Exercice 1 Équivalent d'une suite d'intégrales et fonction définie par une somme de série

Partie A - Étude d'une suite d'intégrales

On pose, pour tout n de \mathbb{N}^* ,

$$I_n = \int_0^1 x^n \ln(1 + x^n) \mathrm{d}x.$$

1. On pose, pour tout n de \mathbb{N}^* ,

$$f_n: [0; 1] \longrightarrow \mathbb{R}, x \longmapsto x^n \ln(1+x^n)$$

- a) Montrer que la suite de fonctions (f_n) converge simplement vers une fonction f que l'on précisera.
- **b)** La convergence de la suite (f_n) est-elle uniforme?
- c) Montrer à l'aide d'un changement de variable que

$$I_n = \int_0^1 g_n(t) dt$$
 où $g_n : t \longmapsto \frac{t^{1/n} \ln(1+t)}{n}$.

- d) Montrer que la suite de fonctions (g_n) converge uniformément vers la fonction nulle.
- e) En déduire la convergence et la limite de la suite (I_n) .

Dans les deux questions suivantes, on se propose de déterminer un équivalent de I_n lorsque n tend vers $+\infty$ de deux façons différentes.

2. Première méthode

- a) Rappeler l'énoncé précis du théorème de convergence dominée.
- b) En observant que

$$I_n = \frac{1}{n} \int_0^1 t^{1/n} \ln(1+t) dt$$

établir que

$$I_n \underset{n \to +\infty}{\sim} \frac{\alpha}{n}$$

en précisant la valeur de la constante α .

3. Seconde méthode

On pose, pour tout n de \mathbb{N}^* ,

$$J_n = \int_0^1 x^{n-1} \ln(1 + x^n) dx.$$

a) Montrer que pour tout n de \mathbb{N}^*

$$|I_n - J_n| \leqslant \frac{\ln(2)}{n(n+1)}.$$

b) À l'aide d'un changement de variable, montrer que pour tout n de \mathbb{N}^*

$$J_n = \frac{2\ln(2) - 1}{n}.$$

c) En déduire que

$$I_n \underset{n \to +\infty}{\sim} \frac{\alpha}{n}$$

en précisant la valeur de la constante α .

- **4. a)** Justifier que la série $\sum_{n=1}^{\infty} (-1)^n \mathbf{I}_n$ converge.
 - b) Cette série est-elle absolument convergente?

Partie B - Étude d'une fonction définie par une somme de série

5. On pose, pour tout $n \ge 1$,

$$\forall x \in [0; 1[, S_n(x) = \sum_{k=1}^n x^k \ln(1 + x^k)]$$

et sous réserve de convergence,

$$\forall x \in [0; 1[, S(x) = \sum_{k=1}^{+\infty} x^k \ln(1 + x^k)]$$

- a) Rappeler, pour tout x de [0; 1[, la valeur de $\sum_{k=1}^{+\infty} x^k$.
- b) En déduire que S est effectivement définie sur [0; 1].
- **6. a)** Soit $a \in [0; 1[$. Montrer que, pour $n \ge 1$, $S_n S$ est bornée sur [0; a] et vérifie

$$||S_n - S||_{\infty,[0; a]} \le \frac{a^{n+1} \ln(2)}{1-a}.$$

Indication: On pourra remarquer que $(S - S_n)(x) = \sum_{k=n+1}^{+\infty} x^k \ln(1 + x^k)$ est le reste d'ordre n de la série.

- b) En déduire que S est une fonction continue sur [0; 1].
- 7. Sans chercher à dériver, montrer que S est strictement croissante.
- 8. a) Montrer que

$$\forall x \in [0; 1[, \ln(2)x \leq \ln(1+x) \leq x.$$

b) En déduire

$$\forall x \in [0; 1[, \ln(2) \frac{x^2}{1 - x^2} \le S(x) \le \frac{x^2}{1 - x^2}.$$

- c) En déduire $\lim_{x\to 1^-} S(x)$, et montrer que S est dérivable en 0 en précisant la valeur de S'(0).
- 9. Tracer l'allure de la courbe représentant S.

