Exercice 1 Pairs et impairs

1. a) Justifier la convergence des séries

$$\sum_{n\geq 1} \frac{(-1)^n}{n^2}, \ \sum_{n\geq 0} \frac{1}{(2n+1)^2} \quad \text{ et } \quad \sum_{n\geq 1} \frac{1}{(2n)^2}.$$

- b) En admettant $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, calculer les sommes des séries précédentes.
- 2. Montrer que :

$$\forall x \in \mathbb{R}, \qquad \sum_{k=0}^{+\infty} \frac{x^{2k}}{(2k)!} > \sum_{k=0}^{+\infty} \frac{x^{2k+1}}{(2k+1)!}.$$

Solution (Ex.1 – Pairs et impairs)

1. a) $\sum_{n\geq 1} \frac{(-1)^n}{n^2}$ converge par application du théorème spécial des séries alternées.

 $\sum_{n\geq 0}^{\infty}\frac{1}{(2n)^2}$ converge par linéarité car la série de Riemann de paramètre $\alpha=2$ converge

 $\sum_{n\geq 0} \frac{1}{(2n+1)^2}$ converge par le critère des équivalents de t.g. positifs :

 $\frac{1}{(2n+1)^2} \underset{n \to +\infty}{\sim} \frac{1}{4n^2}$ et convergence de la série de Riemann de paramètre $\alpha=2$.

b)
$$\sum_{n=1}^{+\infty} \frac{1}{(2n)^2} = \frac{1}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi}{24},$$

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{n \text{ pair }} \frac{1}{n^2} + \sum_{n \text{ impair }} \frac{1}{n^2} = \sum_{n=1}^{+\infty} \frac{1}{(2n)^2} + \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2},$$

d'où
$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{6} - \frac{\pi^2}{24} = \frac{\pi^2}{8}$$

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = \sum_{n \text{ pair}} \frac{1}{n^2} - \sum_{n \text{ impair}} \frac{1}{n^2} = \frac{\pi^2}{24} - \frac{\pi^2}{8} = -\frac{\pi^2}{12}.$$

Remarque : la somme de cette dernière série alternée est bien du signe de son premier terme.

2. Soit $x \in \mathbb{R}$.

 $\forall k \in \mathbb{R}, 0 \leq \frac{x^{2k}}{(2k)!} \leq \frac{(x^2)^k}{k!} \text{ assure la convergence de } \sum_{k \geq 0} \frac{x^{2k}}{(2k)!} \text{ par comparaison à } k$

la série exponentielle de paramètre x^2 .

Une comparaison analogue justifie la convergence de $\sum_{k>0} \frac{x^{2k}}{(2k+1)!}$, donc de

$$\sum_{k>0} \frac{x^{2k+1}}{(2k+1)!} \text{ par linéarité.}$$

Attention si on utilise un autre critère : x^{2k+1} est de signe alternant pour x < 0

Enfin
$$\sum_{k=0}^{+\infty} \frac{x^{2k}}{(2k)!} - \sum_{k=0}^{+\infty} \frac{x^{2k+1}}{(2k+1)!} = \sum_{k=0}^{+\infty} \frac{(-x)^k}{k!} = \exp(-x) > 0.$$

Exercice 2 Convergences et sommes

- 1. Montrer que la série $\sum_{n\geqslant 1}\frac{1}{n(n+1)}$ converge et déterminer sa somme.
- 2. On s'intéresse maintenant à la série de terme général

$$v_n = \frac{1}{n^2(n+1)^2}.$$

- a) Justifier que la série $\sum_{n} v_n$ converge.
- b) Déterminer trois réels a, b et c tels que

$$\forall n \in \mathbb{N}^*, \qquad v_n = \frac{a}{n^2} + \frac{b}{(n+1)^2} + \frac{c}{n(n+1)}.$$

c) On donne : $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Déterminer la valeur de $\sum_{n=1}^{+\infty} v_n$.

Solution (Ex.2 – Convergences et sommes)

1. $\forall n \in \mathbb{N}^*, \qquad \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}.$

Tout marche pour prouver la convergence : majoration, équivalence, domination du terme général par $1/n^2$, mais **soyons directs :** la série de terme général $\frac{1}{n} - \frac{1}{n+1}$ converge car la suite $\left(\frac{1}{n}\right)$ converge...

