Le soin, la clarté et la précision de la rédaction rentreront pour une large part dans l'évaluation. On pourra admettre la réponse à une question à condition de le mentionner explicitement.

Merci d'encadrer les réponses finales à chaque question. Durée 4 heures

Exercice 1 – D'après E3A - PC - 2022

Pour tout $n \in \mathbb{N}$, on pose $u_n = (-1)^n \int_0^{\frac{\pi}{2}} \cos^n(t) dt$.

- 1. (a) Montrer que la suite $(|u_n|)_{n\in\mathbb{N}}$ est décroissante.
 - (b) Montrer que la suite $(|u_n|)_{n\in\mathbb{N}}$ converge vers 0.
 - (c) Prouver que la série $\sum_{n>0} u_n$ converge.
- 2. (a) Montrer que, pour tout n de \mathbb{N} , $|u_{n+2}| = \frac{n+1}{n+2}|u_n|$.
 - (b) Démontrer par récurrence sur l'entier naturel n que l'on a : $\forall n \in \mathbb{N}$, $|u_n| \ge \frac{1}{n+1}$.
 - (c) La série $\sum_{n\geqslant 0} u_n$ est-elle absolument convergente?
- 3. (a) Soit t un réel. Linéariser $\cos^2\left(\frac{t}{2}\right)$.
 - (b) En déduire la valeur de I = $\int_0^{\frac{\pi}{2}} \frac{1}{1 + \cos(t)} dt.$
- 4. On pose, pour tout $t \in \left]0; \frac{\pi}{2}\right]$ et tout $n \in \mathbb{N}$, $v_n(t) = \left(-\cos(t)\right)^n$ et $V_n(t) = \sum_{k=0}^n v_k(t)$. En appliquant le théorème de convergence dominée à la suite de fonctions $(V_n)_{n \in \mathbb{N}}$, calculer la valeur de $\sum_{k=0}^{+\infty} u_k$.

Exercice 2 – D'après E3A - 2020 - PC

Les questions 6, 7 et 8 de cet exercice sont **indépendantes entre elles**. On peut par exemple étudier la question 7 sans avoir abordé la question 6.

Soit n un entier naturel supérieur ou égal à 2 et $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M \neq I_n$ et $M \neq \frac{1}{2}I_n$, vérifiant la relation :

$$2M^2 = 3M - I_n.$$

Soit A = M -
$$I_n$$
 et B = M - $\frac{1}{2}I_n$.

- 5. Calculer AB et BA.
- **6.** (a) On note $F = Vect(I_n, M, M^2)$. Prouver que : $\forall k \in \mathbb{N}$, $M^k \in F$.
 - (b) Déterminer la dimension de F et en donner une base.
 - (c) Vérifier que F est stable pour la multiplication des matrices c'est-à-dire que

$$\forall (C, D) \in F^2$$
, $CD \in F$.

(d) Justifier que $\mathcal{B} = (A, B)$ constitue une base de F. Déterminer les composantes des matrices A^2 et B^2 dans la base \mathcal{B} .

- (e) Déterminer toutes les matrices T de F vérifiant $T^2 = M$.
- 7. Soit *k* un entier naturel.
 - (a) Donner un polynôme P annulateur de M de degré 2 et préciser ses racines λ et μ .
 - (b) Justifier l'existence de deux réels α_k et β_k et d'un polynôme réel Q tels que

$$X^k = QP + \alpha_k X + \beta_k \qquad (\heartsuit).$$

- (c) Déterminer α_k et β_k en évaluant (\heartsuit) pour X valant λ et X valent μ .
- (d) En déduire une expression de M^k en fonction de k, M et I_n .
- (e) Cette expression est-elle valable pour k = -1?
- 8. On note $0_{n,1}$ la colonne nulle de $\mathcal{M}_{n,1}(\mathbb{R})$. On rappelle que, pour tout matrice N de $\mathcal{M}_n(\mathbb{R})$, $\ker(\mathbb{N}) = \{ U \in \mathcal{M}_{n,1}(\mathbb{R}) / \mathbb{N}U = 0_{n,1} \}$.
 - (a) Montrer que $ker(A) \cap ker(B) = \{0_{n,1}\}.$
 - (b) En exploitant $-2A + 2B = I_n$, montrer que $ker(A) + ker(B) = \mathcal{M}_{n,1}(\mathbb{R})$.
 - (c) Soit φ l'endomorphisme de \mathbb{R}^n canoniquement associé à la matrice M et id l'endomorphisme identité de \mathbb{R}^n .