Solution (Ex.1 – Équivalent d'une suite d'intégrales et fonction définie par une somme de série)

Partie A - Étude d'une suite d'intégrales

1. a)
$$f_n \stackrel{\mathcal{CVS}}{\longrightarrow} f : [0; 1] \to \mathbb{R}, x \mapsto \begin{cases} 0 & \text{si } x \in [0; 1[\\ \ln(2) & \text{si } x = 1 \end{cases}$$

- b) La convergence de la suite (f_n) n'est pas uniforme puisque la limite n'est pas continue en 1 alors que toutes les fonctions f_n sont continues sur [0; 1].
- c) En posant $t = x^n$, de classe C^1 sur [0; 1] on obtient $I_n = \int_0^1 g_n(t) dt$.
- d) Pour tout n de \mathbb{N}^* , on a : $\forall t \in [0; 1], |g_n(t)| \leq \frac{\ln(2)}{n}$ donc g_n est bornée et $||g_n||_{\infty} \leq \frac{\ln(2)}{n}$, donc $||g_n||_{\infty} \xrightarrow[n \to +\infty]{} 0$ et la suite de fonctions (g_n) converge uniformément vers la fonction nulle.
- e) Les fonctions g_n sont continues sur le segment [0; 1],
 - $\bullet g_n \stackrel{\text{CVA}}{\longrightarrow} 0$

donc par le théorème d'interversion s'applique : (I_n) converge vers $\int_0^1 0 = 0$.

- 2. a) Voir cours
 - b) Les fonctions $h_n: t \mapsto t^{1/n} \ln(1+t)$ sont continues sur]0; 1[, converge simplement vers $h: t \mapsto \ln(1+t)$ qui est continue, et vérifie la majoration $|h_n| \leq \ln(2)$ indépendante de n. Comme $t \mapsto \ln(2)$ est continue et intégrable sur [0; 1], le théorème de convergence dominée s'applique et

$$\int_0^1 h_n \xrightarrow[n \to +\infty]{} \int_0^1 \ln(1+t) dt = \int_1^2 \ln(u) du = \left[u \ln(u) - u \right]_1^2 = 2 \ln(2) - 1. \text{ Donc}:$$

$$I_n \underset{n \to +\infty}{\sim} \frac{2\ln(2) - 1}{n}.$$

3. Seconde méthode

On pose, pour tout n de \mathbb{N}^* ,

$$J_n = \int_0^1 x^{n-1} \ln(1+x^n) dx.$$

a) Pour tout $n ext{ de } \mathbb{N}^*$,

$$|\mathbf{I}_{n} - \mathbf{J}_{n}| = \left| \int_{0}^{1} (x^{n} - x^{n-1}) \ln(1 + x^{n}) dx \right| \le \int_{0}^{1} |x^{n} - x^{n-1}| \ln(2) dx$$

$$|\mathbf{I}_{n} - \mathbf{J}_{n}| \le \ln(2) \int_{0}^{1} x^{n-1} - x^{n} dx \operatorname{car} x^{n-1} \ge x^{n}$$

$$|\mathbf{I}_{n} - \mathbf{J}_{n}| \le \ln(2) \left(\frac{1}{n} - \frac{1}{n+1} \right) \le \frac{\ln(2)}{n(n+1)}$$

- **b)** Le même changement qu'en $t = x^n$ qu'en 1.c) donne $J_n = \int_0^1 x^{n-1} \ln(1+x^n) dx \stackrel{t=x^n}{=} \int_0^1 \frac{\ln(1+u)}{n} dt = \int_0^1 x^{n-1} \ln(1+x^n) dx$ $\frac{1}{n} \int_{0}^{1} h(u) du = \frac{2 \ln(2) - 1}{n}$
- c) $I_n J_n = \mathcal{O}\left(\frac{1}{n(n+1)}\right) = o\left(\frac{1}{n}\right)$ donc $I_n = \frac{2\ln(2) 1}{n} + o\left(\frac{1}{n}\right)$ et $I_n \underset{n \to +\infty}{\sim} \frac{2\ln(2) 1}{n}$
- **4. a)** Soit $n \in \mathbb{N}$. $\forall x \in [0; 1], 0 \leq x^{n+1} \leq x^n$ et $0 \leq \ln(1+x^{n+1}) \leq \ln(1+x^n)$ donc $f_{n+1}(x) \leq f_n(x)$, et par croissance de l'intégrale $I_{n+1} \leq I_n$.

