L'objectif de ce problème est d'établir

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} = \ln(2)$$

par six méthodes différentes qui permettent de parcourir une grande partie des programmes d'analyse de première et de seconde année.

La série de terme général $\frac{(-1)^n}{n+1}$ s'appelle série harmonique alternée.

Pour tout n de \mathbb{N} , on note

$$S_n = \sum_{k=0}^n \frac{(-1)^k}{k+1}$$

et pour tout n de \mathbb{N}^*

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

1. Par une SOMME 1 de Riemann...

a) Justifier, pour $n \ge 1$, que $H_{2n} - H_n = \sum_{i=1}^n \frac{1}{n+k}$ et en déduire

$$H_{2n} - H_n \xrightarrow[n \to +\infty]{} \int_0^1 \frac{\mathrm{d}t}{1+t}.$$

- **b)** Montrer, pour $n \ge 1$, que $S_{2n-1} = H_{2n} H_n$.
- c) En déduire la convergence de la série harmonique alternée ainsi que sa somme.

2. En passant par un développement asymptotique de H_n

a) Établir la convergence de la suite $(H_n - \ln(n))$ et en déduire l'existence d'une constante γ telle que

$$H_n = \ln(n) + \gamma + o(1)$$
.

b) À l'aide de $S_{2n-1} = H_{2n} - H_n$ (établi dans la question précédente), en déduire la convergence de la série harmonique alternée ainsi que sa somme.

3. En passant par une formule de Taylor avec reste intégral

- a) Montrer que les suites (S_{2n-1}) et (S_{2n}) sont adjacentes.
- b) Soit

$$g: [0; 1] \longrightarrow \mathbb{R}$$
$$x \longmapsto \ln(1+x)$$

Calculer, pour tout k de \mathbb{N} , $g^{(k)}$ et vérifier que $g^{(k)}(0) = (-1)^{k-1}(k-1)!$.

c) Établir par récurrence que, pour $n \ge 1$,

$$\forall x \in [0; 1], \quad g(x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + \int_0^x \frac{(x-t)^n}{n!} g^{(n+1)}(t) dt.$$

d) En déduire, pour tout n de \mathbb{N}^* ,

$$\sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} x^k \leqslant \ln(1+x) \leqslant \sum_{k=1}^{2n+1} \frac{(-1)^{k-1}}{k} x^k.$$

e) Justifier alors que

$$S_{2n-1} \leq \ln(2) \leq S_{2n}$$
.

f) Conclure.

4. À l'aide d'une écriture intégrale du terme général

a) Que vaut, pour
$$n \ge 0$$
, $\int_0^1 (-t)^n dt$?

^{1.} Je n'ai pas écrit une SÉRIE de Riemann.

b) En déduire, pour $n \ge 0$,

$$S_n = \ln(2) + (-1)^n \int_0^1 \frac{t^{n+1}}{1+t} dt.$$

c) Conclure.

5. À l'aide d'une seconde écriture intégrale du terme général

- a) Rappeler, pour $n \in \mathbb{N}^*$, la valeur de $\int_0^{+\infty} \exp(-nx) dx$.
- b) On pose, pour tout n de \mathbb{N}^* , $f_n : \mathbb{R}_+^* \to \mathbb{R}, x \mapsto (-1)^n \mathrm{e}^{-nx}$. Montrer que la série de fonction $\sum_{n\geqslant 1} f_n$ converge simplement et préciser sa somme.
- c) Peut-on appliquer le théorème d'intégration terme à terme à la série $\sum_{n\geqslant 1} f_n$ sur \mathbb{R}_+^* ?
- **d)** Pour tout n de \mathbb{N}^* , on pose

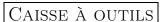
$$F_n: \mathbb{R}_+^* \longrightarrow \mathbb{R}, x \longmapsto \sum_{k=1}^n f_k(x).$$

Expliciter F_n et montrer que l'on peut appliquer le théorème de convergence dominée à la suite de fonctions $(F_n)_{n\geqslant 1}$.

e) Conclure.

6. Du côté des séries entières

- a) Rappeler la valeur de $\sum_{n=1}^{+\infty} \frac{x^n}{n}$ pour $x \in]-1; 0].$
- **b)** Montrer que la série $\sum_{n\geqslant 1}\frac{x^n}{n}$ converge uniformément sur $[-1\,;\ 0].$
- c) Conclure.



Des outils dont vous pourriez avoir besoin 2 :

- Raisonnement par récurrence
- Théorème de convergence dominée de Lebesgue
- Intégration par parties
- Suites adjacentes
- Sommes de Riemann
- Théorème de la double limite
- 2. Dans un ordre délibérément aléatoire.

- Somme de termes d'une suite géométrique
- Inégalité triangulaire pour les intégrales
- Théorème des séries alternées de Leibniz
- Somme d'une série géométrique
- Convergence d'une suite et série télescopique des différences