Commutant d'un endomorphisme nilpotent

1. a)
$$\mathcal{M}_{\mathcal{B}}(\varphi) = \begin{pmatrix} -3 & 4 & 1 \\ -3 & 3 & 1 \\ 0 & 3 & 0 \end{pmatrix}$$
.

b)
$$M^2 = \begin{pmatrix} -3 & 3 & 1 \\ 0 & 0 & 0 \\ -9 & 9 & 3 \end{pmatrix}$$
, $M^3 = 0$, donc $\varphi^3 = 0$.

c) Avec
$$x = (0,0,1), \ \varphi(x) = (1,1,0), \ \varphi^2(x) = (1,0,3), \ \begin{vmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{vmatrix} = -1 \neq 0 \text{ donc } \mathcal{C} = 0$$

 $(x, \varphi(x), \varphi^2(x))$ est une base de \mathbb{R}^3 . Ce n'est pas la seule solution, (1,0,0) ou (0,1,0) conviennent aussi par exemple.

d)
$$N = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 (\mathcal{C} est « faite pour »).

2. a) Soit $(a, b, c) \in \mathbb{R}^3$ et $\psi = aid + b\varphi + c\varphi^2$ $\varphi \circ \psi = a\varphi + b\varphi^2 + c\varphi^3 = \psi \circ \varphi$, donc $\operatorname{Vect}(id, \varphi, \varphi^2) \subset \operatorname{COM}(\varphi)$.

b) $\psi(x) = a_0 x + a_1 \varphi(x) + a_2 \varphi(x), \ \psi(\varphi(x)) = a_0 \varphi(x) + a_1 \varphi^2(x) \ \psi(\varphi^2(x)) = a_0 \varphi^2(x), \ \text{donc}$

$$\mathcal{M}_{\mathcal{C}}(\psi) = \begin{pmatrix} a_0 & 0 & 0 \\ a_1 & a_0 & 0 \\ a_2 & a_1 & a_0 \end{pmatrix}$$

c) Comme $\mathcal{M}_{\mathcal{C}}(\psi) = a_0 \mathbf{I}_3 + a_1 \mathbf{N} + a_2 \mathbf{N}^2$, donc $\psi = a_0 i d + a_1 \varphi + a_2 \varphi^2$, donc $\psi \in \text{Vect}(id, \varphi, \varphi^2)$. Donc $\text{COM}(\varphi) \subset \text{Vect}(id, \varphi, \varphi^2)$.

d) a) et c) montrent que $\mathrm{COM}(\varphi) = \mathrm{Vect}(id, \varphi, \varphi^2)$. De plus (id, φ, φ^2) est libre. En effet, si $a.id + b\varphi + c\varphi^2 = 0$, alors $ax + b\varphi(x) + c\varphi^2(x) = 0$. Et comme $(x, \varphi(x), \varphi^2(x))$ est libre, a = b = c = 0.

Donc $\mathrm{COM}(\varphi)$ est un espace vectoriel, de dimension 3, dont (id, φ, φ^2) est une base.

e) Soit ψ l'endomorphisme de \mathbb{R}^3 représenté dans la base canonique par la matrice A. Comme AM = MA, $\psi \in COM(\varphi)$ donc $\psi \in Vect(id, \varphi, \varphi^2)$, donc il existe a_0 , a_1 et a_2 tels que $\psi = a_0id + a_1\varphi + a_2\varphi^2$, relation qui entraı̂ne que $A = a_0I_3 + a_1M + a_2M^2$, *i.e.* il existe $P \in \mathbb{R}_2[X]$ tel que A = P(M).

3. a) • Comme $f^{n-1} \neq 0$, il existe $x \in E$ tel que $f^{n-1}(x) \neq 0$. Posons $\mathcal{C} = (x, f(x), \dots, f^{n-1}(x))$.

• Card(C) = n = dim(E) donc il suffit que C soit libre pour être une base.

• Soit $(a_i)_{0 \le i \le n}$ n scalaires tels que (R): $\sum_{i=0}^{n-1} a_i f^i(x) = 0$.

En composant (R) par f^{n-1} , on a : $a_0 f^{n-1}(x) = 0$ donc $a_0 = 0$.

En composant ensuite (R) par f^{n-2} , on a : $a_1 f^{n-1}(x) = 0$ donc $a_1 = 0$.

En itérant, on prouve finalement que : $\forall i, a_i = 0$.

- b) Analogue à 5.a).
- c) Comme en 5.b), \mathcal{C} étant une base, il existe n réels tels que $g(x) = \sum_{i=0}^{n-1} a_i f^i(x)$.

Alors
$$\mathcal{M}_{\mathcal{C}}(g) = \begin{pmatrix} a_0 & 0 & \dots & 0 \\ a_1 & a_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{n-2} & & \ddots & \ddots & 0 \\ a_{n-1} & a_{n-2} & \dots & a_1 & a_0 \end{pmatrix}$$
.

d) On notant $N = \mathcal{M}_{\mathcal{C}}(f) = \begin{pmatrix} 0_{1,n-1} & 0_{1,1} \\ \hline{I_{n-1}} & 0_{n-1,1} \end{pmatrix}$, on a $\mathcal{M}_{\mathcal{C}}(g) = \sum_{i=0}^{n-1} a_{i} N^{i} = \sum_{i=0}^{n-1} a_{i} \mathcal{M}_{\mathcal{C}}(f^{i}) = \mathcal{M}_{\mathcal{C}}\left(\sum_{i=0}^{n-1} a_{i} f^{i}\right)$, donc $g = \sum_{i=0}^{n-1} a_{i} f^{i}$, ce qui montre que $g \in \text{Vect}(id_{\mathbb{E}}, f, \dots, f^{n-1})$, donc $\text{COM}(f) \subset \text{Vect}(id_{\mathbb{E}}, f, \dots, f^{n-1})$.

Finalement $COM(f) = Vect(id_E, f, ..., f^{n-1}).$