbe représentative de f, avec ses asyptotes en $+\infty$ et $-\infty$.

Solution. Les questions précédentes nous donnent déjà f sur [-1,1] et $[1,+\infty]$. On complète ensuite avec la symétrie centrale.



Les asymptotes horizontales en $+\infty$ et $-\infty$ sont les droites d'équations :

$$y = 2\pi - \frac{\pi}{2}, \quad y = -\pi + \frac{\pi}{2}.$$

Les demi-tangentes à la courbe aux point $(1, \frac{\pi}{2})$ et $(-1, \frac{\pi}{2})$ admettent les équations :

$$y = 2(x-1) + \frac{\pi}{2}, \qquad y = -2(x+1) + \frac{\pi}{2}.$$

Exercice IV. Points rationnels du cercle unité

L'objectif de cet exercice est de décrire l'ensemble $E = \{(x,y) \in \mathbb{Q}^2 \mid x^2 + y^2 = 1\}$ de tous les points du cercle unité à coordonnées rationnelles. On note $E' = E \setminus \{(-1,0)\}$. On considère l'application f de \mathbb{Q} dans \mathbb{Q}^2 définie par :

$$\forall t \in \mathbb{Q}, \quad f(t) = \left(\frac{1 - t^2}{1 + t^2}, \ \frac{2t}{1 + t^2}\right).$$

Q.12 Une inclusion.

(a) Montrer que $f(\mathbb{Q}) \subset E'$.

Solution. Soit $(x,y) \in E'$. On dispose de $t \in \mathbb{Q}$ tel que f(t) = (x,y). De plus, il existe p,q entiers avec $q \neq 0$ tels que $t = \frac{p}{q}$. Ainsi,

$$\frac{1 - (\frac{p}{q})^2}{1 + (\frac{p}{q})^2} = \frac{q^2 - p^2}{q^2 + p^2}, \qquad \frac{2\frac{p}{q}}{1 + (\frac{p}{q})^2} = \frac{2qp}{q^2 + p^2}.$$

Déjà, $f(t) \in \mathbb{Q}^2$ car $q^2 - p^2$, $q^2 + p^2$ et 2qp sont des entiers. En outre,

$$\left(\frac{q^2-p^2}{q^2+p^2}\right)^2 + \left(\frac{2qp}{q^2+p^2}\right)^2 = \frac{q^4+2q^2p^2+p^4}{(q^2+p^2)^2} = 1,$$

car $q^4 + 2q^2p^2 + p^4 = (q^2 + p^2)^2$, et donc $f(t) \in E$.

Supposons enfin que f(t)=(-1,0) et cherchons une contradiction : par hypothèse $1-t^2=-(1+t^2)$ et 2t=0, ce qui implique 1=-1. Donc $f(t)\neq (-1,0)$ par l'absurde. Conclusion : $(x,y)=f(t)\in E'$.

(b) Calculer f(0), f(1), f(1/2) et f(2/3).

Solution.
$$f(0)=(1,0),\ f(1)=(0,1),\ f(\frac{1}{2})=(\frac{3}{5},\frac{4}{5}),\ f(\frac{2}{3})=(\frac{5}{13},\frac{12}{13}).$$

(c) En déduire deux triplets non colinéaires d'entiers (a, b, c) tels que

$$0 < a < b < c$$
 et $a^2 + b^2 = c^2$.

Solution. Sachant que $f(\frac{1}{2}) \in E$ et $f(\frac{2}{3}) \in E$, on a directement :

$$\left(\frac{3}{4}\right)^2 + \left(\frac{4}{5}\right)^2 = \left(\frac{5}{13}\right)^2 + \left(\frac{12}{13}\right)^2 = 1$$
 donc $\begin{cases} 3^2 + 4^2 = 5^2. \\ 5^2 + 12^2 = 13^2. \end{cases}$

Les triplets (3, 4, 5) et (5, 12, 13) sont donc solutions et non colinéaires.

Q.13 Injectivité.

(a) Soient $\theta \in]-\pi,\pi[$ et $t=\tan(\theta/2)$. Montrer que :

$$\frac{1-t^2}{1+t^2} = \cos(\theta) \quad \text{et} \quad \frac{2t}{1+t^2} = \sin(\theta).$$

Solution. Posons
$$x = \frac{\theta}{2}$$
.
Alors: $\frac{1-t^2}{1+t^2} = \frac{\cos(x)^2 - \sin(x)^2}{\cos(x)^2 + \sin(x)^2} = \frac{\cos(2x)}{1} = \cos(\theta)$.

