| Exercice 1 | Endomorphismes échangeurs

Partie A - Étude d'un exemple de \mathbb{C}^3

1. a)
$$\det(\mathcal{M}_{\mathcal{B}}(\mathcal{C})) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{vmatrix} = 1 \neq 0 \text{ donc } \mathcal{C} \text{ est une base. Pourquoi faire plus compliqué?}$$

qué? b)
$$\varphi(u_1) = -u_3, \ \varphi(u_2) = -2u_3 \text{ et } \varphi(u_3) = u_1 - u_2 \text{ donc}$$

$$\mathcal{M}_{\mathcal{C}}(\varphi) = \left(egin{array}{ccc} 0 & 0 & 1 \ 0 & 0 & -1 \ -1 & -2 & 0 \end{array}
ight).$$

Pourquoi s'embêter avec la formule changement de base et inverser des matrices?

On prend la même base au départ et à l'arrivée...

c) Soit $F = Vect(u_1, u_2)$ et $G = Vect(u_3)$, alors $E = F \oplus G$ car \mathcal{C} est une base et la matrice précédente montre que $\varphi(u_1) \in G$, $\varphi(u_2) \in G$ donc $\varphi(F) \subset G$ par linéarité, et $\varphi(u_3) \in F$ donc $\varphi(G) \subset F$.

Donc φ est échangeur de F et G.

Notez les blocs qui apparaissent : on est dans une situation opposée à celles des sous-espaces stables,

$$\mathcal{M}_{\mathcal{C}}(arphi) = \left(egin{array}{c|ccc} 0 & 0 & 1 \ 0 & 0 & -1 \ \hline -1 & -2 & 0 \end{array}
ight).$$

2.
$$\mathcal{M}_{\mathcal{C}'}(\varphi) = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix} = \mathcal{M}_{\mathcal{C}}(-\varphi).$$

En notant P la matrice de passage de C à C', on a :

$$\mathcal{M}_{\mathcal{C}'}(\varphi) = \mathcal{M}_{\mathcal{C}}(-\varphi)$$
 s'écrit $P^{-1}\mathcal{M}_{\mathcal{C}}(\varphi)P = \mathcal{M}_{\mathcal{C}}(-\varphi)$.

En notant g l'automorphisme de E dont la matrice dans $\mathcal C$ est P, cette relation s'écrit finalement:

$$\mathcal{M}_{\mathcal{C}}(g^{-1} \circ \varphi \circ g) = \mathcal{M}_{\mathcal{C}}(-\varphi), \text{ donc } g^{-1} \circ \varphi \circ g = -\varphi.$$

Une bonne idée: montrer une fois pour toutes que deux endomorphismes sont semblables si, et seulement si, les matrices les représentant dans une base donnée sont semblables.

Partie B - Quelques caractérisations en dimension 2

3. a) $\dim F > 1$, $\dim G > 1$ et $\dim F + \dim G = 2$ donc $\dim F = \dim G = 1$.

Soit (u) une base de F, (v) une base de G, alors $\mathcal{C} = (u, v)$ est une base de E.

 $\varphi(u) \in G \text{ donc} : \exists \mu \in \mathbb{C}, \varphi(u) = \mu v.$

 $\varphi(v) \in \mathcal{F} \text{ donc} : \exists \lambda \in \mathbb{C}, \varphi(v) = \lambda u.$

Alors:
$$\mathcal{M}_{\mathcal{C}}(\varphi) = \begin{pmatrix} 0 & \lambda \\ \mu & 0 \end{pmatrix}$$
.

b) $\operatorname{Tr}(\varphi) = \operatorname{Tr}(\mathcal{M}_{\mathcal{C}}(\varphi)) = 0.$

c) Soit
$$\mathcal{D}$$
 la base $(u, -v)$. Alors $\mathcal{M}_{\mathcal{D}}(\varphi) = \begin{pmatrix} 0 & -\lambda \\ -\mu & 0 \end{pmatrix} = \mathcal{M}_{\mathcal{C}}(-\varphi)$.