La suite (I_n) est décroissante et convergente de limite nulle donc par le critère des séries alternées,

b) $|I_n| \sim \frac{2 \ln(2) - 1}{n}$ donc par équivalence de termes généraux positifs et divergence de la série harmonique, $\sum_n |\mathcal{I}_n|$ diverge. La série alternée n'est pas absolument convergente

Partie B - Étude d'une fonction définie par une somme de série

- **5. a)** Pour tout x de $[0; 1[, \sum_{k=1}^{+\infty} x^k = \frac{x}{1-x}]$.
 - b) $\forall k \in \mathbb{N}^*, \forall x \in [0; 1], 0 \leqslant x^k \ln(1+x^k) \leqslant \ln(2)x^k$ donc par comparaison de termes généraux positifs, la série S(x) converge. Ainsi S est effectivement définie sur [0; 1].
- **6.** a) $\forall x \in [0; a[$,

$$|S_n(x) - S(x)| = \left| \sum_{k=n+1}^{+\infty} x^k \ln(1+x^k) \right| = \sum_{k=n+1}^{+\infty} x^k \ln(1+x^k) \leqslant \ln(2) \sum_{k=n+1}^{+\infty} x^k$$

$$|S_n(x) - S(x)| \le \ln(2) \sum_{k=n+1}^{+\infty} x^k \le \ln(2) x^n \sum_{k=1}^{+\infty} x^k \le \ln(2) \frac{x^{n+1}}{1-x}$$

$$|S_n(x) - S(x)| \le \ln(2) \frac{a^{n+1}}{1-a}$$

Ceci prouve que $S_n - S$ est bornée et que $||S_n - S||_{\infty,[0; a]} \le \frac{a^{n+1} \ln(2)}{1-a}$

- b) Pour tout n de \mathbb{N}^* , S_n est continue car somme de fonctions continues, donc par convergence uniforme sur [0; a], S est continue sur [0; a]. Donc S est continue sur [0; a]. Et ceci pour tout a de [0; 1[. Donc S est continue sur [0; 1[= $\bigcup_{a \in [0, 1[} [0; a[$.

7. Soit
$$0 \le x < y < 1$$
.

$$S(y) - S(x) = \sum_{n=1}^{+\infty} (y^n \ln(1 + y^n) - x^n \ln(1 + x^n))$$

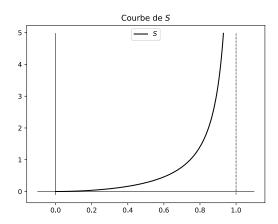
Or $\forall n \geq 1, y^n > x^n$ donc $y^n \ln(1+y^n) > x^n \ln(1+x^n)$ et S(y) - S(x) est la somme de termes tous strictement positifs, donc S(y) - S(x) > 0.

Donc S est strictement croissante.

- **8. a)** $j: x \to \ln(x+1)$ est concave sur [0; 1] car $j^{(2)}: x \mapsto \frac{-1}{(1+x)^2}$ est négative. $y = \ln(2)x$ et y = x sont les équations de la corde sur [0; 1] et de la tangente en 0 à C_j . Donc : $\forall x \in [0; 1[, \ln(2)x \leq \ln(1+x) \leq x]$.
 - **b)** $\forall k \in \mathbb{N}^*, \forall x \in [0; 1[, \ln(2)x^k \leq \ln(1+x^k) \leq x^k \text{ donc } \ln(2) \sum_{k=1}^{+\infty} x^{2k} \leq S(x) \leq \sum_{k=1}^{+\infty} x^{2k}, \text{ c'est-à-dire}$ $\ln(2) \frac{x^2}{1 - x^2} \le S(x) \le \frac{x^2}{1 - x^2}$ puisque $x^2 \in [0; 1[$.
 - c) $\ln(2) \frac{x^2}{1-x^2} \xrightarrow[x \to 1]{} +\infty$ donc par minoration $S(x) \xrightarrow[x \to 1]{} +\infty$.
 - $S(0) = 0 \text{ donc}: \forall x \in]0; \ 1[, \ln(2) \frac{x}{1 x^2} \le \frac{S(x) S(0)}{x 0} \le \frac{x}{1 x^2}.$

