Exercice 1 Norme et morphisme injectif

Soit (F,N) un espace vectoriel normé. Soit E un \mathbb{R} -espace vectoriel. Soit $u \in \mathcal{L}(E,F)$. On suppose que u est injective.

Montrer que la fonction $N \circ u : x \mapsto N(u(x))$ est une norme sur E.

Solution (Ex.1 – Norme et morphisme injectif)

Vérifions les 4 axiomes d'une norme.

Soit $(x, y) \in \mathbb{E}^2$ et $\lambda \in \mathbb{R}$.

- (i) Comme N est positive, $N \circ u$ est positive.
- (ii) Si N o u(x) = 0 alors u(x) = 0 car N est une norme, donc x = 0 car u est injective.
- (iii) $N \circ u(\lambda x) = N(\lambda u(x)) = |\lambda| N \circ u(x)$ car u est linéaire et N est une norme.
- (iv) $N \circ u(x + y) = N(u(x) + u(y)) \le N \circ u(x) + N \circ u(y)$ car u est linéaire et N est une norme.

Exercice 2 Une norme sur \mathbb{R}^2

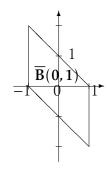
Pour tout $x = (x_1, x_2)$ de \mathbb{R}^2 , on pose $M(x) = \max(|x_1|, |x_1 + x_2|)$.

- 1. Montrer que M est une norme sur \mathbb{R}^2 .
- 2. Dessiner la boule unité fermée de M.
- 3. Trouver des constantes λ et μ strictement positives telles que $\forall x \in \mathbb{R}^2$, $M(x) \le \lambda ||x||_2$ et $||x||_2 \le \mu M(x)$,

les constantes λ et μ étant aussi petites que possible.

Solution (Ex.2 – *Une norme sur* \mathbb{R}^2)

- 1. On vérifie sans problème les 4 axiomes d'une norme.
- 2. $|x_1| \le 1 \iff -1 \le x_1 \le 1$, $|x_1 + x_2| \le 1 \iff -1 x_1 \le x_2 \le 1 x_1$ La boule unité fermée est le parallélogramme suivant :



- 3. $\overline{B}(0,1)$ est incluse dans le cercle de centre (0,0) et de rayon $\sqrt{5}$ et contient le cercle de centre (0,0) et de rayon $1/\sqrt{2}$.
 - Donc $M(x) = 1 \Rightarrow ||x||_2 \le \sqrt{5}$.

Par homogénéité, pour tout vecteur x non nul,

$$||x||_2 = \left| \left| M(x) \left(\frac{1}{M(x)} x \right) \right| \right|_2 = M(x) \left| \left| \frac{1}{M(x)} x \right| \right|_2 \le M(x) \sqrt{5}$$

Comme $\|(-1,2)\|_2 = \sqrt{5} = \sqrt{5}M((-1,2))$ puisque M((-1,2)) = 1, $\mu = \sqrt{5}$.

• De même, $||x||_2 = 1/\sqrt{2} \Rightarrow M(x) \le 1$ donc $||x||_2 = 1 \Rightarrow M(x) \le \sqrt{2}$, donne par un raisonnement analogue, pour tout $x \ne 0$, $M(x) \le \sqrt{2} ||x||_2$, avec égalité pour x = (1/2, 1/2), donc $\lambda = \sqrt{2}$.

Exercice 3 Normes et convergence dans $\mathbb{R}[X]$

Pour tout polynôme réel P, écrit sous la forme $P = \sum_{k=0}^{+\infty} a_k X_k$, on note

$$||P|| = \sup_{x \in [0; 1/2]} |P(x)| \text{ et } N(P) = \left| \sum_{k=0}^{+\infty} a_k \right| + \sum_{k=1}^{k=0} \frac{|a_k|}{k}.$$

- 1. Prouver que $\|.\|$ et N sont des normes sur $\mathbb{R}[X]$.
- 2. Montrer que la suite $(X^n)_{n \in \mathbb{N}}$ converge vers 0 pour la norme $\|.\|$ et vers 1 pour la norme \mathbb{N} .
- 3. Construire une norme sur $\mathbb{R}[X]$ pour laquelle la suite $(X^n)_{n \in \mathbb{N}}$ converge vers le polynôme X.