De même :
$$\frac{2t}{1+t^2} = \frac{2\sin(x)\cos(x)}{\cos(x)^2 - \sin(x)^2} = \frac{\sin(2x)}{1} = \sin(\theta).$$

(b) En déduire que f est une injection de \mathbb{R} dans \mathbb{R}^2 .

Solution. Soient $(t, t') \in \mathbb{R}^2$ tels que f(t) = f(t'). Montrons que t = t'. Comme tan est bijective de $]-\frac{\pi}{2}, \frac{\pi}{2}[$ dans \mathbb{R} , on dispose de $(\theta, \theta') \in]-\pi, \pi[^2]$ tels que $t = \tan(\frac{\theta}{2})$ et $t' = \tan(\frac{\theta'}{2})$. Alors, d'après la question précédente,

$$f(t) = f(t') \iff \begin{cases} \cos(\theta) = \cos(\theta') \\ \sin(\theta) = \sin(\theta') \end{cases} \iff \theta \equiv \theta' \ [2\pi].$$

Or $|\theta - \theta'| < 2\pi$, donc $\theta = \theta'$ nécessairement. Par conséquent t = t'.

Q.14 Soit g l'application de E' dans \mathbb{Q} définie par :

$$\forall (x,y) \in E', \quad g(x,y) = \frac{y}{x+1}.$$

(a) Vérifier que : $\forall (x,y) \in E', (f \circ g)(x,y) = (x,y).$

Solution. Soit $(x,y) \in E'$. En posant $t = g(x,y) = \frac{y}{x+1}$,

$$(f \circ g)(x,y) = f(g(x,y)) = f(t).$$

Grâce à la relation $x^2 + y^2 = 1$, on obtient par ailleurs :

$$1 + t^2 = \frac{(x+1)^2 + y^2}{(x+1)^2} = \frac{x^2 + y^2 + 2x + 1}{(x+1)^2} = \frac{2x+2}{(x+1)^2} = \frac{2}{x+1},$$

de même que

$$1 - t^2 = \frac{(x+1)^2 - y^2}{(x+1)^2} = \frac{x^2 + 2x + 1 - y^2}{(x+1)^2} = \frac{x^2 + 2x + x^2}{(x+1)^2} = \frac{2x}{x+1},$$

d'où finalement :

$$\frac{1-t^2}{1+t^2} = \frac{2x}{2} = x, \quad \text{et} \quad \frac{2t}{1+t^2} = \frac{2y}{2} = y, \quad \text{i.e} \quad \left[(f \circ g)(x,y) = (x,y) \right].$$

(b) En déduire que $f(\mathbb{Q}) = E'$.

Solution. On sait déjà que $f(\mathbb{Q}) \subset E'$. Montrons que $E' \subset f(\mathbb{Q})$: Soit $(x,y) \in E'$. Comme $(x,y) \neq (-1,0)$. En posant t=g(x,y), on a bien $t \in \mathbb{Q}$ et f(t)=(x,y) d'après la question précédente. Ainsi $(x,y) \in f(\mathbb{Q})$. Conclusion. Par double inclusion, $f(\mathbb{Q})=E'$.

(c) Montrer de plus que g est une bijection de E' dans \mathbb{Q} .

Solution. On a déjà vu que : $\forall (x,y) \in E', \ f(g(x,y)) = (x,y).$ Inversement, on a aussi pour tout, $t \in \mathbb{Q}$,

$$g(f(t)) = \frac{\frac{2t}{1+t^2}}{\frac{1-t^2}{1+t^2}+1} = \frac{2t}{(1-t^2)+(1+t^2)} = t.$$

L'application $\widetilde{f}:\mathbb{Q}\to E'$ définie par $t\mapsto f(t)$ vérifie donc :

$$\widetilde{f} \circ g = \mathrm{id}_{E'} \quad \text{et} \quad g \circ \widetilde{f} = \mathrm{id}_{\mathbb{Q}}.$$

D'après la caractérisation par composition,

g est donc bijective et \widetilde{f} est sa bijection réciproque.