Par encadrement : $\frac{S(x) - S(0)}{x - 0} \xrightarrow[x \to 0]{} 0.$ S est dérivable en 0 avec S'(0) = 0.

9. La courbe avec sa tangente horizontale à l'origine et l'asymptote verticale d'équation x=1:



Exercice 2 | Endomorphismes cycliques

Dans tout le problème,

- \mathbb{K} désigne \mathbb{R} ou \mathbb{C} ;
- E désigne un K-espace vectoriel de dimension finie non nulle;
- id désigne l'endomorphisme $identit\acute{e}$ et $0_{\mathcal{L}(\mathbf{E})}$ l'endomorphisme nul de \mathbf{E} :

$$id : \mathbf{E} \longrightarrow \mathbf{E}, x \longmapsto x \quad \text{et} \quad 0_{\mathcal{L}(\mathbf{E})} : \mathbf{E} \longrightarrow \mathbf{E}, x \longmapsto 0.$$

- pour tout entier naturel m et tout endomorphisme u de E, u^m désigne l'endomorphisme $\underbrace{u \circ u \circ \cdots \circ u}_{},$
- un polynôme est dit *unitaire* si son coefficient dominant vaut 1. En particulier, le polynôme nul n'est pas unitaire.

Définitions

 \bullet On dit qu'un endomorphisme u de E est **cyclique** s'il existe un vecteur x de E tel que

$$E = Vect(\{u^m(x), m \in \mathbb{N}\}) = Vect(\{x, u(x), u^2(x), \ldots\}).$$

 \bullet On dit qu'un endomorphisme u de E est **nilpotent** s'il existe un entier naturel p tel que

$$u^p = 0_{\mathcal{L}(E)} \text{ et } u^{p-1} \neq 0_{\mathcal{L}(E)}.$$

Cet entier p est appelé indice de nilotence de u.

Partie A - Étude d'un exemple dans \mathbb{R}^3

Dans cette partie $E = \mathbb{R}^3$ et C = (i, j, k) est la base canonique de E. Soit u défini sur E par

$$\forall (x, y, z) \in \mathcal{E}, \quad u(x, y, z) = (z, x + z, y - z).$$

- 1. Prouver que u est un endomorphisme de E.
- **2.** Calculer u(i) et $u^2(i)$ et en déduire que u est un endomorphisme cyclique de E.
- 3. On pose

$$F = Ker(u - id)$$
 et $G = Ker((u + id)^2)$

- a) Déterminer la matrice M représentant u dans la base C.
- b) Montrer que F et G sont deux sous-espaces supplémentaires de E et stables par u.
- **4.** Soit $\mathcal{B} = (a, b, c)$ une base adaptée à la décomposition $F \oplus G = E$.
 - a) Sans chercher à expliciter tous ses coefficients, que peut-on dire de la matrice représentant u dans la base \mathcal{B} ?
 - b) On rappelle que pour tous polynômes P et Q de $\mathbb{R}[X]$,

$$(\mathbf{P} \times \mathbf{Q})(u) = \mathbf{P}(u) \circ \mathbf{Q}(u) = \mathbf{Q}(u) \circ \mathbf{P}(u)$$

et qu'en particulier $(u - id) \circ ((u + id)^2) = ((u + id)^2) \circ (u - id)$.