Par télescopage,
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = \lim_{N \to +\infty} \sum_{n=1}^{N} \frac{1}{n} - \frac{1}{n+1} = \lim_{N \to +\infty} 1 - \frac{1}{N+1} = 1$$

- **2. a)** Par domination par le terme général de la série de Riemann de paramètre $\alpha=4,$ $\sum_n v_n \text{ converge.}$
 - b) Soyons directs, en élevant la décomposition en éléments simples de 1., on trouve directement

$$\forall n \in \mathbb{N}^*, \qquad v_n = \frac{1}{n^2} + \frac{1}{(n+1)^2} + \frac{-2}{n(n+1)}.$$

c) Comme
$$\sum_{n=1}^{+\infty} \frac{1}{(n+1)^2} = \sum_{n=1}^{+\infty} \frac{1}{n^2} - 1,$$
$$\sum_{n=1}^{+\infty} v_n = \frac{\pi^2}{6} + \left(\frac{\pi^2}{6} - 1\right) - 2 \times 1 = \frac{\pi^2}{3} - 3.$$

Exercice 3 Autour du logarithme

Existence et valeur de $\sum_{n=2}^{+\infty} \ln\left(1 - \frac{1}{n^2}\right)$.

Solution (Ex.3 – Autour du logarithme)

L'existence peut être obtenue via l'équivalence $\ln(1-1/n^2) \sim 1/n^2$ et la convergence de la série de Riemann de paramètre 2. Mais on peut faire d'une pierre deux coups en cherchant la somme.

$$\begin{split} \sum_{n=2}^{N} \ln\left(1 - \frac{1}{n^2}\right) &= \sum_{n=2}^{N} \ln\left(\frac{(n-1)(n+1)}{n^2}\right) = \\ \sum_{n=2}^{N} \left[\ln(n-1) + \ln(n+1) - 2\ln(n)\right] &= \sum_{n=1}^{N-1} \ln(n) + \sum_{n=3}^{N+1} \ln(n) - 2\sum_{n=2}^{N} \ln(n) = \\ \ln(1) + \ln(2) + \ln(N) + \ln(N+1) - 2\ln(2) - 2\ln(N) = \ln\frac{N+1}{2N} \end{split}$$

Donc la série converge et $\sum_{n=2}^{+\infty} \ln \left(1 - \frac{1}{n^2} \right) = -\ln 2$.

Remarque : termes strictement négatifs... somme strictement négative...

Exercice 4 | Traitement d'une série alternée un peu récalcitrante...

On pose, pour tout n de \mathbb{N}^* , $u_n = \frac{(-1)^n}{n - (-1)^n}$.

- 1. a) La suite $(|u_n|)$ est-elle convergente de limite nulle? Est-elle décroissante?
 - b) Le théorème des séries alternées s'applique-t-il?
- **2. a)** Donner un équivalent simple v_n de u_n lorsque n tend vers $+\infty$.
- b) Peut-on en déduire la nature de la série de terme général u_n ?
- 3. Au-delà de l'équivalent...

Donner un équivalent de $w_n = u_n - v_n$ (ce qu'il reste de u_n lorsqu'on lui retire son équivalent...) et en déduire la nature de $\sum u_n$.

4. ... ou par un développement

À l'aide du développement de $(1+x)^{-1}$ lorsque x tend vers 0, montrer que $u_n = \frac{(-1)^n}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$ et retrouver la nature de $\sum u_n$.

5. En passant par la parité

On pose, pour tout $n \ge 1$, $v_n = u_{2n-1} + u_{2n}$ et $S_n = \sum_{k=1}^n u_k$.

- a) Expliciter v_n et en déduire la convergence de la suite (S_{2n})
- b) En déduire la nature de $\sum u_n$.
- **6.** Étudier les stratégies précédentes pour la série de terme général $u_n = \frac{(-1)^n}{\sqrt{n} (-1)^n}$.

Solution (Ex.4 – Traitement d'une série alternée un peu récalcitrante...) On pose, pour tout n de \mathbb{N}^* , $u_n = \frac{(-1)^n}{n - (-1)^n}$.

- 1. $\bullet |u_n| \underset{n \to +\infty}{\sim} \frac{(-1)^n}{n} \xrightarrow[n \to +\infty]{} 0 : (|u_n|)$ est convergente de limite nulle.
 - $\forall n \in \mathbb{N}^*, |u_{2n-1}| |u_{2n}| = \frac{1}{2n} \frac{1}{2n-1} < 0$ donc la suite $(|u_n|)$ n'est pas décroissante.
 - Le théorème des séries alternées ne s'applique pas.
- 2. $v_n = \frac{(-1)^n}{n} \underset{n \to +\infty}{\sim} u_n$. Bien que $\sum v_n$ converge, on ne peut pas conclure puisque le signe des termes généraux n'est pas constant.
- 3. Au-delà de l'équivalent...

$$w_n = (-1)^n \left(\frac{1}{n - (-1)^n} - \frac{1}{n} \right) = \frac{1}{(n - (-1)^n)n} \underset{n \to +\infty}{\sim} \frac{1}{n^2}$$

Ainsi $u_n = v_n + w_n$ avec $\sum v_n$ et $\sum w_n$ qui convergent. Par conséquent, $\sum u_n$ converge. OUF!