Solution (Ex.3 – Normes et convergence dans $\mathbb{R}[X]$)

- 1. ||.|| est la norme infinie sur [0; 1/2]. Pour la séparation, on notera que ||P|| = 0 entraîne que P possède une infinité de racines donc est le polynôme nul.
 - Pour N, on notera qu'il n'y a aucun problème de convergence des séries puisque pour tout polynôme P de coefficients (a_k) , la suite (a_k) est nulle à partir d'un certain rang. Pour la séparation, on no-

tera que $\sum_{k=1}^{+\infty} \frac{|a_k|}{k} = 0$ entraîne $\forall k \ge 1, a_k = 0$, et qu'alors $\left| \sum_{k=0}^{+\infty} a_k \right| = 0$ entraîne de plus $a_0 = 0$.

- 2. $\|X^n\| = \frac{1}{2^n} \operatorname{donc} \|X^n 0\| \xrightarrow[n \to +\infty]{} 0 : X^n \xrightarrow[n \to +\infty]{} 0$ • $N(X^n - 1) = 0 + \frac{1}{n} \operatorname{donc} N(X^n - 1) \xrightarrow[n \to +\infty]{} 0 : X^n \xrightarrow[n \to +\infty]{} 1$
- 3. Je propose M : P \mapsto $|a_0| + \left| \sum_{k=0}^{+\infty} a_k \right| + \sum_{k=2}^{+\infty} \frac{|a_k|}{k} \dots$ à verifier!

Exercice 4 *Trois normes sur un espace de dimension infinie* Dans $E = C^1([[0;1],\mathbb{R}),$ on considère :

N: E
$$\to \mathbb{R}, f \mapsto |f(0)| + \int_0^1 |f'(t)| dt$$
 et
 $\nu: E \to \mathbb{R}, f \mapsto |f(1)| + \int_0^1 |f'(t)| dt$.

- 1. Montrer que N et ν sont des normes sur E.
- 2. a) Pour $f \in E$, quelle relation y a-t-il entre f(0), f(1) et $\int_0^1 f'(t)dt$?
 - **b**) Montre que : $\forall f \in E, \nu(f) \le 2N(f)$.
 - c) Établir une inégalité majorant N(f) à l'aide de v(f).
- 3. Soit M : $f \mapsto |f(0)| + \sup_{[0;1]} |f'| = |f(0)| + ||f'||_{\infty}$. On admet que M est une norme sur E.

- a) On pose, pour tout $n \in \mathbb{N}^*$, $f_n : [0; 1] \to \mathbb{R}, x \mapsto x^n$. Calculer $N(f_n)$ et $M(f_n)$.
- b) M et N sont-elles des normes équivalentes?

Solution (Ex.4 – Trois normes sur un espace de dimension infinie)

- 1. N et ν sont positives et homogènes par positivité et homogénéité de la valeur absolue, et positivité de l'intégrale.
 - N(f) = 0 (resp. v(f) = 0) entraı̂ne $\begin{cases} |f(0)| = 0 \text{ (resp. } f(1) = 0) \\ \int_0^1 |f'(t)| dt = 0 \end{cases}$ Or

| f'| est continue et positive, d'intégrale nulle sur [0; 1], donc f' est nulle sur [0; 1], donc f est constante sur [0; 1]. Comme f(0) = 0 (resp. f(1) = 0), f est la fonction nulle de E. N et ν vérifient la séparation.

