1-Traces et projecteurs

Cette partie est essentiellement constituée de questions de cours classiques.

1.
$$\operatorname{tr}(\mathbb{AB}) = \sum_{i=1}^{n} (\sum_{j=1}^{n} a_{i,j} b_{i,j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} b_{i,j} = \sum_{j=1}^{n} \sum_{i=1}^{n} b_{i,j} a_{i,j} = \operatorname{tr}(\mathbb{BA})$$

2. Soient \mathcal{B} et \mathcal{B}' deux bases de X. Soient Q la matrice de passage de \mathcal{B} à \mathcal{B}' .. On a alors :

$$\mathbb{T}_{\mathcal{B}'} = Q^{-1} \mathbb{T}_{\mathcal{B}} Q$$

En appliquant la question précédente avec $\mathbb{A} = Q^{-1}\mathbb{T}_{\mathcal{B}}$ et $\mathbb{B} = Q$, on obtient :

$$\operatorname{tr}(\mathbb{T}_{\mathcal{B}'}) = \operatorname{tr}(\operatorname{QQ}^{-1}\mathbb{T}_{\mathcal{B}}) = \operatorname{tr}(\mathbb{T}_{\mathcal{B}}).$$

3. Pour tout x, P(x-P(x))=0 puisque $P^2=P$ ce qui prouve que $x-P(x)\in N(P)$. Comme P(x) est élément de R(P), on vient de vérifier que X=R(P)+N(P). De plus par le théorème du rang :

$$\dim X = \dim(R(P)) + \dim(N(P))$$

La dimension de la somme des deux sous-espaces étant la somme des dimensions des sous-espaces, cette somme est directe. Donc :

$$X = R(P) \oplus N(P)$$

4. Soit x appartenant à R(P). Il existe y tel que x = P(y) aussi

$$P(x) = P(P(y)) = P^{2}(y) = P(y) = x$$

Soit r le rang de P. Dans une base \mathcal{B} adaptée à la décomposition précédente :

$$\mathbb{P}_{\mathcal{B}} = \begin{pmatrix} \mathbb{I}_r & 0 \\ 0 & 0 \end{pmatrix}$$

donc

$$tr P = r = tr (\mathbb{P}_{\mathcal{B}}) = r = rg P$$

5. On a vu précédemment que si $x \in R(P), P(x) = x$ donc P'(x) = 0 aussi $R(P) \subset N(P')$. Réciproquement, si x est élément de N(P'), P(x) = x donc $x \in R(P)$. Aussi

$$R(P) = N(P')$$

On vérifie que P' est aussi un projecteur : comme P et I commutent,

$$P'^2 = (I - P)^2 = I - 2P + P^2 = I - P$$

En échangeant les rôles de P et de P' (puisque P = I - P'), on obtient

$$R(P') = N(P)$$

6. L'application de Φ : $F \times G \mapsto X \atop (x,y) \mapsto x+y$ est une application linéaire dont l'image est F+G. Aussi par le théorème du rang

$$\dim(F+G) = \dim(F \times G) - \dim(\operatorname{Ker}(\Phi)) \le \dim(F \times G) = \dim F + \dim G$$

Remarque : on peut aussi exhiber une base génératrice de F+G par concaténation d'une base de F et d'une base de G.

7. Pour ne pas généraliser sans démonstration le résultat précédent à la somme de p sous-espaces (ce qui est dans le cours!!), on procède par récurrence sur le nombre de projecteurs m intervenant dans la somme.

Pour m = 1, $S = P_1$ donc $\operatorname{tr} S = \operatorname{rg} S$ aussi $\operatorname{tr} S \in \mathbb{N}$ et $\operatorname{tr} S \ge \operatorname{rg} S$.

