Ce problème permet de s'entraîner sur deux notions fréquemment rencontrées dans les sujets : (i) les endomorphismes nilpotents;

(ii) la recherche du commutant d'un endomorphisme ou d'une matrice.

Commutant d'un endomorphisme nilpotent

1. On considère l'endomorphisme φ de \mathbb{R}^3 défini par

$$\varphi: (x, y, z) \longmapsto (-3x + 4y + z, -3x + 3y + z, 3y).$$

On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et *id* l'endomorphisme identité de \mathbb{R}^3 .

- a) Déterminer la matrice M représentant φ dans la base \mathcal{B} .
- **b)** Que peut-on dire de φ^3 ?
- c) Déterminer un vecteur x de \mathbb{R}^3 tel que $\mathcal{C} = (x, \varphi(x), \varphi^2(x))$ soit une base de \mathbb{R}^3 .
- d) Déterminer la matrice N représentant φ dans la base \mathcal{C} .
- 2. On souhaite déterminer l'ensemble $COM(\varphi)$ des endomorphismes ψ de \mathbb{R}^3 qui commutent avec φ : $COM(\varphi) = \{ \psi \in \mathcal{L}(\mathbb{R}^3); \ \psi \circ \varphi = \varphi \circ \psi \}.$
 - a) Justifier que, pour tout polynôme P de $\mathbb{R}[X]$, $P(\varphi) \in COM(\varphi)$.
 - b) Soit $\psi \in COM(\varphi)$. On note (a_0, a_1, a_2) les coordonnées de $\psi(x)$ dans la base \mathcal{C} , de sorte que $\psi(x) = a_0 x + a_1 \varphi(x) + a_2 \varphi^2(x)$.

Expliciter la matrice représentant ψ dans la base \mathcal{C} .

- c) Justifier que $COM(\varphi) \subset Vect(id, \varphi, \varphi^2)$.
- d) Justifier que $COM(\varphi)$ est un espace vectoriel en en précisant une base et la dimension.
- e) Montrer qu'une matrice A commute avec la matrice M si, et seulement si, il existe un polynôme P de $\mathbb{R}_2[X]$ tel que A = P(M).
- 3. Dans cette question, on considère un \mathbb{R} -espace vectoriel de dimension finie n au moins égale à 2. On désigne par $0_{\mathcal{L}(E)}$ l'endomorphisme nul de E, et par id_E l'endomorphisme identité de E. Soit f un endomorphisme de E vérifiant

$$f^{n-1} \neq 0_{\mathcal{L}(E)}$$
 et $f^n = 0_{\mathcal{L}(E)}$.

a) Justifier l'existence d'un vecteur x de E tel que $\mathcal{C} = (x, f(x), \dots, f^{n-1}(x))$ soit une base de E.

On souhaite déterminer l'ensemble $\mathrm{COM}(f)$ des endomorphismes g de E qui commutent avec f :

$$COM(f) = \{g \in \mathcal{L}(E); g \circ f = f \circ g\}.$$

- **b)** Montrer que $\operatorname{Vect}(id_{\mathbf{E}}, f, \dots, f^{n-1}) \subset \operatorname{COM}(f)$.
- c) Soit $g \in COM(f)$. Justifier l'existence de n réels $(a_0, a_1, \ldots, a_{n-1})$ tels que la matrice de g dans la base C soit

$$\begin{pmatrix}
a_0 & 0 & \dots & 0 \\
a_1 & a_0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
a_{n-2} & & \ddots & \ddots & 0 \\
a_{n-1} & a_{n-2} & \dots & a_1 & a_0
\end{pmatrix}.$$

d) En déduire que $COM(f) = Vect(id_E, f, ..., f^{n-1})$