Exercice 1 Un calcul de l'intégrale de Gauss...

Soit $f,g:\mathbb{R}\to\mathbb{R}$ définies par :

$$f(x) = \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} dt$$
 et $g(x) = f(x^2)$.

- 1. Justifier que f de classe C^1 et calculer f'.
- 2. Déterminer f(0) et $\lim_{x \to +\infty} f(x)$.
- 3. Montrer que $j: x \mapsto g(x) + \left(\int_0^x e^{-t^2} dt\right)^2$ est constante sur \mathbb{R} .
- 4. En déduire la valeur de l'intégrale de Gauss : $G = \int_0^{+\infty} e^{-t^2} dt$.

Solution (Ex.1 – Un calcul de l'intégrale de Gauss...)

Notons que tant que nous travaillons sur le SEGMENT [0; 1], toute fonction continue sur ce segment est intégrable.

- 1. Soit $h: \mathbb{R} \times [0; 1] \to \mathbb{R}, (x, t) \mapsto \frac{e^{-x(1+t^2)}}{1+t^2}$.
 - À $t \in [0; 1]$ fixé, $x \mapsto h(x, t)$ est de classe C^1 sur \mathbb{R} .
 - À $x \in \mathbb{R}$ fixé, $t \mapsto h(x,t)$ est continue sur le segment [0; 1], donc intégrable.
 - Soit $[a; b] \subset \mathbb{R}$, $x \in [a; b]$ et $t \in [0; 1]$.

Il faut maîtriser les majorations à venir, et c'est simple si on ne joue pas aux devinettes mais si on y va pas à pas.

$$1 + t^{2} \geqslant 1 \Longrightarrow \frac{1}{1 + t^{2}} \leqslant 1, \text{ et } a \leqslant x \Longrightarrow_{(-1 < 0)} -a \geqslant -x \Longrightarrow_{(1 + t^{2} > 0)} -a(1 + t^{2}) \geqslant -x(1 + t^{2}) \Longrightarrow_{(\exp \nearrow)} e^{-x(1 + t^{2})} \leqslant e^{-a(1 + t^{2})}$$

donc $|h(x,t)| \le e^{-a(1+t^2)}$, et ce dernier majorant n'est pas forcément plus petit que 1 car a peut être strictement négatif.

 $\varphi: t \longmapsto e^{-a(1+t^2)}$ est continue donc intégrable sur le segment [0; 1].

Ainsi f est de classe \mathcal{C}^1 sur tout segment [a;b] de \mathbb{R} , donc de classe \mathcal{C}^1 sur \mathbb{R} avec :

$$\forall x \in \mathbb{R}, \quad f'(x) = \int_0^1 e^{-x(1+t^2)} dt = e^{-x} \int_0^1 e^{-xt^2} dt.$$

- 2. $f(0) = \int_0^1 \frac{\mathrm{d}t}{1+t^2} = [\arctan t]_0^1 = \frac{\pi}{4}$.
 - Soit $x \ge 0$. $\forall t \in [0; 1]$, $0 \le \frac{e^{-x(1+t^2)}}{1+t^2} \le e^{-x}$, donc par croissance de l'intégrale $0 \le f(x) \le e^{-x}$. Par encadrement, $\lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = 0$.
 - On peut aussi utiliser le théorème de convergence dominée pour cette dernière limite, en dominant par exemple par la constante 1 intégrable sur le segment [0; 1], mais il faut alors donner une majoration sur un intervalle du type $[a; +\infty[$ car il faudra faire tendre x vers $+\infty$.
- 3. Soit $j: x \mapsto g(x) + \left(\int_0^x e^{-t^2} dt\right)^2$.

Par composition, j est dérivable et : $\forall x \in \mathbb{R}$,

$$j'(x) = 2xf'(x^2) - 2e^{-x^2} \int_0^x e^{-t^2} dt = 2xe^{-x^2} \int_0^1 e^{-x^2t^2} dt - 2e^{-x^2} \int_0^x e^{-t^2} dt$$

Pour x = 0, j'(0) = 0.

Pour $x \neq 0$, posons u = xt dans la première intégrale, changement de variable de classe C^1 strictement monotone donc bijectif (ce qui ne serait pas la cas pour x = 0):

$$j'(x) = 2xe^{-x^2} \frac{1}{x} \int_0^x e^{-u^2} du - 2e^{-x^2} \int_0^x e^{-t^2} dt = 0$$

Donc j est constante sur \mathbb{R} .

4. $j(x) \xrightarrow{x \to 0} g(0) = f(0) = \frac{\pi}{4}$, donc j est constante égale à $\frac{\pi}{4}$.

Or
$$g(x) \xrightarrow[x \to +\infty]{} \lim_{x \to +\infty} f(x) = 0$$
, donc $\lim_{x \to +\infty} \left(\int_0^x e^{-t^2} dt \right)^2 = \lim_{x \to +\infty} j(x) = \frac{\pi}{4}$.