Supposons la propriété vraie à l'ordre $m-1 \geq 1$. On pose $S' = \sum_{i=1}^{m-1} P_i$ donc $S = S' + P_m$. Par

hypothèse de récurrence $\operatorname{tr} S' \in \mathbb{N}$ et $\operatorname{tr} S' \geq \operatorname{rg} S'$. La trace étant linéaire, $\operatorname{tr} S = \operatorname{tr} S' + \operatorname{tr} P_m \in \mathbb{N}$ comme somme de deux entiers. De plus, pour tout x de $X: S(x) = S'(x) + P_m(x)$ donc $R(S) \subset R(S') + R(P_m)$. En utilisant la question précédente et tr $(P_m) = rg(P_m)$:

$$\operatorname{rg}(S) = \dim R(S) \le \operatorname{rg}(S') + \operatorname{rg}(P_m) \le \operatorname{tr}(S') + \operatorname{tr}(P_m) = \operatorname{tr}(S)$$

On a donc prouvé par récurrence que pour tout entier naturel m:

$$S = \sum_{i=1}^{m} P_i \Longrightarrow \operatorname{tr} S \in \mathbb{N} \text{ et } \operatorname{tr} S \ge \operatorname{rg} S$$

2-Projecteurs de rang 1

On suppose dans cette partie que le rang du projecteur P est égal à 1.

8. Soit f_1 un élément non nul de R(P): c'est donc une base de R(P) puisque $\operatorname{rg} P = 1$. Comme $P \circ T(f_1) = P(T \circ f_1)$, cet élément appartient à R(P) . Aussi :

$$\exists \mu \in \mathbb{R}, P \circ T(f_1) = \mu f_1$$

Or pour tout x de X, P(x) est colinéaire à f_1 ($P(x) = \alpha f_1$) donc

$$P \circ T \circ P(x) = P \circ T(\alpha f_1) = \mu \alpha f_1 = \mu P(x)$$

ce qui prouve que :

$$P \circ T \circ P = \mu P.$$

- 9. Comme f_1 est dans R(P), d'après ce qui précède, $P(f_1) = \mu f_1$. Comme $f_1 P(f_1)$ est élément de $N(P) = \text{Vect}(f_2, \dots, f_n)$, cela justifie la forme de la première colonne de $\mathbb{T}_{\mathcal{C}}$, les autres colonnes étant quelconques.
- 10. Par définition de P', $\mathbb{P}'_{\mathcal{C}} = \begin{pmatrix} 0 & 0_{1,n-1} \\ 0_{n-1,1} & \mathbb{I}_{n-1} \end{pmatrix}$. Si on écrit de la même façon, $\mathbb{T}_{\mathcal{C}} = \begin{pmatrix} \mu & L \\ C & \mathbb{B} \end{pmatrix}$, un calcul en blocs donne alors :

$$\mathbb{P}_{\mathcal{C}}'\mathbb{T}_{\mathcal{C}} = \begin{pmatrix} 0 & 0_{1,n-1} \\ C & \mathbb{B} \end{pmatrix} \Longrightarrow \mathbb{P}_{\mathcal{C}}'\mathbb{T}_{\mathcal{C}}\mathbb{P}_{\mathcal{C}}' = \begin{pmatrix} 0 & 0_{1,n-1} \\ 0_{n-1,1} & \mathbb{B} \end{pmatrix}$$

Aussi

$$P' \circ T \circ P' = \alpha P' \iff \mathbb{P}'_{\mathcal{C}} \mathbb{T}_{\mathcal{C}} \mathbb{P}'_{\mathcal{C}} = \alpha \mathbb{P}'_{\mathcal{C}} \iff \mathbb{B} = \alpha \mathbb{I}_{n-1}.$$

On a ainsi vérifié par contraposition que :

 $\mathbb B$ n 'est pas la matrice d'une homothétie si et seulement si $P' \circ T \circ P'$ n'est pas proportionnel à P'

Remarque : il suffisait d'une implication donc de montrer que si $\mathbb{B} = \alpha \mathbb{I}_{n-1}$ alors $P' \circ T \circ P' =$ $\alpha P'$.

