Exercice 1 Étude d'une fonction de deux variables

 \mathcal{R} désigne le rectangle ouvert $\left] -\frac{\pi}{2}; \frac{\pi}{2} \left[\times \right] -1; 1 [$ et f la fonction

$$f: \mathcal{R} \to \mathbb{R}, (x, y) \mapsto y^2 + 3(1 - \cos(x))y - 4\cos(x) + 2\cos^2(x).$$

1. Résultat préliminaire

Soit I un intervalle ouvert contenant 0 et g un fonction numérique continue définie sur I telle qu'au voisinage de 0 on ait

$$g(x) = \alpha + \beta x^2 + o(x^2)$$

où $\alpha \in \mathbb{R}$ et $\beta \in]0; +\infty[$.

Justifier rigoureusement que g atteint un minimum local en 0, c'est-à-dire qu'il existe $\varepsilon \in]0; +\infty[$ tel que

$$\forall x \in]-\varepsilon; \ \varepsilon[, \ g(x) \geqslant \alpha.$$

- **2. a)** Justifier que f est de classe C^1 .
 - b) Montrer que f admet un unique point critique. On notera C ce point.

3. Uniquement pour les 5/2!

- a) Justifier que f est de classe C^2 et expliciter sa matrice hessienne en C.
- b) Cette matrice permet-conclure quant à la nature du point critique C?
- **4. a)** Montrer qu'en suivant la droite d'équation y = 0, f atteint un minimum local en C.
 - b) Montrer qu'en suivant la droite d'équation x = 0, f atteint un minimum local en C.
 - c) Soit $k \in \mathbb{R}^*$. Montrer qu'en suivant la droite d'équation y = kx, f atteint un minimum local en C.
 - d) Qu'a-t-on démontré dans cette question?
- **5.** Pour tout $a \in \mathbb{R}$, on définit la courbe Γ_a par

$$\Gamma_a = \{(x, y) \in \mathcal{R}, y = a(\cos(x) - 1)\}.$$

- a) Dans un même repère orthonormé, représenter Γ_1 , Γ_2 , Γ_{-1} et $\Gamma_{3/2}$.
- **b)** Que vaut f(x,y) lorsque $(x,y) \in \Gamma_1 \cup \Gamma_2$?
- c) Si f atteint un extremum en C, celui-ci est-il strict?
- d) Soit $a \in \mathbb{R} \setminus \{1, 2\}$. Montrer que pour $(x, y) \in \Gamma_a$, f(x, y) f(C) est du signe de $a^2 3a + 2$.
- e) Qu'a-t-on démontré dans cette question?
- **6. a)** Justifier que tout point de \mathcal{R} d'abscisse non nulle appartient à une et une seule courbe Γ_a .
 - b) Dans le repère précédent, représenter la zone dans lesquelles le signe de f(x, y) f(C) est positif, et celle où ce signe est négatif.
 - c) Retrouver ces résultats en factorisant f(x,y) f(C).

Solution (Ex.1 – Étude d'une fonction de deux variables)

1. Résultat préliminaire

Méthode epsilonnique –

 $g(x) = \alpha + x^2(\beta + o(1)) = \alpha + x^2(\beta + \varphi(x))$ où φ est une fonction telle que $\varphi(x) \xrightarrow[x \to 0]{} 0$.

Appliquons la définition de la limite avec $\frac{\beta}{2} > 0$:

$$\exists \varepsilon > 0, \quad \forall x \in]-\varepsilon; \ \varepsilon[, \quad |\varphi(x)| \leqslant \frac{\beta}{2} \text{ i.e. } -\frac{\beta}{2} \leqslant \varphi(x) \leqslant \frac{\beta}{2} \text{ donc } \frac{\beta}{2} \leqslant \beta + \varphi(x).$$

On a alors, puisque $\frac{\beta}{2} > 0$,

$$\forall x \in]-\varepsilon; \ \varepsilon[, \ g(x) = \alpha + x^2(\beta + \varphi(x)) \geqslant \alpha,$$

donc g atteint un minimum valant α en 0.

Méthode rapide -

 $g(x) - \alpha = \int_{x \to 0}^{\beta} x^2 + o(x^2)$ donc $g(x) - \alpha \sim \beta x^2$, or deux quantités équivalentes au voisinage d'un point sont de même signe au voisinage de ce point. Comme $\beta x^2 \geqslant 0$ puisque $\beta > 0$, gatteint un minimum valant α en 0.

- **2.** a) f est de classe C^1 car somme de produits de fonctions usuelles de classe C^1 sur \mathcal{R} .
 - b) $\forall (x,y) \in \mathcal{R}, \nabla f(x,y) = (3\sin(x)y + 4\sin(x) 4\cos(x)\sin(x), 2y + 3(1-\cos(x)))$ Résolvons $\nabla f(x,y) = (0,0)$.