- 2. a) $\int_0^1 f'(t) dt = [f(t)]_0^1 = f(1) f(0)$
 - **b**) Soit $f \in E$. De 2.a) je tire : $f(1) = f(0) + \int_0^1 f'(t) dt$ puis $|f(1)| \le |f(1)| + \int_0^1 |f'(t)| dt \le N(f)$ $v(f) = |f(0)| + \int_0^1 f'(t) dt \le N(f) + N(f) \le 2N(f)$
 - c) On raisonne de même avec : $|f(0)| \le |f(1)| + \int_0^1 |f'(t)| \, \mathrm{d}t \le \nu(f)$ issue de 2.a). On obtient : $N(f) \le 2\nu(f)$.

 Commentaire : $\forall f \in E, \frac{1}{2}N(f) \le \nu(f) \le 2N(f)$, on dit que N et ν sont équivalentes.

Exercice 5 Caractérisation des limites de puissances d'une matrice

1. Soit A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ telles que : $A^k \xrightarrow[k \to +\infty]{} B$. Mon-

trer que $B^2 = B$.

- 2. Soit $B \in \mathcal{M}_n(\mathbb{K})$ telle que $B^2 = B$. Montrer qu'il existe une matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle $A^k \xrightarrow[k \to +\infty]{} B$.
- 3. Qu'a-t-on démontré?

Solution (Ex.5 – Caractérisation des limites de puissances d'une matrice)

- 1. $A^k \xrightarrow[k \to +\infty]{k \to +\infty} B$ entraîne (suite extraite) $A^{2k} \xrightarrow[k \to +\infty]{k \to +\infty} B$. Mais $A^{2k} = (A^k)^2 \xrightarrow[k \to +\infty]{k \to +\infty} B^2$ par continuité du produit matriciel. Par unicité de la limite : $B^2 = B$.
- 2. Avec A = B, on a par récurrence : $\forall k \in \mathbb{N}^*, A^k = B$, donc $A^k \xrightarrow[k \to +\infty]{} B$.
- 3. Une matrice B est limite de la suite des puissances d'une matrice si, et seulement si, $B^2 = B$.

Exercice 6 Maillage et quadrillage du plan Soit $M = \{(x, y) \in \mathbb{R}^2 | x \in \mathbb{Z} \text{ et } y \in \mathbb{Z} \}$ et $Q = \{(x, y) \in \mathbb{R}^2 | x \in \mathbb{Z} \text{ ou } y \in \mathbb{Z} \}$.

- 1. Représenter M. Justifier sa nature topologique (ouvert ou fermé).
- 2. Représenter Q. Justifier sa nature topologique (ouvert ou fermé).
- 3. Quelle est la nature topologique de

$$U = \bigcup_{(m,n)\in\mathbb{Z}^2}]m; m+1[\times]n; n+1[?]$$

Solution (Ex.6 – Maillage et quadrillage du plan)

1. M est le maillage constitué de tous les points à coordonnées entières : $M = \mathbb{Z}^2$.

Tout revient à déterminer la nature de Z... qui est fermé.

Attention! On peut écrire $\mathbb{Z} = \bigcup_{n \in \mathbb{Z}} \{n\}$ mais rien n'assure qu'une réunion infinie de fermés soit fermée.

Plein de méthodes ...

•Racines d'une fonction continue –

Soit $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto \sin(\pi x)$. f est continue et $\mathbb{Z} = \{x \in \mathbb{R}; f(x) = 0\}$ est fermé, donc \mathbb{Z}^2 aussi.

•Caractérisation séquentielle –

Soit (u_n) une suite convergente de \mathbb{Z} , de limite ℓ . Alors, avec $\varepsilon = 1/4$ dans la définition de la limite,

$$\exists n_0 \in \mathbb{N}, \quad \forall n \ge n_0, \quad \ell - 1/4 \le u_n \le \ell + 1/4.$$

Or $[\ell - 1/4; \ell + 1/4]$ ne contient qu'un entier : appelons-le m.

Alors : $\forall n \ge n_0, u_n \in [\ell - 1/4; \ell + 1/4] \cap \mathbb{Z} = \{m\}, \text{ donc } \forall n \ge n_0, u_n = m.$

Par conséquent : $\lim_{n\to+\infty} u_n = m$, et par unicité de la limite, $\ell=m$, donc $\ell\in\mathbb{Z}$.