4. ... ou par un développement
$$u_n = \frac{(-1)^n}{n} \left(\frac{1}{1 - (-1)^n/n} \right) = \frac{(-1)^n}{n} \left(1 + \mathcal{O}\left(\frac{(-1)^n}{n} \right) \right) = \frac{(-1)^n}{n} + \mathcal{O}\left(\frac{1}{n^2} \right)$$

Ainsi on peut écrire $u_n = v_n + w_n$ avec $\sum v_n$ et $\sum w_n$ qui convergent. Par conséquent, $\sum u_n$ converge. RE-OUF!

5. a)
$$x_n = \frac{-1}{2n} + \frac{1}{2n-1} = \frac{1}{2n(2n-1)} \underset{n \to +\infty}{\sim} \frac{1}{4n^2}$$

 $S_{2n} = \sum_{k=1}^{n} x_k \text{ or } \sum_{n} x_n \text{ converge, donc } (S_{2n}) \text{ converge.}$

b) Soit $S = \lim_{n \to +\infty} S_{2n}$. On a $S_{2n+1} = S_{2n} + u_{2n+1} \xrightarrow[n \to +\infty]{} S + 0 = S$ Comme (S_{2n}) et (S_{2n+1}) convergent, vers la même limite S, (S_n) converge vers S. Autrement dit $\sum u_n$ converge.

6.
$$u_n = \frac{(-1)^n}{\sqrt{n} - (-1)^n},$$

• $|u_{2n-1}| - |u_{2n}| = \frac{1}{\sqrt{2n-1}+1} - \frac{1}{\sqrt{2n}-1} = \frac{\sqrt{2n}-\sqrt{2n-1}-2}{\dots}$ or $\sqrt{2n}-\sqrt{2n-1} = \frac{1}{\sqrt{2n}+\sqrt{2n-1}} < 1$ donc $|u_{2n-1}| - |u_{2n}| < 0$ et la suite $(|u_n|)$ n'est pas décroissante...

• $u_n \underset{n \to +\infty}{\sim} \frac{(-1)^n}{\sqrt{n}}$ qui n'est pas de signe constant...

•
$$w_n = u_n - \frac{(-1)^n}{\sqrt{n}} = (-1)^n \left(\frac{1}{\sqrt{n} - (-1)^n} - \frac{1}{\sqrt{n}}\right) = \frac{1}{(\sqrt{n} - (-1)^n)\sqrt{n}} \underset{n \to +\infty}{\sim} \frac{1}{n}$$

Ainsi $u_n = v_n + w_n$ avec $\sum v_n$ qui converge et $\sum w_n$ qui diverge. Par conséquent, $\sum u_n$ diverge. OUF!

• $u_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n} + \mathcal{O}\left(\frac{1}{n^{3/2}}\right) = v_n + a_n + b_n$ avec $\sum v_n$ et $\sum b_n$ qui converge tandis que $\sum a_n$ diverge : $\sum u_n$ diverge.

• Avec
$$x_n = u_{2n-1} + u_{2n}$$
 et $S_n = \sum_{k=1}^n u_k$.
 $x_n = -\frac{1}{\sqrt{2n-1}+1} + \frac{1}{\sqrt{2n}-1} = \frac{N_n}{D_n}$ où $D_n \underset{n \to +\infty}{\sim} 2n$ et $N_n = 2 - \sqrt{2n} + \sqrt{2n-1} \xrightarrow{n \to +\infty} 2$ puisque $\sqrt{2n} - \sqrt{2n-1} = \frac{1}{\sqrt{2n} + \sqrt{2n-1}} \xrightarrow{n \to +\infty} 0$.

Donc $x_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$ (ce qui est conforme au développement précédent, soit dit en passant).

Donc $S_{2n} = \sum_{k=1}^{n} x_k \xrightarrow[n \to +\infty]{} +\infty$ et la série $\sum n + u_n$ diverge...

Exercice 5 | Natures en série

Soit, pour tout $n \ge 2$, $u_n = \frac{(-1)^n}{\sqrt{n}}$.