3- Endomorphismes différents d'une homothétie

On suppose dans cette partie que l'endomorphisme T n'est pas une homothétie.

11. Prouvons le résultat demandé par contraposition. On suppose que pour tout x, (x, T(x)) est une famille liée ce qui équivaut à dire que pour tout x non nul, il existe α_x réel tel que $T(x) = \alpha_x x$.

Soit u un vecteur non nul fixé et $\alpha = \alpha_u$. Si x est colinéaire à u, il existe λ tel que $x = \lambda u$ et on a :

$$T(x) = \lambda T(u) = \lambda \alpha u = \alpha x$$

Si x n'est pas colinéaire à u, u + x est non nul et on a alors :

$$T(x+u) = T(x) + T(u) = \alpha_x x + \alpha u = \alpha_{x+u}(u+x)$$

La famille (u, x) étant libre : $\alpha = \alpha_{x+u} = \alpha_x$ ce qui prouve que pour tout x (l'égalité étant triviale pour le vecteur nul), $T(x) = \alpha x$ soit T est une homothétie. On a montré :

$$\forall x, (x, T(x)) \text{ liés} \Longrightarrow \exists \alpha, \quad T = \alpha I$$

Par contraposition

Si T n'est pas une homothétie, il existe un vecteur $x \in X$ tel que x et T(x) ne soient pas liés.

- 12. Soit e_1 un élément tel que e_1 et $T(e_1)$ ne soient pas colinéaires (un tel vecteur existe par la question précédente). On peut compléter cette famille libre en une base $\mathcal{B} = (e_1, T(e_1), e_3, \dots, e_n)$ de X et dans cette base T a la matrice recherchée.
- 13. Procédons par récurrence.
 - Initialisation : n=2. On a trouvé dans la question précédente une base \mathcal{B} telle que :

$$\mathbb{T}_{\mathcal{B}} = \begin{pmatrix} 0 & b \\ 1 & a \end{pmatrix}$$

or tr T = a donc a = 0. La base \mathcal{B} convient.

• Supposons la propriété réalisée à l'ordre $n-1 \geq 1.$ On a montré dans la question précédente l'existence d'une base $\mathcal{B} = \{e_1, e_2, ..., e_n\}$ dans laquelle la matrice $\mathbb{T}_{\mathcal{B}}$ est de la forme suivante :

$$\mathbb{T}_{\mathcal{B}} = \begin{pmatrix} 0 & \mathbf{x} & \mathbf{x} & \cdots & \mathbf{x} \\ 1 & & & & \\ 0 & & & & \\ \vdots & & \mathbb{A} & & \\ 0 & & & & \end{pmatrix}$$

où $\mathbb{A} \in \mathcal{M}_{n-1}$. Comme $\operatorname{tr}(T) = \operatorname{tr}(\mathbb{A}), \operatorname{tr}(\mathbb{A}) = 0$.

Si \mathbb{A} est de la forme $\alpha \mathbb{I}_{n-1}$, $\alpha = 0$ et la base \mathcal{B} convient.

Sinon soit T_1 l'endomorphisme de $X_1 = \text{Vect}(e_2, \cdots, e_n)$ de matrice \mathbb{A} dans la base

 $\mathcal{B}_1 = \{e_2, \cdots, e_n\}$. Cet endomorphisme n'est pas une homothétie et est de trace nulle.

Par hypothèse de récurrence, il existe une base $\mathcal{B}'_1 = \{e'_2, \dots, e'_n\}$ dans laquelle \mathbb{A}_1 la matrice de T_1 a une diagonale (principale) de 0. Soit $\mathcal{B}' = \{e-1, e'_2, \dots, e'_n\}$ base de X. Dans la base \mathcal{B}' , la matrice de T n'a que des 0 sur la diagonale. On peut le montrer matriciellement ou en vectoriellement.