Ce qui prouve que Z est fermé.

•Réunion et intersection –

En revanche, $\mathbb{R} \setminus \mathbb{Z} = \bigcup_{n \in \mathbb{Z}} n$; n+1[est une réunion d'ouverts donc est ouverte. Par complémentarité, \mathbb{Z} est fermé

2. Q est le quadrillage constitué des droites horizontales et verticales du plan.

Q = $\{(x,y) \in \mathbb{R}^2 / x \in \mathbb{Z}\} \cup \{(x,y) \in \mathbb{R}^2 / y \in \mathbb{Z}\} = \{(x,y) \in \mathbb{R}^2 / \sin(\pi x) = 0\} \cup \{(x,y) \in \mathbb{R}^2 / \sin(\pi y) = 0\}.$

Comme $(x, y) \mapsto \sin(\pi x)$ et $(x, y) \mapsto \sin(\pi y)$ sont continue sur \mathbb{R}^2 , Q est la réunion de deux fermés donc est fermé.

3. $\forall (m,n) \in \mathbb{Z}^2$, $]m; m+1[\times]n; n+1[$ est ouvert. U est une réunion d'ouverts donc est ouvert.

Remarque : Q et U sont complémentaires dans \mathbb{R}^2 . Dès lors, rien d'étonnant que U soit ouvert puisque Q est fermé, et réciproquement.

Exercice 7 Nature des sous-espaces vectoriels en dimension finie

Soit (E,||.||) un espace vectoriel de dimension finie $n \ge 2$.

- 1. a) Quelle est la nature topologique (fermé ou ouvert) de E?
 - **b**) Quelle est la nature de {0}? Dans la suite F désigne un sous-espace vectoriel de E de dimension d, telle que $d \in [1; n-1]$. On note (e_1, \ldots, e_d) une base de F, que l'on complète en base $\mathcal{B} = (e_1, \dots, e_d, e_{d+1}, \dots, e_n)$ de E. On suppose : $\forall i \in [1; n], ||e_i|| = 1$.
- 2. Soit r > 0.
 - a) Justifier que $u = \frac{r}{2}e_n \in \mathcal{B}(0,r) \setminus F$.
 - b) Qu'en déduire quant à la nature topologique de F?
- 3. a) Soit $(f_n)_{n\in\mathbb{N}}$ une suite de vecteurs de F. On suppose que la suite f converge vers un vecteur ℓ . En exploitant les suites coordonnées, montrer que $\ell \in F$.
 - **b**) Quelle est la nature topologique de F?
- 4. Justifier que F est convexe.

Exercice 8 $\mathcal{GL}_n(\mathbb{K})$ *est dense dans* $\mathcal{M}_n(\mathbb{K})$

- 1. Soit $A \in \mathcal{M}_n(\mathbb{K})$.
 - a) On pose, pour tout x de \mathbb{K} , $P(x) = \det(A + xI_n)$. Justifier que f n'a qu'un nombre fini de racines non nulles.
 - **b**) Pour tout k de \mathbb{N}^* , on pose $A_k = A + \frac{1}{k}I_n$. Justifier qu'il existe un entier k_0 tel que

$$\forall k \geq k_0, \quad A_k \in \mathcal{GL}_n(\mathbb{K}).$$

- c) En déduire que A est limite d'une suite de matrices inversibles.
- d) Qu'en déduire?

Solution (Ex.8 – $\mathcal{GL}_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$)

- 1. Soit $A \in \mathcal{M}_n(\mathbb{K})$.
 - a) P est un polynôme en x de degré n (P(X) = $\chi_A(-X)$), il n'admet qu'un nombre fini de racines, donc un nombre fini de racines non nulles.

b) Soit, pour tout $n \in \mathbb{N}^*$, $A_n \stackrel{\text{def.}}{=} A + \frac{1}{n} I_n$.

