CONCOURS CENTRALE-SUPÉLEC 2019 [MATHS 1-PC]

Réduction de sous-algèbres de $\mathcal{L}(E)$

Dans tout le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et \mathbb{E} est un \mathbb{K} -espace vectoriel de dimension $n \geq 1$.

On note $\mathcal{L}(E)$ le \mathbb{K} -espace vectoriel des endomorphismes de E et $\mathcal{M}_n(\mathbb{K})$ le \mathbb{K} -espace vectoriel des matrices carrées à n lignes et n colonnes et à coefficients dans \mathbb{K} .

On note $Mat_{\mathcal{B}}(u)$ la matrice, dans la base \mathcal{B} de E, de l'endomorphisme u de $\mathcal{L}(E)$.

La matrice transposée de toute matrice M de $\mathcal{M}_n(\mathbb{R})$ est notée M^T.

On dit qu'un sous-ensemble \mathcal{A} de $\mathcal{L}(E)$ est une sous-algèbre de $\mathcal{L}(E)$ si \mathcal{A} est un sous-espace vectoriel de $\mathcal{L}(E)$, stable pour la composition, c'est-à-dire que $u \circ v$ appartient à \mathcal{A} quels que soient les éléments u et v de \mathcal{A} . (Remarquer qu'on ne demande pas que id_E appartienne à \mathcal{A}).

On dit qu'une sous-algèbre \mathcal{A} de $\mathcal{L}(E)$ est commutative si pour tous u et v dans \mathcal{A} , $u \circ v = v \circ u$.

Une sous-algèbre \mathcal{A} de $\mathcal{L}(E)$ est dite diagonalisable (respectivement trigonalisable) s'il existe une base \mathcal{B} de E telle que $Mat_{\mathcal{B}}(u)$ soit diagonale (respectivement triangulaire supérieure) pour tout u de \mathcal{A} .

On dit qu'une partie \mathcal{A} de $\mathcal{M}_n(\mathbb{K})$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$ si \mathcal{A} est un sous-espace vectoriel stable pour le produit matriciel. Elle est dite commutative si, pour toutes matrices A et B de \mathcal{A} , AB = BA. Une sous-algèbre \mathcal{A} de $\mathcal{M}_n(\mathbb{K})$ est diagonalisable (respectivement trigonalisable) s'il existe P \in GL_n(\mathbb{K}) telle que pour toute matrice M de \mathcal{A} , P⁻¹MP soit diagonale (respectivement triangulaire supérieure).

Si \mathcal{B} est une base de E, l'application $\operatorname{Mat}_{\mathcal{B}}: \mathcal{L}(E) \to \mathcal{M}_n(\mathbb{K})$ est une bijection qui envoie une sous-algèbre (respectivement commutative, diagonalisable, trigonalisable) de $\mathcal{L}(E)$ sur une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$ (respectivement commutative, diagonalisable, trigonalisable).

Un sous-espace vectoriel F de E est strict si F est différent de E.

On désigne par $S_n(\mathbb{K})$ (respectivement $A_n(\mathbb{K})$) l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{K})$ (respectivement antisymétriques). On désigne par $T_n(\mathbb{K})$ (respectivement $T_n^+(\mathbb{K})$) le sous-ensemble de $\mathcal{M}_n(\mathbb{K})$ constitué des matrices triangulaires supérieures (respectivement des matrices triangulaires supérieures à coefficients diagonaux nuls).

I. Exemples de sous-algèbres

I.A - Exemples de sous-algèbres de $\mathcal{M}_n(\mathbb{K})$

- 1. Les sous-ensembles $T_n(\mathbb{K})$ et $T_n^+(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_n(\mathbb{K})$?
- **2.** Les sous-ensembles $S_2(\mathbb{K})$ et $A_2(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_2(\mathbb{K})$?
- **3.** On suppose $n \geq 3$. Les sous-ensembles $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_n(\mathbb{K})$?

I.B - Exemples de sous-algèbres de $\mathcal{L}(E)$

Soit F un sous-espace vectoriel de E de dimension p et \mathcal{A}_{F} l'ensemble des endomorphismes de E qui stabilisent F, c'est-à-dire $\mathcal{A}_{F} = \{u \in \mathcal{L}(E) | u(F) \subset F\}$.

4. Montrer que \mathcal{A}_{F} est une sous-algèbre de $\mathcal{L}(E)$.

- 5. Montrer que dim $\mathcal{A}_{F} = n^{2} pn + p^{2}$.