 Justifier que

$$\ker(\varphi - id) \oplus \ker\left(\varphi - \frac{1}{2}id\right) = \mathbb{R}^n.$$

- (d) En déduire qu'il existe une base de \mathbb{R}^n dans laquelle la matrice représentant φ est diagonale.
- (e) Montrer qu'il existe une matrice inversible T de $\mathcal{M}_n(\mathbb{R})$ telle que

$$\mathbf{T}^{-1}\mathbf{M}\mathbf{T} = \begin{pmatrix} \mathbf{I}_{rg(B)} & \mathbf{0} \\ \hline \mathbf{0} & \frac{1}{2}\mathbf{I}_{rg(A)} \end{pmatrix}$$

Exercice 3 – D'après E3A - PSI - 2022

Soit n un entier naturel non nul et $E_n = \mathbb{R}_n[X]$. On note id l'endomorphisme identité de E_n .

- 9. Soit q un réel et r un entier naturel non nul. Donner, sans démonstration, une autre expression de $\sum_{k=0}^{r} q^k$.
- **10.** Soit $\Pi \in \mathbb{R}[X]$. Justifier que $\Pi(X) \Pi(1)$ est divisible par X 1.
- 11. Soit $P \in E_n$. Montrer qu'il existe un polynôme Q de E_n tel que :

$$\forall x \neq 1$$
, $Q(x) = \frac{1}{x-1} \int_{1}^{x} P(t) dt$.

On définit ainsi une application $f: P \mapsto Q$.

- 12. Prouver que f est un endomorphisme de E_n .
- **13.** Montrer que, pour tout $k \in [[0; n]]$, $f(X^k) = \frac{1}{k+1} \sum_{j=0}^{k} X^j$.
- **14.** Dans cette question uniquement, on suppose que n = 2.

- (a) Écrire la matrice A représentant f dans la base canonique de E_2 .
- (b) f est-il un automorphisme de E_2 ?
- (c) Déterminer la matrice représentant f^{-1} dans la base canonique de E_2 .
- 15. On revient au cas général, n désigne un entier naturel non nul quelconque. Montrer que f est un automorphisme de E_n et déterminer, pour tout Q de E_n , le polynôme $f^{-1}(Q)$ à l'aide de Q et de son dérivé 1 .
- **16.** Soit A la matrice de f dans la base canonique $\mathcal{B} = (1, X, ..., X^n)$ de E_n . Déterminer A et A^{-1} .

On traitera au choix l'exercice 4-'Sujet A' ci-dessous ou l'exercice 4-'Sujet B' page suivante, MAIS PAS LES DEUX!

Le sujet B est plus long et plus ardu que le sujet A.

Exercice 4-'Sujet A' – D'après E3A - PSI - 2021

Pour tout entier naturel *n* non nul, on pose : $I_n = \int_1^{+\infty} \exp(-t^n) dt$.

- 17. Justifier, pour tout $n \in \mathbb{N}^*$, l'existence de I_n .
- 18. En citant précisément le théorème utilisé, justifier l'existence et déterminer la limite de la suite $(I_n)_{n\in\mathbb{N}}$.
- 19. En le justifiant, effectuer le changement de variable $u = t^n$ dans I_n .
- **20.** Déterminer alors $\lim_{n\to +\infty} nI_n$ On donnera le résultat en fonction d'une intégrale J que l'on ne cherchera pas à calculer.
- 21. En déduire un équivalent de I_n au voisinage de $+\infty$ en fonction de J.

*** FIN DU SUJET A ***

Lycée Henri Poincaré 3/4

^{1.} En cas de doute sur la réponse, on pourra admettre pour la suite que $f^{-1}(Q) = Q + (X - 1)Q'$

Exercice 4-Sujet B – D'après E3A - 2014 - MP

22. Énoncer précisément le théorème de convergence dominée.

Soit n un entier naturel. On considère la fonction de la variable réelle x définie sur [0; 1] par

$$f_n(x) = \frac{x^n}{\sqrt{1+x}}.$$

- 23. (a) Démontrer que la suite de fonction $(f_n)_{n\in\mathbb{N}}$ converge simplement sur [0; 1] vers une fonction f que l'on explicitera.
 - (b) La convergence est-elle uniforme sur [0; 1]?

On introduit la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \qquad u_n = \int_0^1 \frac{x^n}{\sqrt{1+x}} \mathrm{d}x.$$

- 24. Démontrer que la suite $(u_n)_{\in \mathbb{N}}$ est une suite convergente de limite nulle.
- 25. Démontrer que :

$$(n+1)u_n = \frac{1}{\sqrt{2}} + \frac{1}{2} \int_0^1 \frac{x^{n+1}}{(\sqrt{x+1})^3} dx.$$

- 26. En déduire un équivalent de u_n lorsque n tend vers +∞.
- 27. Déterminer des nombres réels α_1 , α_2 et α_3 tels que :

$$(n+2)(n+1)u_n = \alpha_1(n+2) + \alpha_2 + \alpha_3 \int_0^1 \frac{x^{n+2}}{(\sqrt{1+x})^5} \mathrm{d}x.$$

28. En déduire des nombres réels α et β que l'on explicitera tels que :

$$u_n = \frac{\alpha}{n} + \frac{\beta}{n^2} + o\left(\frac{1}{n^2}\right).$$