Soit $r \stackrel{\text{def.}}{=} \min\{|x|/P(x) = 0 \text{ et } x \neq 0\}$ si P admet des racines non nuls et $r \stackrel{\text{déf.}}{=} 1$ sinon.

Dès que $\frac{1}{n} < r$ (i.e $n > \frac{1}{r}$), A_n est inversible. Or $\lim_{n \to +\infty} A_n = A$. Donc A est limite d'une suite de matrices inversibles

Exercice 9 | *Exponentielle de matrices particulières*

Soit $M \in \mathcal{M}_n(\mathbb{K})$ et, pour tout k de \mathbb{N} , $S_k = \sum_{j=0}^{\kappa} \frac{1}{j!} M^j$.

On appelle exponentielle de M, si elle existe, la limite de la suite $(S_k)_{k\in\mathbb{N}}$, notée e^M .

1. Dans les cas suivants, montrer que e^M existe et la calculer :

a)
$$M = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$
, **b)** $M = \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix}$, **c)** $M = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$.

2. On suppose M diagonalisable, c'est-à-dire qu'il existe $P \in \mathcal{GL}_n(\mathbb{K})$ et $D \in \mathcal{M}_n(\mathbb{K})$ diagonale telles que

$$D = P^{-1}MP$$
.

Montrer que e^D et e^M existent, et donner une relation entre elles.

3. Calculer e^M pour $M = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$.

Solution (Ex.9 – Exponentielle de matrices particulières)

1. Dans les cas suivants, montrer que e^M existe et la calculer :

a)
$$M = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$
, $M^2 = \begin{pmatrix} a^2 & ab + bc \\ 0 & b^2 \end{pmatrix}$, $M^3 = \begin{pmatrix} a^3 & a^2b + abc + bc^2 \\ 0 & b^2 \end{pmatrix}$,

et par récurrence :

$$\forall k \in \mathbb{N}, \quad \mathbf{M}^{k} = \begin{pmatrix} a^{k} & b \sum_{i=0}^{k-1} a^{k-1-i} c^{i} \\ 0 & b^{k} \end{pmatrix} = \begin{cases} \begin{pmatrix} a^{k} & b \frac{a^{k} - c^{k}}{a - c} \\ 0 & b^{k} \end{pmatrix} & \text{si } a \neq c, \\ \begin{pmatrix} a^{k} & b k a^{k-1} \\ 0 & b^{k} \end{pmatrix} & \text{si } a = c. \end{cases}$$

$$\text{Finalement: } \mathbf{S}_{k} \xrightarrow[k \to +\infty]{} \frac{1}{2} \begin{pmatrix} \mathbf{e}^{a} + \mathbf{e}^{-a} & \mathbf{e}^{a} - \mathbf{e}^{-a} \\ \mathbf{e}^{a} - \mathbf{e}^{-a} & \mathbf{e}^{a} + \mathbf{e}^{-a} \end{pmatrix} \stackrel{\text{def.}}{=} \mathbf{e}^{\mathbf{M}}.$$

$$\sum_{j=0}^{k} \frac{a^{j}}{j!} \xrightarrow[j \to +\infty]{} e^{a}, \sum_{j=0}^{k} \frac{b^{j}}{j!} \xrightarrow[j \to +\infty]{} e^{b}, donc:$$

• pour
$$a \neq c$$
, $S_k \xrightarrow[k \to +\infty]{} \left(e^a - \frac{b(e^a - e^c)}{a - c} \right) \stackrel{\text{def.}}{=} e^M$.