 On pourra considérer une base de E dans laquelle la matrice de tout élément de \mathcal{A}_{F} est triangulaire par blocs.
- **6.** Déterminer $\max_{1 \le p \le n-1} (n^2 pn + p^2)$.

I.C - Exemples de sous-algèbres de $\mathcal{M}_2(\mathbb{K})$ diagonalisables et non diagonalisables

Soit $\Gamma(\mathbb{K})$ le sous-ensemble de $\mathcal{M}_2(\mathbb{K})$ constitué des matrices de la forme $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ où $(a,b) \in \mathbb{K}^2$.

- 7. Montrer que $\Gamma(\mathbb{K})$ est une sous-algèbre de $\mathcal{M}_2(\mathbb{K})$.
- 8. Montrer que $\Gamma(\mathbb{R})$ n'est pas une sous-algèbre diagonalisable de $\mathcal{M}_2(\mathbb{R})$.
- 9. Montrer que $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ est diagonalisable sur \mathbb{C} . En déduire que $\Gamma(\mathbb{C})$ est une sous-algèbre diagonalisable de $\mathcal{M}_2(\mathbb{C})$.

II. Une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{R})$

Dans cette partie, on suppose $n \geq 2$.

Pour tout $(a_0, \ldots, a_{n-1}) \in \mathbb{R}^n$, on pose

$$J(a_0, \dots, a_{n-1}) = \begin{pmatrix} a_0 & a_{n-1} & \cdots & a_1 \\ a_1 & a_0 & \dots & a_2 \\ \vdots & \vdots & & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}.$$

Ainsi, le coefficient d'indice(i,j) de $J(a_0,\ldots,a_{n-1})$ est a_{i-j} si $i\geq j$ et a_{i-j+n} si i< j. Soit \mathcal{A} l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ de la forme $J(a_0,\ldots,a_{n-1})$ où $(a_0,\ldots,a_{n-1})\in\mathbb{R}^n$. Soit $J\in\mathcal{M}_n(\mathbb{R})$ la matrice canoniquement associée à l'endomorphisme $\varphi\in\mathcal{L}(\mathbb{R}^n)$ défini par $\varphi:e_j\mapsto e_{j+1}$ si $j\in\{1,\ldots n-1\}$ et $\varphi(e_n)=e_1$, où (e_1,\ldots,e_n) est la base canonique de \mathbb{R}^n .

II.A - Calcul des puissances de J

- 10. Préciser les matrices J et J^2 . (on pourra distinguer les cas n=2 et $n\geq 2$).
- 11. Préciser les matrices J^n et J^k pour $2 \le k \le n-1$.
- **12.** Quel est le lien entre la matrice $J(a_0, \ldots, a_{n-1})$ et les J^k , où $0 \le k \le n-1$?

II.B - Une base de A

- 13. Montrer que $(I_n, J, J^2, \dots, J^{n-1})$ est une base de A.
- **14.** Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que M commute avec J si et seulement si M commute avec tout élément de \mathcal{A} .
- 15. Montrer que \mathcal{A} est une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{R})$.

II.C - Diagonalisation de J

- 16. Déterminer le polynôme caractéristique de J.
- 17. Montrer que J est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.
- **18.** La matrice J est-elle diagonalisable dans $\mathcal{M}_n(\mathbb{R})$?
- 19. Déterminer les valeurs propres complexes de J est les espaces propres associés.

II.D - Diagonalisation de \mathcal{A}

- **20.** Le sous-ensemble \mathcal{A} est-il une sous-algèbre de $\mathcal{M}_n(\mathbb{C})$?
- **21.** Montrer qu'il existe $P \in GL_n(\mathbb{C})$ telle que, pour toute matrice $A \in \mathcal{A}$, la matrice $P^{-1}AP$ est diagonale.

Soit $(a_0, \ldots, a_{n-1}) \in \mathbb{R}^n$. On note $Q \in \mathbb{R}[X]$ le polynôme $\sum_{k=0}^{n-1} a_k X^k$.

22. Quelles sont les valeurs propres complexes de la matrice $J(a_0, \ldots, a_{n-1})$?

III. Réduction d'une algèbre nilpotente de $\mathcal{M}_n(\mathbb{C})$

Soit E un \mathbb{C} -espace vectoriel de dimension finie $n \geq 1$. Soit \mathcal{A} une sous-algèbre de $\mathcal{L}(E)$ constituée d'endomorphismes nilpotents. On admet dans cette partie le théorème ci-dessous, qui sera démontré dans la partie V.