Méthode matricielle : Soit \mathbb{Q}_1 la matrice de passage de \mathcal{B}_1 à \mathcal{B}'_1 , la matrice de passage de \mathcal{B}

à
$$\mathcal{B}'$$
 est alors $\mathbb{Q} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & \mathbb{Q}_1 & \\ 0 & & & \end{pmatrix}$ et

$$\mathbb{T}_{\mathcal{B}'} = \mathbb{Q}^{-1} \mathbb{T}_{\mathcal{B}} \mathbb{Q} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & \mathbb{Q}_1^{-1} & \\ 0 & & & \end{pmatrix} \begin{pmatrix} 0 & \mathbf{x} & \mathbf{x} & \cdots & \mathbf{x} \\ 1 & & & & \\ 0 & & & & \\ \vdots & \mathbb{A} & & \\ 0 & & & & \end{pmatrix} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & \mathbb{Q}_1 & \\ 0 & & & \end{pmatrix}$$

Soit

$$\mathbb{T}_{\mathcal{B}'} = \begin{pmatrix} 0 & \times & \cdots & \times \\ \times & & & \\ \vdots & & \mathbb{Q}_1^{-1} & \\ \times & & & \end{pmatrix} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & \mathbb{Q}_1 & \\ 0 & & & \end{pmatrix} = \begin{pmatrix} 0 & \times & \cdots & \times \\ \times & & & \\ \vdots & & \mathbb{A}_1 & \\ \times & & & \end{pmatrix}$$

matrice dont la diagonale est composée d'un 0 suivi des éléments diagonaux de \mathbb{A}_1 nuls par construction.

Méthode vectorielle : Par la matrice précédente, $T(e_1) \in X_1$ ce qui justifie que dans $\mathbb{T}_{\mathcal{B}'}$ ait un 0 en ligne 1 colonne 1.

Si $x \in X_1, T(x) = \alpha_x e_1 + T_1(x)$; aussi, la composante de $T(e_i')$ sur e_i' est la même que celle de $T_1(e_i')$; elle est donc nulle. Tous les termes diagonaux de $\mathbb{T}_{\mathcal{B}'}$ sont donc nuls.

Ainsi

Il existe une base dans laquelle la matrice de T n'a que des 0 sur sa diagonale.

14. Soit $T' = T - t_1 I$. Cet endomorphisme n'est ni une homothétie ni l'endomorphisme nul puisque T n'est pas colinéaire à I. Par la question 1, il existe \mathcal{B} telle que

$$\mathbb{T}'_{\mathcal{B}} = \begin{pmatrix} 0 & b \\ 1 & a \end{pmatrix}$$

où $a=\operatorname{tr} \mathbf{T}'=\operatorname{tr} \mathbf{T}-\mathbf{t}_1 \mathrm{tr} \, \mathbf{I}=(\mathbf{t}_1+\mathbf{t}_2)-2\mathbf{t}_1=\mathbf{t}_2-\mathbf{t}_1$ d'où

$$\boxed{\mathbb{T}_{\mathcal{B}} = \begin{pmatrix} 0 & b \\ 1 & t_2 - t_1 \end{pmatrix} + t_1 \mathbb{I}_2 = \begin{pmatrix} t_1 & b \\ 1 & t_2 \end{pmatrix}}$$

15. Par la propriété admise, il existe un projecteur L de X de rang 1, tel que d'une part $LTL = t_1L$ et d'autre part L'TL' ne soit pas proportionnel à L' = I - L. Par la question 9, dans une base \mathcal{C} adaptée à la décomposition $E = R(L) \oplus N(L)$

$$\mathbb{T}_{\mathcal{C}} = \begin{pmatrix} t_1 & \mathbf{x} & \cdots & \mathbf{x} \\ \mathbf{x} & & & \\ \vdots & & \mathbb{B} & \\ \mathbf{x} & & & \end{pmatrix}.$$

et par la question 10 comme L'Tl' n'est pas proportionnel à I, $\mathbb B$ n'est pas une matrice colinéaire à I.