En notant P la matrice de passage de \mathcal{C} à \mathcal{D} , on a :

$$\mathcal{M}_{\mathcal{D}}(\varphi) = \mathcal{M}_{\mathcal{C}}(-\varphi)$$
 s'écrit $P^{-1}\mathcal{M}_{\mathcal{C}}(\varphi)P = \mathcal{M}_{\mathcal{C}}(-\varphi)$.

En notant g l'automorphisme de E dont la matrice dans $\mathcal C$ est P, cette relation s'écrit finalement :

$$\mathcal{M}_{\mathcal{C}}(g^{-1} \circ \varphi \circ g) = \mathcal{M}_{\mathcal{C}}(-\varphi), \text{ donc } g^{-1} \circ \varphi \circ g = -\varphi.$$

4. Écrivons
$$M = \mathcal{M}_{\mathcal{B}}(\varphi) = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$$
.

Alors
$$M^2 = \begin{pmatrix} a^2 + bc & 0 \\ 0 & a^2 + bc \end{pmatrix} = (a^2 + bc)I_2 = \delta^2 I_2$$

Donc: $\varphi^2 = \delta^2 i d_E$.

- **5.** Dans cette question, on suppose $det(\varphi) = 0$.
 - a) $\varphi^2 = 0_{\mathcal{L}(E)}$ entraı̂ne $\text{Im}\varphi \subset \text{Ker}\varphi$.

Comme $\varphi \neq 0$, dim $\text{Im}\varphi \geq 1$ et comme $\det \varphi = 0$, dim $\text{Im}\varphi \leq 1$, donc dim $\text{Im}\varphi = 1$.

Par le théorème du rang, dim $Ker\varphi = 1$.

Donc $\text{Im}\varphi = \text{Ker}\varphi$.

b) Soit $F = Ker \varphi$ et G un supplémentaire (quelconque, par le théorème de la base incomplète...) de F dans E.

Alors : $E = F \oplus G$, dim $F = \dim G = 1$ donc F et G non triviaux, $\varphi(F) = \{0\} \subset G$, $\varphi(G) \subset \operatorname{Im} \varphi = \operatorname{Ker} \varphi = F$, c'est gagné!!!

6. Dans cette question, on suppose $det(\varphi) \neq 0$.

a)
$$\det(\lambda I_2 - M) = 0 \iff \begin{vmatrix} \lambda - a & -b \\ -c & \lambda + a \end{vmatrix} = 0 \iff \lambda^2 - a^2 - bc = 0 \iff \lambda^2 = -\det(M) \iff \lambda^2 = \delta^2 \iff (\lambda = \delta \text{ ou } \lambda = -\delta).$$

La racine carrée $\sqrt{.}$ n'est pas définie sur \mathbb{C} , uniquement sur \mathbb{R}^+ .

- **b)** Pour $\lambda = \delta$, $\det(\varphi \delta id) = 0$ donc $\operatorname{Ker}(\varphi \delta id) \neq \{0\}$ et $\exists u^+ \neq 0$ tel que $\varphi(u^+) = \delta u^+$.
 - Pour $\lambda = -\delta$, $\det(\varphi + \delta id) = 0$ donc $\ker(\varphi + \delta id) \neq \{0\}$ et $\exists u^- \neq 0$ tel que $\varphi(u^-) = -\delta u^-$.
- c) En composant par φ :

$$\alpha u^+ + \beta u^- \stackrel{\text{(E_1)}}{=} 0 \Longrightarrow \alpha \delta u^+ - \beta \delta u^- = 0 \Longrightarrow \alpha u^+ - \beta u^- \stackrel{\text{(E_2)}}{=} 0,$$

$$(E_1) + (E_2) \Longrightarrow 2\alpha u^+ = 0 \Longrightarrow \alpha = 0,$$

$$(E_1) - (E_2) \Longrightarrow 2\beta u^- = 0 \Longrightarrow \beta = 0.$$

 (u^+, u^-) est libre, de cardinal dim(E), donc est une base.