En exploitant \mathcal{B} , montrer polynôme $P = (X - 1)(X + 1)^2$ est annulateur du u.

c) Montrer que si un endomorphisme v de E admet un polynôme annulateur de degré 1, alors il existe $\lambda \in \mathbb{R}$ tel que $v = \lambda id$.

- d) On suppose dans cette sous-question qu'il existe un polynôme unitaire Q annulateur de u de degré 2.
 - i En s'appuyant sur la division euclidienne de P par Q, montrer que P est un multiple de Q.
 - ii En déduire que $Q = (X + 1)^2$ ou $Q = X^2 1$.
 - iii Aboutir à une contradiction.
- e) En déduire que l'ensemble des polynômes annulateurs de u est l'ensemble

$$\mathcal{A}_u = \{ AP, A \in \mathbb{R}[X] \},\$$

c'est-à-dire l'ensemble des multiples de P.

On dit que P est le polynôme minimal de u.

Partie B - Cas des endomorphismes nilpotents

Dans cette partie, on suppose que $\dim(\mathbf{E}) = n \geqslant 2$ et que u est un endomorphisme nilpotent d'indice de nilpotence $p \geqslant 2$.

- **5.** Soit $x \in E$ tel que $u^{p-1}(x) \neq 0_E$. Montrer que la famille $(x, u(x), \dots, u^{p-1})$ est libre.
- **6.** Que peut-on en déduire sur p?
- 7. En déduire que u est cyclique si, et seulement si, p = n.
- 8. On suppose dans cette question que $E = \mathbb{R}_{n-1}[X]$ et $u : E \longrightarrow E, P \longmapsto P'$.
 - a) Montrer que u est un endomorphisme cyclique et nilpotent.
 - b) Quel est son indice de nilpotence?

Partie C - Cas général

Dans cette partie, on suppose que $\dim(\mathcal{E})=n\geqslant 2$ et que u est un endomorphisme cyclique.

On note x un vecteur de E tel que

$$E = Vect(\{u^m(x), m \in \mathbb{N}\}) = Vect(\{x, u(x), u^2(x), \ldots\}).$$

- **9. a)** Justifier que $(x, u(x), u^2(x), \dots, u^n(x))$ est liée.
 - Soit $p = \max \{k \in \mathbb{N} \text{ tel que } (x, u(x), u^2(x), \dots, u^k(x)) \text{ soit libre} \}.$
 - **b)** Justifier que $u^{p+1}(x) \in \text{Vect}(x, u(x), u^2(x), \dots, u^p(x))$.
 - c) En déduire que, pour tout k de \mathbb{N} , $u^k(x) \in \text{Vect}(x, u(x), u^2(x), \dots, u^p(x))$.
 - d) En déduire que $(x, u(x), u^2(x), \dots, u^p(x))$ est une base de E et préciser la valeur de p.
- **10. a)** Justifier l'existence de $(a_0, \ldots, a_{n-1}) \in \mathbb{K}^n$ tels que

$$u^{n}(x) = a_{0}x + a_{1}u(x) + \dots + a_{n-1}u^{n-1}(x).$$

Dans la suite, on note P le polynôme

$$P = X^n - a_{n-1}X^{n-1} - \dots - a_1X - a_0 \in K[X].$$

- b) Déterminer l'image par l'endomorphisme P(u) des vecteurs de la base $(x, u(x), u^2(x), \dots, u^{n-1}(x))$.
- c) En déduire l'endomorphisme P(u).
- 11. a) Montrer que la famille $(id, u, u, \dots, u^{n-1})$ est une famille libre de $\mathcal{L}(E)$.
 - b) En déduire que
 - \mathbf{i} il n'existe aucun polynôme non nul de degré strictement inférieur à n annulateur de u;
 - \mathbf{ii} P est l'unique polynôme unitaire de degré n annulateur de u.

On dit que P est le polynôme minimal de u.

c) Quel est le polynôme minimal de l'endomorphisme étudié dans la dernière question de la partie A? Justifier.