Exercice V. Sommes et racines n-ièmes de l'unité

Un premier exemple

Q.15 Notons j le nombre complexe $e^{i\frac{2\pi}{3}}$. Montrer que :

$$\forall p \in \mathbb{N}, \quad \frac{1+j^p+j^{2p}}{3} = \begin{cases} 1 & \text{si } p \text{ est divisible par } 3, \\ 0 & \text{sinon.} \end{cases}$$

Solution. Soit p tel que $j^p \neq 1$. Par sommation géométrique :

$$1 + j^p + j^{2p} = \frac{j^{3p} - 1}{j^p - 1} = 0.$$

Si, au contraire $j^p = 1$, on obtient directement $1 + j^p + j^{2p} = 3$.

On conclut en résolvant l'équation : $j^p = 1 \iff \frac{2\pi p}{3} \equiv 0 \ [2\pi] \iff p \equiv 0 \ [3].$

Q.16 Calculer les sommes $A_n = \sum_{p=0}^n \binom{n}{p}$, $B_n = \sum_{p=0}^n \binom{n}{p} j^p$ et $C_n = \sum_{p=0}^n \binom{n}{p} j^{2p}$, puis en déduire que pour tout entier naturel n,

$$\sum_{k=0}^{\lfloor n/3\rfloor} \binom{n}{3k} = \frac{2}{3} \left[2^{n-1} + \cos\left(\frac{\pi n}{3}\right) \right].$$

Solution. D'après la question précédente et par linéarité :

$$\frac{1}{3}A_n + \frac{1}{3}B_n + \frac{1}{3}C_n = \sum_{\substack{0 \le p \le n \\ 3|p}} \binom{n}{p} = \sum_{k=0}^{\lfloor \frac{n}{3} \rfloor} \binom{n}{3k}.$$

En effet, les $p \in [0, n]$ tels que $0 \le p \le n$ divisibles par 3 sont les entiers 3k où $0 \le k \le \frac{n}{3}$, le plus grand des ces entiers étant $\lfloor \frac{n}{3} \rfloor$.

D'après la formule du binôme de Newton, on sait en outre que :

$$A_n = (1+1)^n = 2^n$$
, $B_n = (1+j)^n$, $C_n = (1+j^2)^n$.

Or
$$1 + j = \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{i\pi/3}$$
 et $1 + j^2 = \overline{1 + j} = e^{-i\pi/3}$, donc :

$$\frac{A_n + B_n + C_n}{3} = \frac{2^n + e^{in\pi/3} + e^{-in\pi/3}}{3} = \boxed{\frac{2^n + 2\cos(\frac{n\pi}{3})}{3}}$$

Q.17 Calculer de même

$$\sum_{k=0}^{\lfloor n/3\rfloor} \binom{n}{3k+1} \quad \text{et} \quad \sum_{k=0}^{\lfloor n/3\rfloor} \binom{n}{3k+2}.$$

Solution. En considérant p-1 on obtient de même :

$$\frac{1+j^{p-1}+j^{2(p-1)}}{3} = \begin{cases} 1 & \text{si } p-1 \text{ est divisible par } 3\\ 0 & \text{sinon.} \end{cases}$$

En utilisant le fait que $j^{-1}=\overline{j}$ et $j^{-2}=j,$ on obtient alors :

$$\sum_{k=0}^{\lfloor \frac{n}{3} \rfloor} \binom{n}{3k+1} = \frac{A_n + j^{-1}B_n + j^{-2}C_n}{3} = \boxed{\frac{2^n + 2\cos(\frac{(n-2)\pi}{3})}{3}}.$$

On procède de même avec p-2:

$$\sum_{k=0}^{\lfloor \frac{n}{3} \rfloor} \binom{n}{3k+2} = \frac{A_n + j^{-2}B_n + j^{-4}C_n}{3} = \boxed{\frac{2^n + 2\cos(\frac{(n+2)\pi}{3})}{3}}$$

Une transformation discrète générale

Soit $n \in \mathbb{N}^*$. On pose $\omega = e^{i\frac{2\pi}{n}}$.

On note E_n l'ensemble des fonctions de [0, n-1] dans \mathbb{C} . Pour toute fonction $f \in E_n$, on note $\widehat{f} \in E_n$ la fonction définie par :

$$\forall p \in [0, n-1], \quad \widehat{f}(p) = \sum_{k=0}^{n-1} \overline{f(k)} \,\omega^{pk}.$$

En posant $\Phi(f) = \widehat{f}$, on définit ainsi une application $\Phi: E_n \longrightarrow E_n$.