•
$$N = \mathcal{M}_{(u^+, u^-)}(\varphi) = \begin{pmatrix} \delta & 0 \\ 0 & -\delta \end{pmatrix}$$
.

d)
$$\mathcal{M}_{(u^-,u^+)}(\varphi) = \begin{pmatrix} -\delta & 0 \\ 0 & \delta \end{pmatrix} = \mathcal{M}_{(u^+,u^-)}(-\varphi)$$
 donc comme précédemment φ et $-\varphi$ sont semblables.

e) Il suffit de remarquer que $(u^+ + u^-, u^+ - u^-)$ est une base de E, car $\det(\mathcal{M}_{(u^+,u^-)}(u^+ + u^-))$

$$u^{-}, u^{+} - u^{-}) = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2 \neq 0.$$

Alors $\varphi(F) = \text{Vect}(u^+ - u^-) \neq \text{Vect}(u^+ + u^-) = F$.

Et en posant $G = \varphi(F) = \text{Vect}(u^+ - u^-)$, on $a : \varphi(G) = \text{Vect}(\varphi(u^+ - u^-)) = \text{Vect}(u^+ + u^-)$ $u^{-}) = F.$

Donc φ est échangeur.

- 7. $(i) \Longrightarrow (ii)$ est assuré par 3.
 - $(ii) \Longrightarrow (i)$ est assuré par 5. et 6.
 - $(ii) \Longrightarrow (iii)$ est assuré par 5., 4a) si $\det(\varphi) = 0$ et 4.b) sinon, et 6.
 - $(iii) \Longrightarrow (ii)$ est vraie : deux endomorphismes semblables ont même trace.

Partie C - Propriétés générales

8.
$$\begin{pmatrix} 0_n & B \\ 0_{p,n} & 0_p \end{pmatrix}^2 = 0 \text{ et de même } \begin{pmatrix} 0_n & 0_{n,p} \\ A & 0_p \end{pmatrix}^2 = 0$$

M est la somme de deux matrices de carré nul.

9. $D^2 = I_{n+p}$ donc D est inversible, d'inversible D, et le calcul donne DMD = -M donc M et -M sont semblables.

Il faut savoir inverser une matrice diagonale. Au fait, que vaut le produit de deux matrices diagonales?

10. a) Dans une base \mathcal{C} adaptée à la décomposition $E = F \oplus G$, en notant $n = \dim(F)$ et

$$p = \dim(G)$$
, alors $M = \mathcal{M}_{\mathcal{C}}(\varphi) = \begin{pmatrix} 0_n & B \\ A & 0_p \end{pmatrix}$

 $p = \dim(G), \text{ alors } M = \mathcal{M}_{\mathcal{C}}(\varphi) = \begin{pmatrix} 0_n & B \\ A & 0_p \end{pmatrix}.$ $\mathbf{b)} \text{ Avec } a \in \mathcal{L}(E) \text{ tel que } \mathcal{M}_{\mathcal{C}}(a) = \begin{pmatrix} 0_n & 0_{n,p} \\ A & 0_p \end{pmatrix} \text{ et } b \in \mathcal{L}(E) \text{ tel que } \mathcal{M}_{\mathcal{C}}(b) = \begin{pmatrix} 0_n & B \\ 0_{p,n} & 0_p \end{pmatrix},$

alors $\varphi = a + b$, $a^2 = 0$ et $b^2 = 0$.

- c) φ et $-\varphi$ sont semblables car M et -M semblables.
- d) $\text{Tr}(\varphi) = \text{Tr}(-\varphi)$ par similitude, mais $\text{Tr}(-\varphi) = -\text{Tr}(\varphi)$ par linéarité. Donc $\text{Tr}(\varphi) =$ $-\text{Tr}(\varphi)$, donc $\text{Tr}(\varphi) = 0$.