Solution (Ex.2 - Endomorphismes cycliques)

Partie A - Étude d'un exemple dans \mathbb{R}^3

- 1. À savoir faire.
- **2.** u(i) = (0, 1, 0) = j et $u^2(i) = (0, 0, 1) = k$ donc $(i, u(i), u^2(i)) = \mathcal{C}$ est une base de E et u est un endomorphisme cyclique de E.

- **3. a)** $M = \mathcal{M}_{\mathcal{C}}(u) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$.
 - **b)** F = Vect((1, 2, 1)) = Vect(a) et G = Vect((1, -1, 0), (1, 0, -1)) = Vect(b, c).
 - (a,b,c) est une base de \mathbb{R}^3 car det $(a,b,c)=4\neq 0$ donc F et G sont deux sous-espaces supplémentaires de E.
 - $u(a) = a \in F$ donc F est stable par u.
 - $u(b) = c b \in G$ et $u(c) = -c \in G$ donc G est stable par u.
- **4.** a) D'après le cours, la matrice représentant u dans la base \mathcal{B} est diagonale par blocs.
 - **b)** $P(u) = ((u+id)^2) \circ (u-id)(a) = 0 \text{ car } a \in \text{Ker}(u-id),$
 - $P(u) = (u id) \circ ((u + id)^2)(b) = 0 \text{ car } b \in \text{Ker}((u + id)^2),$
 - $P(u) = (u id) \circ ((u + id)^2)(c) = 0 \text{ car } c \in \text{Ker}((u + id)^2),$

Par linéarité, comme tout vecteur de E est combinaison linéaire de a, b et c, P(u) est l'endomorphisme nul.

- c) Soit P = aX + b avec $a \neq 0$ un polynôme annulateur de v. Alors : a.v + b.id = 0_{$\mathcal{L}(E)$} donc $v = \frac{-b}{a}id = \lambda id$ où $\lambda = \frac{-b}{a} \in \mathbb{R}$.
- d) On suppose dans cette sous-question qu'il existe un polynôme unitaire Q annulateur de u de degré 2.
 - \mathbf{i} − Par division euclidienne, il existe deux polynômes A et R tels que P = AQ + R avec deg(R) < deg(Q) donc deg(R) < 2.

On a alors $P(u) = A(u) \circ Q(u) + R(u)$ et comme $P(u) = Q(u) = 0_{\mathcal{L}(E)}$, on a $R(u) = 0_{\mathcal{L}(E)}$: R est annulateur de u.

- R ne peut pas être de degré 1 car $u \neq \lambda id$ ($\forall \lambda \in \mathbb{R}$), R ne peut pas être de degré 0 car $R = k \in \mathbb{R}^*$ entraîne $R(u) = k.id \neq 0_{\mathcal{L}(E)}$. Donc R est le polynôme nul.
- Donc P = AQ avec deg(A) = deg(P) deg(Q) = 1.
- ii $P = (X-1)(X+1)^2$ et Q est un polynôme unitaire de degré 2 divisant P donc les deux seules possibilités sont $Q = (X+1)^2$ ou $Q = X^2 1$.
- iii $(u+id)^2 \neq 0_{\mathcal{L}(\mathbf{E})}$ car $\mathbf{G} = \mathrm{Ker}((u+id)^2) \neq \mathbf{E}$, $u^2 - id \neq 0_{\mathcal{L}(\mathbf{E})}$ car $\mathbf{M}^2 \neq \mathbf{I}_3$,

donc ni $(X+1)^2$ ni X^2-1 ne sont annulateurs de u.

Ainsi il n'existe aucun polynôme annulateur de u de degré 2.