Q.18 Soit $a \in \mathbb{Z}$. Calculer la somme $\sum_{k=0}^{n-1} \omega^{ak}$ en fonction de la valeur de a.

Solution. Soit $a \in \mathbb{Z}$. Si $\omega^a \neq 1$, alors par sommation géométrique :

$$\sum_{k=0}^{n-1} \omega^{ak} = \frac{1 - \omega^{an}}{1 - \omega^a} = \frac{1 - 1}{1 - \omega^a} = 0.$$

Si au contraire $\omega^a=1$, alors la somme vaut simplement n.

Notons enfin que $\omega^a=1$ ssi a est un multiple de n. En effet :

$$\omega^a = 1 \iff \frac{2\pi a}{n} \equiv 0 \ [2\pi] \iff a \equiv 0 \ [n].$$

Q.19 Montrer que $\Phi \circ \Phi = n$ id_{E_n} par un calcul de somme double. En déduire que Φ est une bijection de E_n dans E_n et préciser sa bijection réciproque.

Solution. Soient $f \in E_n$ et $\widehat{\widehat{f}} = (\Phi \circ \Phi)(f) = \Phi(\widehat{f})$. Alors pour tout $\ell \in [0, n-1]$,

$$\widehat{\widehat{f}}(\ell) = \sum_{p=0}^{n-1} \overline{\widehat{f}(p)} \omega^{\ell p},$$

c'est-à-dire par définition de \hat{f} :

$$\widehat{\widehat{f}}(\ell) = \sum_{n=0}^{n-1} \overline{\left[\sum_{k=0}^{n-1} \overline{f(k)} \omega^{pk} \right]} \omega^{\ell p} = \sum_{n=0}^{n-1} \sum_{k=0}^{n-1} f(k) \omega^{p(\ell-k)}.$$

On peut alors intervertir l'ordre de sommation : $\widehat{\widehat{f}}(\ell) = \sum_{k=0}^{n-1} \left[f(k) \sum_{p=0}^{n-1} \omega^{p(\ell-k)} \right]$.

Dans cette somme $-n < \ell - k < n$ donc, d'après la question précédente,

$$\sum_{p=0}^{n-1} \omega^{p(\ell-k)} = \begin{cases} n & \text{si } \ell = k, \\ 0 & \text{sinon.} \end{cases}$$

Tous les termes de la somme indexée par k s'annulent donc lorsque $k \neq \ell$. Ainsi,

$$\forall \ell \in [0, n-1], \quad \widehat{\widehat{f}}(\ell) = f(\ell) \times n.$$

c'est-à-dire que $\widehat{\widehat{f}}=nf$. Ceci est vrai quel que soit $f\in E_n$, donc $\Phi\circ\Phi=n\operatorname{id}_E$. Montrons maintenant que Φ est une bijection, c'est-à-dire que : pour tout $g\in E_n$, l'équation $\Phi(f)=g$ admet une unique solution $f\in E_n$. Soit $g\in E_n$.

- Analyse. Soit $f \in E_n$ tel que $\Phi(f) = g$. Alors $(\Phi \circ \Phi)(f) = \Phi(g)$ donc $nf = \widehat{g}$.
- Synthèse. Posons $f = \frac{1}{n}\widehat{g}$. Alors $\Phi(f) = \frac{1}{n}\Phi(\widehat{g})$ par linéarité de Σ et donc

$$\Phi(f) = \frac{1}{n}(\Phi \circ \Phi)(g) = \frac{1}{n} ng = g.$$

Conclusion :
$$\Phi$$
 est une bijection. De plus : $\forall g \in E_n, \quad \Phi^{-1}(g) = \frac{1}{n}\widehat{g} = \frac{1}{n}\Phi(g)$

Une identité remarquable

Q.20 Soient $f \in E_n$ et $\widehat{f} = \Phi(f)$. Montrer que :

$$\sum_{p=0}^{n-1} \left| \widehat{f}(p) \right|^2 = n \sum_{k=0}^{n-1} \left| f(k) \right|^2.$$

Solution. Puisque $|\widehat{f}(p)|^2 = \widehat{f}(p) \times \overline{\widehat{f}(p)}$, on peut développer :

$$|\widehat{f}(p)|^2 = \left(\sum_{k=0}^{n-1} \overline{f(k)} \omega^{kp}\right) \left(\sum_{\ell=0}^{n-1} f(\ell) \omega^{-\ell p}\right) = \sum_{0 \leqslant k, \ell \leqslant n-1} \overline{f(k)} f(\ell) \omega^{(k-\ell)p}.$$