Partie D - Une caractérisation dans le cas d'un automorphisme

Dans cette partie, φ désigne un **automorphisme** d'un \mathbb{C} -espace vectoriel E de dimension finie au moins égale à 2.

On suppose qu'il existe deux endomorphismes a et b tels que u = a + b, $a^2 = 0$ et $b^2 = 0$.

11. On a : $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$, et donc $\dim \operatorname{Im}(f) \leq \dim \operatorname{Ker}(f)$.

Par le théorème du rang :

 $\dim(E) \le \dim \operatorname{Im}(f) + \dim \operatorname{Ker}(f) \le 2 \dim \operatorname{Ker}(f).$

Donc : $\dim(\operatorname{Ker}(f)) \ge \frac{\dim(E)}{2}$.

- **12.** a) $u \in \text{Ker}(a) \cap \text{Ker}(b) \implies a(u) = b(u) = 0 \implies \varphi(u) = 0 \implies u = 0 \text{ car } \varphi \text{ est un}$ automorphisme. Donc $Ker(a) \cap Ker(b) = \{0\}.$
 - Par la question précédente, $\dim \operatorname{Ker}(a) + \dim \operatorname{Ker}(b) \ge \dim(E)$, mais comme $\operatorname{Ker}(a) \oplus$

 $\operatorname{Ker}(b) \subset \operatorname{E} \operatorname{et} \operatorname{dim}(\operatorname{Ker}(a) \oplus \operatorname{Ker}(b)) = \operatorname{dim} \operatorname{Ker}(a) + \operatorname{dim} \operatorname{Ker}(b), \text{ on a } \operatorname{dim} \operatorname{Ker}(a) + \operatorname{dim} \operatorname{Ker}(b) \leq \operatorname{dim}(\operatorname{E}).$

Donc dim Ker(a) + dim Ker(b) = dim(E).

- Donc $E = Ker(a) \oplus Ker(b)$.
- **b)** On sait déjà que $\text{Im}(a) \subset \text{Ker}(a)$ car $a^2 = 0$.
 - Et que dim $\operatorname{Ker}(a) \ge \frac{\operatorname{dim}(E)}{2}$.

Supposons $\dim \mathrm{Ker}(a) > \frac{\dim(\mathrm{E})}{2}$. Alors on a urait $\dim(\mathrm{Ker}(a) \oplus \mathrm{Ker}(b)) > \dim(\mathrm{E})$, ce qui est impossible.

Donc dim $Ker(a) = \frac{\dim(E)}{2}$, ce qui prouve au passage que dim(E) est paire.

De plus dim $\operatorname{Im}(a) = \operatorname{dim}(E) - \operatorname{dim} \operatorname{Ker}(a) = \frac{\operatorname{dim}(E)}{2} = \operatorname{dim} \operatorname{Ker}(a)$.

- Donc Im(a) = Ker(a).
- ullet On raisonne de la même façon pour b.
- **13.** Avec F = Ker(a) et G = Ker(b), on $a : E = F \oplus G$, $\varphi(F) = (a+b)(F) = a(F) + b(F) = \{0\} + b(F) \subset Im(b) = Ker(b) = G$ $\varphi(G) = (a+b)(G) = a(G) + b(G) = a(G) + \{0\} \subset Im(a) = Ker(a) = F$ Donc φ est échangeur.
- 14. Il n'existe pas d'automorphisme échangeur de $E = \mathbb{C}^3$ car E est de dimension 3, car pour qu'un automorphisme soit échangeur, il est nécessaire que la dimension soit paire d'après l'étude précédente, notamment 10.b) et 12.a) qui conduisent à $\dim(\operatorname{Ker}(a)) = \frac{\dim(E)}{2} \in \mathbb{N}$.