Comme $\partial_1 f(x,y) = \sin(x)(3y + 4 - 4\cos(x))$, une disjonction de cas s'impose.

1er cas : x = 0.

Alors comme $\nabla f(0,y) = (0,2y)$, on conclut : $\nabla f(x,y) = (0,0) \iff (x,y) = (0,0)$. **2nd cas :** $x \neq 0$, donc $\sin(x) \neq 0$ puisque $x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[\setminus \{0\}.$

$$\nabla f(x,y) = (0,0) \Rightarrow \begin{cases} 4(1-\cos(x)) + 3y = 0 & \text{if } 2L_1 - 3L^2 \\ 3(1-\cos(x)) + 2y = 0 \end{cases} \Rightarrow 1 - \cos(x) = 0 \Rightarrow x = 0, \text{ ce qui est }$$

exclu.

Conclusion : f n'a qu'un point critique, à savoir C = (0,0).

- 3. Uniquement pour les 5/2!
 - a) f est de classe \mathcal{C}^2 avec des justifications à celles de la classe \mathcal{C}^1 .

Iniquement pour les
$$5/2$$
!

If est de classe \mathcal{C}^2 avec des justifications à celles de la classe \mathcal{C}^1 .

$$H_f(x,y) = \begin{pmatrix} 3\cos(x)y + 4\cos(x) + 4\sin^2(x) - 4\cos^2(x) & 3\sin(x) \\ 3\sin(x) & 2 \end{pmatrix}, \text{ donc}$$

$$H_f(0,0) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}.$$

It a basis was set to exist a variety and 46π is the constant and 46π in

- b) La hessienne est positive mais non définie, donc on ne peut rien conclure concernant la nature du point critique C = (0, 0).
- **4. a)** f(C) = -2 et

$$\forall x \in \left] -\frac{\pi}{2}; \ \frac{\pi}{2} \left[f(x,0) - f(C) = -4\cos(x) + 2\cos^2(x) + 2 = 2(\cos(x) - 1)^2 \right]$$

donc $f(x,0) \ge f(C)$: en suivant la droite d'équation y=0, f atteint un minimum local en C.

b) De façon analogue,

$$\forall y \in]-1; \ 1[, f(0, y) - f(C) = y^2 \ge 0$$

donc en suivant la droite d'équation x = 0, f atteint un minimum local en C.

c) Soit $x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ tel que $kx \in]-1; 1[$, c'est-à-dire au voisinage de 0. En développant $\cos(x)$ à l'ordre 2, on obtient

$$f(x, kx) = -2 + k^2x^2 + o(x^2) = f(C) + k^2x^2 + o(x^2)$$
.

En vertu de la question préliminaire, ceci prouve qu'en suivant la droite d'équation y = kx, f atteint un minimum local en C.

- d) On a démontré qu'en suivant n'importe quelle droite passant par C, f atteint un minimum local en C.
- **5. a)** Voir en fin de corrigé.
 - **b)** Pour $(x,y) \in \Gamma_1 \cup \Gamma_2$, on obtient f(x,y) = -2.
 - c) Si cet extremum -2 était strict, il existerait un disque \mathcal{D} de rayon r>0 autour de C sur lequel f ne prendrait pas la valeur -2. Ceci est impossible car une infinité de point de Γ_1 appartiennent à \mathcal{D} .

- \mathbb{PC}
 - d) Soit $a \in \mathbb{R} \setminus \{1; 2\}$. Pour $(x, y) \in \Gamma_a$, $f(x, y) f(C) = f(x, a(\cos(x) 1)) + 2 = \cdots = (a^2 3a + 2)(\cos(x) 1)^2$, donc f(x, y) f(C) est du signe de $a^2 3a + 2$.
 - e) $a^2 3a + 2 = (a 1)(a 2)$ donc pour tout $a \in]1$; $2[, f(x, a(\cos(x) 1)) f(C) < 0$ pour $x \neq 0$ et pour tout $a \in]-\infty$; $1[\cup]2$; $+\infty[, f(x, a(\cos(x) 1)) f(C) > 0$ toujours pour $x \neq 0$.

Suivant Γ_a , f(C) est un minimum strict si $a \notin [1; 2]$ et un maximum si $a \in]1; 2[$. Donc f n'atteint pas d'extremum en C

6. a) Soit $x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[\setminus \{0\} \text{ et } y \right] -1; 1[. \text{ Comme } \cos(x) \neq 1,$

$$y = a(\cos(x) - 1) \Longleftrightarrow a = \frac{y}{\cos(x) - 1}.$$

Donc (x, y) appartient à une et une seule courbe Γ_a .

- b) Voir en fin de corrigé.
- c) $f(x,y) f(C) = (y (\cos(x) 1))(y 2(\cos(x) 1))$ et le signe de ce produit dépend de la position de (x,y) par rapport aux courbes Γ_1 et Γ_2 .

