Exercice 1 Rotations et dérivations

Soit \mathcal{B} la base canonique de \mathbb{R}^2 . On choisit l'orientation de \mathbb{R}^2 donnée par \mathcal{B} . Soit $r: \mathbb{R} \to \mathcal{M}_2(\mathbb{R}), t \mapsto \mathcal{M}_{\mathcal{B}}(rot(t))$ où rot(t) désigne la rotation vectorielle d'angle t.

- 1. Montrer que r est dérivable et expliciter r'.
- **2.** En déduire que r est \mathcal{C}^{∞} et expliciter $r^{(n)}$ pour tout n de \mathbb{N} .

Solution (Ex.1 – Rotations et dérivations)

1. $r: t \mapsto \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$: les 4 fonctions coordonnées (dans la base canonique

que $\mathcal{M}_2(\mathbb{R})$) sont dérivables donc r est dérivable, et par dérivation par coordonnées :

$$\forall t \in \mathbb{R}, \quad r'(t) = \begin{pmatrix} -\sin(t) & -\cos(t) \\ \cos(t) & -\sin(t) \end{pmatrix} = r\left(t + \frac{\pi}{2}\right).$$

2. Par récurrence immédiate, r est \mathcal{C}^{∞} et :

$$\forall n \in \mathbb{N}, \forall t \in \mathbb{R}, \quad r^{(n)}(t) = r(t + n\frac{\pi}{2}) = \begin{cases} r(t) & \text{si } n \equiv 0 \mod (4), \\ r'(t) & \text{si } n \equiv 1 \mod (4), \\ r^{(2)}(t) = -r(t) & \text{si } n \equiv 2 \mod (4), \\ r^{(3)}(t) = -r'(t) & \text{si } n \equiv 3 \mod (4). \end{cases}$$

Exercice 2 Mouvement circulaire et orthogonalité du vecteur vitesse

Soit I un intervalle $f: I \to \mathbb{R}^2, t \mapsto f(t)$ une fonction vectorielle dérivable \mathbb{R}^2 . On suppose N: $t \mapsto ||f(t)||$ constante.

Montrer que pour tout t, les vecteurs f(t) et f'(t) sont orthogonaux. On pourra dériver \mathbb{N}^2 ...

Solution (Ex.2 – Mouvement circulaire et orthogonalité du vecteur vitesse) On a $\forall t \in I$;

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} ||f(t)||^2 = \frac{\mathrm{d}}{\mathrm{d}t} \langle f(t), f(t) \rangle = \langle f'(t), f(t) \rangle + \langle f(t), f'(t) \rangle = 2 \langle f'(t), f(t) \rangle$$

donc $f'(t) \perp f(t)$.

Exercice 3 Exemple d'une application à valeur matricielle Soit $n \in \mathbb{N}^*$. Soit $f : \mathbb{R} \to \mathcal{O}_n(\mathbb{R})$ une application dérivable.

- 1. Montrer que, pour tout t de \mathbb{R} , $f(t)^{\mathrm{T}}f'(t)$ est une matrice antisymétrique.
- **2.** Montrer que, si n est impair, alors pour tout $t \in \mathbb{R}$, f'(t) n'est pas inversible.

Solution (Ex.3 – Exemple d'une application à valeur matricielle)

- 1. Soit $g: t \mapsto f(t)^{\mathrm{T}} f(t)$.
 - Par bilinéarité du produit matriciel,

$$\forall t \in \mathbb{R}, g'(t) = f'(t)^{\mathrm{T}} f(t) + f(t)^{\mathrm{T}} f'(t) = \left(f(t)^{\mathrm{T}} f'(t) \right)^{\mathrm{T}} + f(t)^{\mathrm{T}} f'(t)$$

• Mais comme $\forall t \in \mathbb{R}, f(t) \in \mathcal{O}_n(\mathbb{R}), g(t) = I_n \text{ donc } g'(t) = 0_n.$

Donc pour tout $t ext{ de } \mathbb{R}$, $f(t)^{T} f'(t)$ est une matrice antisymétrique.

2. Soit $t \in \mathbb{R}$. Notons $\varepsilon = \det(() f(t)) = \pm 1$.

D'une part :

$$\det(() f(t)^{T} f'(t)) = \det(() f(t)^{T}) \det(() f'(t)) = \varepsilon \det(() f'(t)),$$

d'autre part :

$$\det(() f(t)^{T} f'(t)) = \det(() - f'(t)^{T} f(t)) = (-1)^{n} \det(() f'(t) \det(() f(t))$$
$$= (-1)^{n} \varepsilon \det(() f'(t)) = -\varepsilon \det(() f'(t)) \text{ (avec } n \text{ impair !)},$$

donc det (() f'(t)) = 0 et $f'(t) \notin \mathcal{GL}_n(\mathbb{R})$.

Exercice 4 Mouvement sur une sphère et accélération

Soit $E = \mathbb{R}^3$, $R \in (0, \mathbb{R})$ la sphère de centre 0 et de rayon \mathbb{R} .