- e) Si Q = AP avec A $\in \mathbb{R}[X]$ alors $Q(u) = A(u) \circ P(u) = 0_{\mathcal{L}(E)}$, alors $Q \in \mathcal{A}_u$.
 - Réciproquement, supposons Q annulateur de u et effectuons la division eucldienne de Q par P : il existe A et R tels que Q = AP + R avec deg(R) < deg(P) donc $deg(R) \le 2$.
 - Or $R(u) = Q(u) A(u) \circ P(u) = 0$ _{L(E)} puisque Q et P sont annulateurs de u. Or l'étude précédente montre qu'il n'existe aucun polynôme annulateur de u de degré 0, 1 ou 2. Donc R est le polynôme nul et Q = AP.
 - Par double inclusion, $A_u = \{AP, A \in \mathbb{R}[X]\}.$

Partie B - Cas des endomorphismes nilpotents

5. Remarque : comme $u^{p-1} \neq 0_{\mathcal{L}(E)}$, il existe bien $x \in E$ tel que $u^{p-1}(x) \neq 0$.

Supposons que $a_0x + a_1u(x) + \dots + a_{p-1}u^{p-1}(x) = 0_E$ (\heartsuit).

En composant cette relation par u^{p-1} , on a $a_0u^{p-1}(x)=0$ avec $u^{p-1}(x)\neq 0$, donc $a_0=0$.

 (\heartsuit) devient $a_1u(x) + \cdots + a_{p-1}u^{p-1}(x) = 0_E$, et en composant par u^{p-2} , $a_1u^{p-1}(x) = 0$ avec $u^{p-1}(x) \neq 0$, donc $a_1 = 0$.

En itérant ce procédé, on a : $\forall i \in [0; p-1], a_i = 0$, donc la famille $(x, u(x), \dots, u^{p-1}(x))$ est libre.

- **6.** Les familles libres étant de cardinal au plus $\dim(E) = n, p \leq n$.
- 7. Si p = n, alors $(x, u(x), \dots, u^{p-1}(x))$ est une famille libre de $n = \dim(E)$ vecteurs de E donc une base, donc u est cyclique.
 - si u est cycliques, alors il existe $x \in E$ tel que $(x, u(x), \dots, u^{n-1}(x))$ est une base de E, donc $u^{n-1}(x) \neq 0$, donc $u^{n-1} \neq 0$ _{$\mathcal{L}(E)$} et $p \geqslant n$. Par la question précédente, $p \geqslant n$, donc p = n.
 - Ainsi u est cyclique si, et seulement si, p = n.
- 8. a) En prenant $P = X^{n-1}$, $(P, u(P), \dots, u^{n-1}(P)) = (X^{n-1}, (n-1)X^{n-2}, \dots, (n-1)!X, (n-1)!)$ est une famille de n polynômes de E échelonnée en degré donc est une base de E. Donc u est cyclique.
 - $\forall P \in E, u^n(P) = P^{(n)} = 0$ puisque $\deg(P) < n$, donc $u^n = 0_{\mathcal{L}(E)}$ et u est nilpotent.
 - b) Comme u est cyclique et nilpotent, l'étude précédente montre que l'indice de nilpotence de u est dim(E) = n. On peut aussi observer que $u^n = 0_{\mathcal{L}(E)}$ et $u^{n-1} \neq 0_{\mathcal{L}(E)}$ car $u^{n-1}(X^n) = (n-1)! \neq 0...$

Partie C - Cas général

9. a) Dans un espace de dimension n, toute famille de n+1 vecteurs est liée.

Soit $p = \max \{k \in \mathbb{N} \text{ tel que } (x, u(x), u^2(x), \dots, u^k(x)) \text{ soit libre} \}.$

- **b)** Si $u^{p+1}(x) \notin \text{Vect}(x, u(x), u^2(x), \dots, u^p(x))$, alors que $(x, u(x), u^2(x), \dots, u^{p+1}(x))$ est libre, ce qui contredit la définition de p.
- c) Soit pour tout k de \mathbb{N} , \mathcal{H}_k : « $u^k(x) \in \text{Vect}(x, u(x), u^2(x), \dots, u^p(x))$ ».
 - \mathcal{H}_0 est vraie puisque $u^0(x) = x$.

• Soit $k \in \mathbb{N}$. Supposons \mathcal{H}_i vraie pour tout $i \in [0; k]$.