Donc par interversion de somme :

$$\sum_{p=0}^{n-1} \left| \widehat{f}(p) \right|^2 = \sum_{0 \leqslant k, \ell \leqslant n-1} \left(\overline{f(k)} f(\ell) \sum_{p=0}^{n-1} \omega^{(k-\ell)p} \right) = \sum_{k=0}^{n-1} \left(\overline{f(k)} f(k) \times n + 0 \right).$$

car la somme indexée par p vaut n si $k = \ell$ et 0 sinon (comme pour $\Phi \circ \Phi$).

Q.21 On rappelle que $\omega=e^{i\frac{2\pi}{n}}.$ Pour tout $p\in [1,n-1],$ montrer que

$$\sum_{k=0}^{n-1} k \,\omega^{pk} = \frac{n}{\omega^p - 1}$$

et calculer le module de ce nombre complexe.

Solution. Soit $p \in [1, n-1]$. Notons déjà que $\omega^p - 1 \neq 0$ car p n'est pas multiple n-1de n. Par linéarité, $(\omega^p - 1)\sum_{k=0}^{n-1} k\omega^{pk} = \sum_{k=0}^{n-1} k\omega^{p(k+1)} - \sum_{k=0}^{n-1} k\omega^{pk}$.

Le changement d'indice $k^\prime=k+1$ dans la première somme donne alors :

$$\sum_{k=1}^{n} (k-1)\omega^{pk} - \sum_{k=0}^{n-1} k\omega^{pk} = (n-1)\omega^{pn} - (0-1)\omega^{0} + \sum_{k=0}^{n-1} ((k-1)-k)\omega^{pk}$$

par réarrangement de termes. On conclut sachant que $\sum_{k=0}^{n-1} \omega^{pk} = 0$ et $\omega^{pn} = 1$:

$$(\omega^p - 1) \sum_{k=0}^{p-1} k\omega^{pk} = 0 + n - 1 + 1 = n.$$

Q.22 En considérant un élément $f \in E_n$ bien choisi, en déduire finalement que :

$$\sum_{p=1}^{n-1} \frac{1}{\sin\left(\frac{\pi p}{n}\right)^2} = \frac{n^2 - 1}{3}.$$

Solution. La question précédente donne le calcul des $\hat{f}(p)$ pour $p \in \mathbb{N}^*$ lorsque f est la fonction définie par : $\forall k \in [0, n-1], \quad f(k) = k$.

Lorsque p = 0, on a simplement : $\widehat{f}(0) = \sum_{k=0}^{n-1} k\omega^0 = \frac{n(n-1)}{2}$.

L'identité remarquable prouvée précédemment donne alors :

$$\left| \frac{n(n-1)}{2} \right|^2 + \sum_{p=1}^{n-1} \left| \frac{n}{\omega^p - 1} \right|^2 = n \sum_{k=0}^{n-1} |k|^2.$$

On reconnaît la somme des carrés de 1 à n-1. En divisant par n (non nul) :

$$\frac{(n-1)^2}{4} + \sum_{p=1}^{n-1} \frac{1}{|\omega^p - 1|^2} = \frac{(n-1)(2n-1)}{6}.$$

Par ailleurs, la technique de l'angle moitié montre que :

$$\omega^p - 1 = e^{i\frac{\pi p}{n}} \left(e^{i\frac{\pi p}{n}} - e^{-i\frac{\pi p}{n}} \right) = 2i \sin\left(\frac{\pi p}{n}\right) e^{i\frac{\pi p}{n}}.$$

d'où finalement : $\frac{1}{4} \sum_{n=1}^{n-1} \frac{1}{\sin\left(\frac{\pi p}{n}\right)^2} = \frac{(n-1)(2n-1)}{6} - \frac{(n-1)^2}{4}$.

On conclut en multipliant par 4 et en simplifiant le second membre.

Note historique. De cette formule, on peut déduire le calcul de limite suivant :

$$\lim_{N \to +\infty} \sum_{n=1}^{N} \frac{1}{n^2} = \frac{\pi^2}{6} \approx 1,644$$

Il s'agit du « problème de Bâle », conjecturé en 1644 puis résolu par Euler en 1741.