I un intervalle de \mathbb{R} et $f: \mathcal{I} \to \mathcal{E}$ deux fois dérivable.

On suppose que : $\forall t \in I, f(t) \in \mathcal{S}$ (autrement dit, pour tout t, le point f(t) est sur la sphère \mathcal{S} .

- 1. Montrer que : (i) $\forall t \in I, f'(t) \perp f(t)$ et (ii) $\forall t \in I, \langle f''(t), f(t) \rangle \leq 0$.
- ${\bf 2.}\;\;$ Interpréter cinématiquement ces résultats.

Solution (Ex.4 – Mouvement sur une sphère et accélération)

1. Soit N: $t \mapsto ||f(t)||^2 = \langle f(t), f(t) \rangle$. Alors:

 $\forall t \in I, N'(t) = 2 \langle f'(t), f(t) \rangle$, mais comme N est constante égale à \mathbb{R}^2 , $\mathbb{N}' = 0$.

Donc: $\forall t \in I, \langle f'(t), f(t) \rangle = 0$ et $f'(t) \perp f(t)$.

Dérivons alors P : $t \mapsto \langle f'(t), f(t) \rangle$, elle aussi constante.

 $\forall t \in \mathcal{I}, \mathcal{P}'(t) = \langle f''(t), f(t) \rangle + \langle f'(t), f'(t) \rangle = 0, \text{ donc } \langle f''(t), f(t) \rangle = -\left| |f'(t)| \right|^2 \le 0.$

- 2. (i) dit qu'en tout point f(t), le vecteur vitesse instantané est orthogonal au rayon f(t)... si ça n'était pas le cas, cela compromettrait que le point reste sur S!
 - (ii) dit qu'à tout moment, l'accélération est dirigée vers l'intérieur de la sphère : $\cos(f''(t), f(t)) \le 0$, i.e. sens opposé au rayon f(t).

Exercice 5 Dérivation, déterminant et trace

Soit $n \in \mathbb{N}^*$. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $\varphi : \mathbb{R} \to \mathbb{R}$, $t \mapsto \det(I_n + tA)$.

Montrer que φ est dérivable et calculer $\varphi'(0)$. On pourra utiliser le polynôme caractéristique de -A ou la multilinéarité du déterminant...

Solution (Ex.5 – Dérivation, déterminant et trace)

En utilisant le polynôme caractéristique de -A:

- $\varphi(t)$ est un polynôme en t donc φ est dérivable (et même \mathcal{C}^{∞}).
- Notons que, pour $t \neq 0$,

$$\varphi(t) = \det(()t((1/t)I_n - (-A))) = t^n\chi_{-A}(1/t) = 1 - Tr(() - A)t + P(t) \text{ avec deg } P \ge 0$$

$$\frac{\varphi(t) - \varphi(0)}{t} = \frac{1}{t} \left(1 + \operatorname{Tr}\left(() A \right) t + P(t) - \det\left(() I_n \right) \right) = \operatorname{Tr}\left(() A \right) + \frac{P(t)}{t} \xrightarrow[t \to 0]{} \operatorname{Tr}\left(() A \right)$$

$$\operatorname{car}\,\operatorname{deg}(\mathbf{P})\geq 2\Longrightarrow \frac{\mathbf{P}(t)}{t}\Longrightarrow\operatorname{deg}\big(\frac{\mathbf{P}(t)}{t}\big)\geq 1\Longrightarrow_{t\to 0}0$$

En utilisant la multilinéarité du déterminant par rapport aux colonnes

Je note $(C_i)_{1 \leq i \leq n}$ les colonnes de A et $(E_i)_{1 \leq i \leq n}$ la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$, de sorte que :

$$\varphi(t) = \det\left(\left(\right) \mathbf{E}_1 + t\mathbf{C}_1, \mathbf{E}_2 + t\mathbf{C}_2, \dots, \mathbf{E}_n + t\mathbf{C}_n\right).$$

On a évidemment, $\forall i, \frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{E}_i + t\mathrm{C}_i) = \mathrm{C}_i.$

En dérivant, par n-linéarité,

$$\varphi'(t) = \det(() C_1, E_2 + tC_2, \dots, E_n + tC_n) + \det(() E_1 + tC_1, C_2, \dots, E_n + tC_n) + \det(() E_1 + tC_1, C_2, \dots, E_n + tC_n) + \det(() E_1 + tC_1, \dots, E_n + tC_n) + \det(() E_1 + tC_n$$

$$\cdots + \det(() E_1 + tC_1, E_2 + tC_2, \dots, C_n), donc$$

$$\varphi'(0) = \det(() C_1, E_2, \dots, E_n) + \det(() E_1, C_2, \dots, E_n) + \dots + \det(() E_1, E_2, \dots, C_n).$$

Or un développement rapide montre que, $\forall i$,

$$\det(() E_1, \dots, E_{i-1}, C_i, E_{i+1}, \dots, E_n) = a_i.$$

D'où
$$\varphi'(0) = \operatorname{Tr}(() A)$$
.