Comme $u^k(x) \in \text{Vect}(x, u(x), u^2(x), \dots, u^p(x))$, il existe p+1 scalaires tels que $u^k(x) = a_0x + a_1u(x) + \dots, a_pu^p(x)$

Alors $u^{k+1}(x) = a_0 u(x) + a_1 u^2(x) + \dots, a_p u^{p+1}(x)$, donc est combinaison linéaire de vecteurs de $\text{Vect}(x, u(x), u^2(x), \dots, u^p)$ d'après la question précédente.

Donc $u^{k+1} \in \text{Vect}(x, u(x), u^2(x), \dots, u^p(x))$ et \mathcal{H}_{k+1} est vraie.

Par récurrence forte, H_k est vraie pour tout k de \mathbb{N} .

- d) On vient de prouver que $\operatorname{Vect}(x, u(x), u^2(x), \dots, u^p(x)) = \operatorname{Vect}(u^k(x), k \in \mathbb{N})$, or $\operatorname{Vect}(u^k(x), k \in \mathbb{N})$ est une base de E, donc $(x, u(x), u^2(x), \dots, u^p(x))$ est une famile génératrice de E, or cette famille est aussi libre par définition de p, donc c'est une base de E et p = n 1.
- **10. a)** Ainsi $(x, u(x), u^2(x), \dots, u^{n-1}(x))$ est une base de E donc il existe $(a_0, \dots, a_{n-1}) \in \mathbb{K}^n$ tels que $u^n(x) = a_0x + a_1u(x) + \dots + a_{n-1}u^{n-1}(x)$.
 - **b)** On a, par définition des (a_i) , $P(u)(x) = 0_E$.

Alors, pour tout k de [1; n-1], en posant $Q(X) = X^k$,

 $P(u^k(x)) = P(Q(u)(x)) = P(u) \circ Q(u)(x) = Q(u) \circ P(u)(x) = Q(u)(0_E) = O_E.$

- c) L'endomorphisme P(u) prend la valeur 0_E pour tout vecteur de cette base, donc par linéarité l'endomorphisme P(u) est nul.
- 11. a) Soit $(a_i)_{i \in [\![0]; n-1]\![}$ n scalaires tels que $a_0id + a_1u + \cdots + a_{n-1}u^{n-1} = 0_{\mathcal{L}(\mathbf{E})}$. Cette relation évaluée en x donne $a_0x + a_1u(x) + \cdots + a_{n-1}u^{n-1}(x) = 0_{\mathbf{E}}$. Comme $(x, u(x), \dots, u^{n-1}(x))$ est libre, tous les coefficients a_i pour $0 \le i \le n-1$ sont nuls. Par conséquent la famille $(id, u, u, \dots, u^{n-1})$ est une famille libre de $\mathcal{L}(\mathbf{E})$.
 - b) i Soit Q un polynôme annuulateur de u de degré strictement inférieur à $n: Q = \sum_{i=0}^{d} a_i X^i$ avec d < n.

Alors $\sum_{i=0}^{d} a_i u^i = 0_{\mathcal{L}(E)}$, et comme la famille (id, u, u, \dots, u^d) est libre puisque $d \leq n-1$, $a_i = 0$ pour

tout $i \in [0; d]$. Donc Q est le polynôme nul.

Ainsi il n'existe aucun polynôme non nul de degré strictement inférieur à n annulateur de u;

ii – Si Q est un polynôme unitaire de degré n annulateur de u, alors Q – P est annulateur de u et de degré strictement inférieur à n, donc Q – P = $0_{\mathbb{K}[\mathbf{X}]}$ donc Q = P.

P est bien l'unique polynôme unitaire de degré n annulateur de u.

c) $\forall Q \in \mathbb{R}_{n-1}[X], u^n(Q) = Q^{(n)} = 0 \text{ donc } u^n = 0_{\mathcal{L}(E)}, \text{ donc } P = X^n \text{ est un polynôme annulateur de l'endomorphisme cyclique } u$, de degré $n = \dim(\mathbb{R}_{n-1}[X]), \text{ donc } P = X^n \text{ est le polynôme minimal de l'endomorphisme étudié dans la dernière question de la partie A.$