Théorème de Burnside

Soit E un C-espace vectoriel de dimension $n \geq 2$. Soit \mathcal{A} une sous-algèbre de $\mathcal{L}(E)$. Si les seuls sous-espaces vectoriels de E stables par tous les éléments de \mathcal{A} sont $\{0\}$ et E, alors $\mathcal{A} = \mathcal{L}(E)$.

On se propose de démontrer par récurrence forte sur $n \in \mathbb{N}^*$ que si tous les éléments de \mathcal{A} sont nilpotents, alors \mathcal{A} est trigonalisable.

23. Montrer que le résultat est vrai si n = 1.

On suppose désormais que $n \ge 2$ et que le résultat est vrai pour tout entier naturel $d \le n - 1$.

24. Montrer qu'il existe un sous-espace vectoriel V de E distinct de E et $\{0\}$ stable par tous les éléments de A.

On fixe dans la suite un tel sous-espace vectoriel et on note r sa dimension. Soit aussi s = n - r.

25. Montrer qu'il existe une base \mathcal{B} de E telle que pour tout $u \in \mathcal{A}$,

$$Mat_{\mathcal{B}}(u) = \begin{pmatrix} A(u) & B(u) \\ 0 & D(u) \end{pmatrix}$$

où $A(u) \in \mathcal{M}_r(\mathbb{C}), B(u) \in \mathcal{M}_{r,s}(\mathbb{C}) \text{ et } D(u) \in \mathcal{M}_s(u).$

- **26.** Montrer que $\{A(u)|u\in\mathcal{A}\}$ est une sous-algèbre de $\mathcal{M}_r(\mathbb{C})$ constituée de matrices nilpotentes et que $\{D(u)|u\in\mathcal{A}\}$ est une sous-algèbre de $\mathcal{M}_s(\mathbb{C})$ constituée de matrices nilpotentes.
- 27. Montrer que \mathcal{A} est trigonalisable.
- **28.** Montrer qu'il existe une base de E dans laquelle les matrices des éléments de \mathcal{A} appartiennent à $T_n^+(\mathbb{C})$.

CONCOURS COMMUN MINES-PONTS 2022 [MATHS 1-PSI]

 ${f R}$ et ${f C}$ désignent respectivement le corps des nombres réels et le corps des nombres complexes. ${f N}$ désigne l'ensemble des entiers naturels.

L'objectif de ce problème est l'étude asymptotique du nombre de partitions d'un entier naturel n, c'est-à-dire du nombre de décompositions de n en somme d'entiers naturels non nuls (sans tenir compte de l'ordre des termes). Une définition rigoureuse de ce nombre, noté p_n , est donnée en début de partie \mathbf{B} . Dans la partie \mathbf{A} , on introduit une fonction \mathbf{P} de variable complexe; dans la fin de la partie \mathbf{B} on démontre qu'il s'agit de la somme, sur le disque unité ouvert de \mathbf{C} , de la série entière $\sum_{n\geqslant 0}p_nz^n$. Cette partie s'achève par l'étude de \mathbf{P} au voisinage de

Tout au long du problème, le disque unité ouvert de C sera noté :

$$D = \{z \in \mathbb{C} \mid |z| < 1\}.$$

On admettra aussi les deux identités classiques suivantes :

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

A. Fonctions L et P

29. Soit $z \in D$. Montrer la convergence de la série $\sum_{n\geqslant 1}\frac{z^n}{n}$. Préciser la valeur de sa somme lorsque $z\in]-1,1[$. On notera :

$$L(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n}.$$

- **30.** Soit $z \in D$. Montrer que la fonction $\Phi : t \mapsto L(tz)$ est dérivable sur [-1,1] et donner une expression simple de sa dérivée.
- **31.** Soit $z \in D$. Montrer que la fonction $\Psi : t \mapsto (1 tz)e^{\mathcal{L}(tz)}$ est constante sur [0,1], et en déduire que :

$$\exp(\mathcal{L}(z)) = \frac{1}{1-z}.$$

32. Montrer que $|L(z)| \le -\ln(1-|z|)$ pour tout z dans D. En déduire la convergence de la série $\sum_{n\geqslant 1} L(z^n)$ pour tout z dans D.