Donc $\left(\int_{0}^{+\infty} e^{-t^2} dt\right)^2 = \frac{\pi}{4}$, et comme $\int_{0}^{+\infty} e^{-t^2} dt \ge 0$, justification nécessaire que je n'ai lue dans aucune copie,

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

Exercice 2 | ... et quelques valeurs de la fonction Gamma d'Euler

On appelle fonction gamma d'Euler la fonction définie par :

$$\forall x \in]0; +\infty[, \Gamma(x) \stackrel{\text{déf.}}{=} \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

- 1. Soit $x \in \mathbb{R}$. Justifier que $\int_{0}^{+\infty} t^{x-1} e^{-t} dt$ existe si, et seulement si, x > 0.
- 2. a) Montrer que : $\forall x \in]0$; $+\infty[$, $\Gamma(x+1) = x\Gamma(x)$.
 - **b**) En déduire la valeur de $\Gamma(n)$ pour tout n de \mathbb{N}^* .
- 3. a) Déterminer la valeur exacte de $\Gamma(1/2)$ à l'aide de l'intégrale de Gauss calculée dans l'exercice précédent.
 - **b**) Exprimer, pour tout *n* de \mathbb{N} , $\Gamma(n+\frac{1}{2})$ à l'aide de puissances et de factorielles.

Solution (Ex.2 – ... et quelques valeurs de la fonction Gamma d'Euler)

1. Soit $f(x,t) = t^{x-1}e^{-t}$ définie sur $\mathbb{R} \times]0$; $+\infty[$.

Pour $x \in \mathbb{R}$, $t \mapsto f(x,t)$ est continue par morceaux et positive sur $]0; +\infty[$.

Étude en 0: $f(x,t) \sim t^{x-1}$. Or l'intégrale de Riemann $\int_0^1 t^{x-1} dt$ converge si, et seulement si, x-1 > -1, i.e. x > 0. Donc $\int_{0}^{1} f(x,t) dt$ converge si, et seulement si, x > 0.

Étude en +\infty: $t^2 f(x,t) \xrightarrow[t \to +\infty]{} 0$ car $t^{x+1} = o(e^t)$, donc $f(x,t) = o(1/t^2)$ et $\int_{-\infty}^{+\infty} f(x,t) dt$

Donc $\int_{0}^{+\infty} t^{x-1} e^{-t} dt$ existe si, et seulement si, x > 0.

2. a) Soit $x \in]0$; $+\infty[$. $\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt$. Effectuons une intégration par parties avec : $t \mapsto t^x$ et $t \mapsto -e^{-t} C^1$ sur $]0; +\infty[$ et vérifiant $-t^x e^{-t} \xrightarrow[t \to 0]{} 0$ et $-t^x e^{-t} \xrightarrow[t \to +\infty]{} 0$.

$$-t^{x}e^{-t} \xrightarrow[t\to 0]{} 0 \text{ et } -t^{x}e^{-t} \xrightarrow[t\to +\infty]{}$$

$$\Gamma(x+1) = \left[-t^x e^{-t} \right]_0^{+\infty} + x \int_0^{+\infty} t^{x-1} e^{-t} dt = x \Gamma(x).$$

b) $\Gamma(1) = \int_{0}^{+\infty} e^{-t} dt = 1$, et par une récurrence immédiate

$$\forall n \in \mathbb{N}^*, \quad \Gamma(n) = (n-1)!$$

3. a) L'exercice Un calcul de l'intégrale de Gauss donne, à l'aide d'un changement de variable de classe C^1 strictement croissant donc bijectf

$$\frac{\sqrt{\pi}}{2} = \int_0^{+\infty} e^{-t^2} dt \stackrel{u=t^2}{=} \int_0^{+\infty} \frac{e^{-u}}{2\sqrt{u}} du = \frac{1}{2} \Gamma(1/2) \text{ donc } \Gamma(1/2) = \sqrt{\pi}.$$

$$\Gamma(n+\frac{1}{2}) = (n-\frac{1}{2})\Gamma(n-\frac{1}{2}) = \frac{2n-1}{2}(n-\frac{3}{2})\Gamma(n-\frac{3}{2}) = \frac{(2n-1)(2n-3)}{2^2}(n-\frac{5}{2})\Gamma(n-\frac{5}{2}) = \dots$$

$$\Gamma(n+\frac{1}{2}) = \frac{(2n-1)(2n-3)\times \cdots \times 3\times 1}{2^n}\Gamma(1/2) = \frac{(2n)!}{n!2^{2n}}\sqrt{\pi}$$
avec les manipulations classiques permettant que calculer le produit des entiers impairs:
$$P_n = \prod_{k=1}^{n} (2k) = 2^n n! \text{ donc } I_n = \prod_{k=1}^{n} (2k-1) = \frac{(2n)!}{P_n} = \frac{(2n)!}{2^n n!}.$$

$$P_n = \prod_{k=1}^n (2k) = 2^n n! \text{ donc } I_n = \prod_{k=1}^n (2k-1) = \frac{(2n)!}{P_n} = \frac{(2n)!}{2^n n!}$$

Remarque : cette formule se démontre aussi par récurrence sur n...

L'hérédité peut se rédiger comme suit :

$$\Gamma(n+1+1/2) = \left(n+\frac{1}{2}\right)\Gamma\left(n+\frac{1}{2}\right) = \frac{2n+1}{2} \times \frac{(2n)!}{2^n n!} \sqrt{\pi} = \frac{2n+2}{2(n+1)} \times \frac{(2n+1)!}{2^{2n+1} n!} \sqrt{\pi} = \frac{(2n+2)!}{2^{2n+2}(n+1)!} \sqrt{\pi}$$