16. La récurrence est suggérée et a été initialisée pour n=2 en question 14. Supposons la propriété réalisée à l'ordre $n-1 \geq 2$ et démontrons la à l'ordre n. Par la question précédente, il existe $\mathcal{C} = \{e_1, \dots, e_n\}$ telle que :

$$\mathbb{T}_{\mathcal{C}} = \begin{pmatrix} t_1 & \mathbf{x} & \cdots & \mathbf{x} \\ \mathbf{x} & & & \\ \vdots & & \mathbb{B} \\ \mathbf{x} & & \end{pmatrix}.$$

où \mathbb{B} n'est pas une matrice d'homothétie et $\operatorname{tr}(\mathbb{B}) = \operatorname{tr}(T) - t_1 = \sum_{i=2}^{n} t_i$.

Soit T_1 l'endomorphisme de $\text{Vect}(e_2, \dots, e_n)$ de matrice \mathbb{B} dans la base $\mathcal{C}_1 = \{e_2, \dots, e_n\}$. T_1 n'est donc pas une homothétie et par hypothèse de récurrence, il existe \mathcal{C}'' telle que $\mathbb{T}_{1,\mathcal{C}''} = \mathbb{B}'$ est une matrice de termes diagonaux T_2, \dots, t_n .

Soit $\mathcal{B}'' = \{e_1\} \cup \mathcal{C}''$. La matrice de passage de \mathcal{C} à \mathcal{B}'' est $\mathbb{Q} = \begin{pmatrix} 1 & 0 \\ 0 & \mathbb{Q}_1 \end{pmatrix}$ où \mathbb{Q}_1 est la matrice

de passage de C_1 à C'' et $\mathbb{Q}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & \mathbb{Q}_1^{-1} \end{pmatrix}$. Un calcul en blocs identique à celui de la question 13 donne alors :

$$\mathbb{T}_{\mathcal{B}''} = \mathbb{Q}^{-1} \begin{pmatrix} t_1 & \mathbf{x} & \cdots & \mathbf{x} \\ \mathbf{x} & & & \\ \vdots & & \mathbb{B} \\ \mathbf{x} & & & \end{pmatrix} \mathbb{Q} = \begin{pmatrix} t_1 & \mathbf{x} & \cdots & \mathbf{x} \\ \mathbf{x} & & & \\ \vdots & & \mathbb{B}' \\ \mathbf{x} & & & \end{pmatrix}$$

Cette dernière matrice a bien comme éléments diagonaux t_1, \dots, t_n . Ainsi on a vérifié par récurrence que :

il existe une base \mathcal{B}'' dans laquelle la diagonale de $\mathbb{T}_{\mathcal{B}''}$ ait pour éléments diagonaux les t_i où $i \in [1, n]$.

4 -Décomposition en somme de projecteurs

On suppose désormais que T est un endomorphisme de X vérifiant $\operatorname{tr} T \in \mathbb{N}$ et $\operatorname{tr} T \geq \operatorname{rg} T$. On pose $\rho = \operatorname{rg} T$ et $\theta = \operatorname{tr} T$.

17. Par le théorème du rang, dim $N(T) = n - \rho$. Soit X_1 un supplémentaire de N(T) et $\mathcal{B} = \{e_1, \dots, e_n\}$ une base adaptée à la décomposition $X = F \oplus N(T)$.

Dans cette base
$$\mathcal{B}$$
, $\mathbb{T}_{\mathcal{B}}$ est de la forme $\begin{pmatrix} \mathbb{T}_1 & \mathbb{O} \\ \mathbb{T}_2 & \mathbb{O} \end{pmatrix}$.