Dans la suite, on notera, pour z dans D:

$$P(z) = \exp \left[\sum_{n=1}^{+\infty} L(z^n) \right].$$

33. Soit $z \in D$. Vérifier que $P(z) \neq 0$, que :

$$P(z) = \lim_{N \to +\infty} \prod_{n=1}^{N} \frac{1}{1 - z^n}$$

et que pour tout réel t > 0:

$$\ln\left(P\left(e^{-t}\right)\right) = -\sum_{n=1}^{+\infty} \ln\left(1 - e^{-nt}\right).$$

B. Développement asymptotique en variable réelle

Dans cette partie, on introduit la fonction q qui à tout réel x associe le nombre réel $q(x) = x - \lfloor x \rfloor - \frac{1}{2}$, où $\lfloor x \rfloor$ désigne la partie entière de x.

- **34.** Montrer que q est continue par morceaux sur \mathbf{R} , qu'elle est 1-périodique et que la fonction |q| est paire.
- **35.** Montrer que $\int_{1}^{+\infty} \frac{q(u)}{e^{tu} 1} du$ est bien définie pour tout réel t > 0.
- **36.** Montrer que pour tout entier n > 1:

$$\int_{1}^{n} \frac{q(u)}{u} du = \ln(n!) + (n-1) - n \ln(n) - \frac{1}{2} \ln(n) = \ln\left(\frac{n!e^{n}}{n^{n}\sqrt{n}}\right) - 1.$$

37. Montrer que $\int_{\lfloor x \rfloor}^{x} \frac{q(u)}{u} du$ tend vers 0 quand x tend vers $+\infty$, et en déduire la convergence de l'intégrale $\int_{1}^{+\infty} \frac{q(u)}{u} du$, ainsi que l'égalité :

$$\int_{1}^{+\infty} \frac{q(u)}{u} du = \frac{\ln(2\pi)}{2} - 1$$

38. À l'aide d'un développement en série sous l'intégrale, montrer que :

$$\int_0^{+\infty} \ln(1 - e^{-u}) \, \mathrm{d}u = -\frac{\pi^2}{6}.$$

39. Montrer que :

$$\int_0^1 \ln\left(\frac{1 - e^{-tu}}{t}\right) du \ \stackrel[t \to 0^+] \longrightarrow -1.$$

On pourra commencer par établir que $x \mapsto \frac{1-e^{-x}}{x}$ est décroissante sur \mathbf{R}_{+}^{*} .

Pour $k \in \mathbf{N}^*$ et $t \in \mathbf{R}_+$, on pose :

$$u_k(t) = \int_{k/2}^{(k+1)/2} \frac{tq(u)}{e^{tu} - 1} du$$
 si $t > 0$, et : $u_k(t) = \int_{k/2}^{(k+1)/2} \frac{q(u)}{u} du$ si $t = 0$.

On admet que u_k est continue sur \mathbf{R}_+ pour tout $k \in \mathbf{N}^*$.

40. Soit $t \in \mathbf{R}_+^*$. Montrer, pour tout entier $k \ge 1$, que $|u_k(t)| = \int_{k/2}^{(k+1)/2} \frac{t|q(u)|}{e^{tu} - 1} du$ puis que $u_k(t) = (-1)^{k+1} |u_k(t)|$, et établir enfin que :

$$\forall n \in \mathbf{N}^*, \left| \sum_{k=n}^{+\infty} u_k(t) \right| \leqslant \frac{1}{2n}.$$

On admettra dans la suite que cette majoration vaut encore pour t=0.

41. En déduire que :

$$\int_{1}^{+\infty} \frac{tq(u)}{e^{tu} - 1} du \xrightarrow[t \to 0^{+}]{} \frac{\ln(2\pi)}{2} - 1.$$

42. Montrer, pour tout réel t > 0, l'identité :

$$\int_{1}^{+\infty} \frac{tq(u)}{e^{tu} - 1} du = -\frac{1}{2} \ln \left(1 - e^{-t} \right) - \ln \left(P\left(e^{-t} \right) \right) - \int_{1}^{+\infty} \ln \left(1 - e^{-tu} \right) du.$$

43. Conclure que :

$$\ln \left(P\left(e^{-t} \right) \right) = \frac{\pi^2}{6t} + \frac{\ln(t)}{2} - \frac{\ln(2\pi)}{2} + o(1).$$