• pour
$$a = c$$
, $S_k \xrightarrow[k \to +\infty]{} \begin{pmatrix} e^a & be^a \\ 0 & e^c \end{pmatrix} \stackrel{\text{def.}}{=} e^M$.

b)
$$M^2 = a^2 I_2$$
 donc, en posant $N = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $M^{2k} = a^{2k} I_2$ et $M^{2k+1} = a^{2k+1} N$

$$S_{2j} = \left(\sum_{i=0}^{j} \frac{a^{2i}}{(2i)!}\right) I_2 + \left(\sum_{i=0}^{j-1} \frac{a^{2i+1}}{(2i+1)!}\right) N$$

Or:
$$\sum_{i=0}^{j} \frac{a^{2i}}{(2i)!} \xrightarrow{j \to +\infty} \frac{e^a + e^{-a}}{2}$$
, et: $\sum_{i=0}^{j-1} \frac{a^{2i+1}}{(2i+1)!} \xrightarrow{j \to +\infty} \frac{e^a - e^{-a}}{2}$

donc
$$S_{2j} \xrightarrow{j \to +\infty} \frac{1}{2} \begin{pmatrix} e^{a} + e^{-a} & e^{a} - e^{-a} \\ e^{a} - e^{-a} & e^{a} + e^{-a} \end{pmatrix}$$

Comme
$$S_{2j+1} = \left(\sum_{i=0}^{j} \frac{a^{2i}}{(2i)!}\right) I_2 + \left(\sum_{i=0}^{j} \frac{a^{2i+1}}{(2i+1)!}\right) N$$
,

donc
$$S_{2j+1} \xrightarrow{j \to +\infty} \frac{1}{2} \begin{pmatrix} e^a + e^{-a} & e^a - e^{-a} \\ e^a - e^{-a} & e^a + e^{-a} \end{pmatrix}$$

Finalement:
$$S_k \xrightarrow[k \to +\infty]{} \frac{1}{2} \begin{pmatrix} e^a + e^{-a} & e^a - e^{-a} \\ e^a - e^{-a} & e^a + e^{-a} \end{pmatrix} \stackrel{\text{def.}}{=} e^M$$

c)
$$M = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$
, $M^2 = \begin{pmatrix} 0 & 0 & ac \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $\forall k \ge 3$, $M^k = 0$.

La série n'a que trois termes non nuls, donc converge : e^{M} =

$$\begin{pmatrix} 1 & a & b + \frac{ac}{2} \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}.$$

2. On suppose M diagonalisable.

Soit $P \in \mathcal{GL}_n(\mathbb{K})$ et $D \in \mathcal{M}_n(\mathbb{K})$ diagonale telles que $D = P^{-1}MP$

En notant D = $diag(\lambda_1,...,\lambda_n)$, on a : $\forall j \in \mathbb{N}$, D^j = $diag(\lambda_1^j, \ldots, \lambda_n^j).$

Notons pour tout k de \mathbb{N} , $T_k = \sum_{i=1}^{k} \frac{1}{i!} D^j$.

Donc $T_k \xrightarrow[k \to +\infty]{} diag(\exp(\lambda_1), ..., \exp(\lambda_n)) \stackrel{\text{def.}}{=} e^D$.

Comme : $\forall j \in \mathbb{N}$, $M^j = PD^jP^{-1}$, on a : $\forall k \in \mathbb{N}$, $S_k = PT_kP^{-1}$.

Donc: $S_k \xrightarrow{k \to +\infty} Pe^{D}P^{-1} \stackrel{\text{def.}}{=} e^{M}$.

Ainsi e^D et e^M existent, et $Pe^DP^{-1} = e^M$.

3. On a par récurrence : $\forall n \in \mathbb{N}^*, \mathbf{M}^n = 2^{n-1}\mathbf{M}$.

$$\sum_{k=0}^{n} \frac{1}{k!} M^{k} = I_{2} + \left(\sum_{k=1}^{n} \frac{1}{k!} 2^{k-1} \right) M = I_{2} + \frac{1}{2} \left(\sum_{k=1}^{n} \frac{1}{k!} 2^{k} \right) M$$

$$\sum_{k=0}^{n} \frac{1}{k!} M^{k} \xrightarrow[n \to +\infty]{} I_{2} + \frac{1}{2} (e^{2} - 1) M \text{ d'où } \exp(M) = \frac{1}{2} \begin{pmatrix} 1 + e^{2} & 1 - e^{2} \\ 1 - e^{2} & 1 + e^{2} \end{pmatrix}$$