18. Soit T_1 l'endomorphisme de X_1 de matrice \mathbb{T}_1 dans la base $\mathcal{B}_1 = \{e_1, \dots, e_{\rho}\}$. Comme $\operatorname{tr}(T) = \operatorname{tr}(\mathbb{T}_{\mathcal{B}}) = \operatorname{tr}(\mathbb{T}_1) = \operatorname{tr}(T_1)$, $\operatorname{tr}(T_1)$ est élément de \mathbb{N} et $\operatorname{tr}(T_1) \geq \rho$. Soient $t_i = 1$ pour $i \in [1, \rho - 1]$ et $t_{\rho} = \operatorname{tr}(T) - (\rho - 1) \geq 1$. Ces ρ nombres sont des entiers naturels non nuls dont la trace est égale à $\operatorname{tr}(\mathbb{T}_1)$. Par la question 16, T' n'étant pas une homothétie, il existe \mathcal{B}_1'' une base de X_1 où \mathbb{T}_1' la matrice de T' dans la base \mathcal{B}_1'' admet comme éléments diagonaux t_1, \dots, t_{ρ} . Soit $\mathcal{B}' = \mathcal{B}_{1}'' \setminus \{e_{\rho+1}, \dots, e_n\}$.

Dans cette nouvelle base, la matrice de T a la forme $\begin{pmatrix} \mathbb{T}_1' & \mathbb{O} \\ \mathbb{T}_2' & \mathbb{O} \end{pmatrix}$ où \mathbb{T}_1' a comme éléments diagonaux des entiers non nuls.

5/6

19. Soient C_1, \dots, C_ρ les premières colonnes de $\mathbb{T}_{\mathcal{B}'}$. Soit P_i l'endomorphisme dont la matrice dans la base \mathcal{B}' est :

$$\mathbb{P}_{\exists \mathcal{B}'} = \begin{pmatrix} 0 & \cdots & 0 & \frac{1}{t_i} C_i & 0 & \cdots & 0 \end{pmatrix}$$

Cette matrice ayant un 1 en place (i, i), on a $\mathbb{P}^2_i = \mathbb{P}_i$, ce qui prouve que les P_i sont des projecteurs. Ainsi

$$T = \sum_{i=1}^{\rho} t_i P_i = \underbrace{P_1 + \cdots P_1}_{t_1 \text{ fois}} + \cdots + \underbrace{P_{\rho} + \cdots + P_{\rho}}_{t_{\rho} \text{ fois}}.$$

20. Comme $\mathbb{T}_1 = \alpha \mathbb{I}_{\rho}$, $\operatorname{tr}(T) \geq \rho$ donne $\alpha \geq 1$. Si $\alpha = 1$, on peut utiliser la méthode précédente (on peut même l'utiliser si $\alpha \in \mathbb{N}$) en décomposant en somme de ρ projecteurs de rang 1.

(on peut même l'utiliser si
$$\alpha \in \mathbb{N}$$
) en décomposant en somme de ρ projecteurs de rang 1 .
Si $\alpha > 1$, soit P_0 de matrice $\mathbb{P}_0 = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & \mathbb{O} \\ 0 & & & \end{pmatrix}$ dans la bas \mathcal{B}' . Alors $T - P_0$ a pour matrice :

 $(\mathbb{T}-\mathbb{P}_0)_{\mathcal{B}'}=\begin{pmatrix}\mathbb{T}_1''&0\\\mathbb{T}_2'&0\end{pmatrix}$ où T_1'' est une matrice ayant pour éléments diagonaux $(\alpha-1,\alpha,\cdots,\alpha)$: ce n'est donc pas une matrice d'homothétie. De plus, $T-P_0$ est de rang au plus ρ (sa matrice dans la base \mathcal{B}' a $n-\rho$ colonnes nulles). Ainsi $T-P_0$ vérifie

$$tr(T-P_0) = \rho\alpha - 1 > \rho - 1 \Longrightarrow tr(T-P_0) \ge \rho \ge rg(T-P_0)$$

donc on peut appliquer la question précédente. $T' = T - P_0$ est une somme de projecteurs et comme $T = P_0 + (T - P_0)$:

$$T$$
 est une somme de projecteurs

On a ainsi prouvé que T est une somme de projecteurs si et seulement si sa trace est un entier naturel supérieur ou égal à son rang.