- 1. Déterminer la nature de la série de terme général u_n .
- **2.** Déterminer la nature de la série de terme général $\ln(1+u_n)$.
- 3. Déterminer la nature de la série de terme général $\sin(u_n)$.
- 4. Déterminer la nature de la série de terme général $\cos(u_n)$.

Solution (Ex.5 – Natures en série)

- 1. $\left(\frac{1}{\sqrt{n}}\right)$ est une suite décroissante de limite nulle donc $\sum_{n\geqslant 2}u_n$ converge par le critère des séries alternées.
- 2. Comme $u_n \xrightarrow[n \to +\infty]{} 0$, $\ln(1+u_n) = u_n \frac{u_n^2}{2} + \mathcal{O}\left(u_n^3\right) = u_n \frac{1}{2n} + \mathcal{O}\left(\frac{1}{n^{3/2}}\right)$. Or $\sum_n u_n$ par 1., et $\sum_n \mathcal{O}\left(\frac{1}{n^{3/2}}\right)$ convergent car la série de Riemann de paramètre 3/2 > 1 converge. De plus la série harmonique $\sum_n \frac{1}{2n}$ diverge. Donc $\sum \ln(1+u_n)$ diverge.
- 3. Comme $u_n \xrightarrow[n \to +\infty]{} 0$, $\sin(u_n) = u_n + \mathcal{O}\left(u_n^3\right) = u_n + \mathcal{O}\left(\frac{1}{n^{3/2}}\right)$.

 Or $\sum_n u_n$ par 1., et $\sum_n \mathcal{O}\left(\frac{1}{n^{3/2}}\right)$ convergent car la série de Riemann de paramètre 3/2 > 1 converge. Donc par linéarité $\sum_n \ln(1 + u_n)$ converge.
- **4.** Comme $\cos(u_n) \xrightarrow[n \to +\infty]{} 1 \neq 0, \sum_n \cos(u_n)$ diverge grossièrement.

Exercice 6 Fonction ζ de Riemann en 1

Pour tout $\alpha > 1$ on pose

$$\zeta(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}.$$

- 1. À l'aide d'une comparaison série-intégrale, déterminer $\lim_{\alpha \to 1^+} \zeta(\alpha)$.
- **2.** Donner un équivalent de ζ en 1.

Solution (Ex.6 – Fonction ζ de Riemann en 1)

1. Par décroissance de $x \mapsto \frac{1}{x^{\alpha}}, \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} \le \sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}} \le 1 + \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}}.$

Donc: $\frac{1}{\alpha - 1} \le \zeta(\alpha) \le 1 + \frac{1}{\alpha - 1}$.

Par comparaison, $\lim_{\alpha \to 1^+} \zeta(\alpha) = +\infty$.

La majoration n'était pas nécessaire mais sera utile pour la suite.

2. Et: $\forall \alpha > 1, 1 \leq \frac{\zeta(\alpha)}{1/(\alpha - 1)} \leq (\alpha - 1) + 1$, donc par encadrement: $\frac{\zeta(\alpha)}{1/(\alpha - 1)} \xrightarrow[\alpha \to 1]{}$ 1, et

$$\zeta(\alpha) \underset{\alpha \to 1}{\sim} \frac{1}{\alpha - 1}.$$

Exercice 7 Avec ou sans la formule de Stirling

Pour tout $n \in \mathbb{N}$, soit

$$u_n = \frac{(2n)!}{(2^n n!)^2}.$$

- 1. Dans cette première question, on s'interdit d'utiliser la formule de Stirling.
 - a) Déterminer un équivalent de $\ln u_{n+1} \ln u_n$.
 - **b)** En déduire que $u_n \xrightarrow[n \to +\infty]{} 0$.
 - c) En s'intéressant à la série de terme général $\ln ((n+1)u_{n+1}) \ln (n)u_n$, montrer que $nu_n \xrightarrow[n \to +\infty]{} +\infty$.

En déduire la nature de la série $\sum_{n>0} u_n$.

d) Soit $v_n = \sqrt{n}u_n$.

En s'intéressant à la série de terme général $\ln v_{n+1} - \ln v_n$, montrer que la suite $(\sqrt{n}u_n)$ converge vers une limite strictement positive.

2. Retrouver les résultats précédents à l'aide de la formule de Stirling.

Solution (Ex.7 – Avec ou sans la formule de Stirling)

- 1. Dans cette première question, on s'interdit d'utiliser la formule de Stirling.
 - a) $\ln u_{n+1} \ln u_n = \ln \frac{u_{n+1}}{u_n} = \ln \frac{(2n+1)(2n+2)}{2^2(n+1)^2} = \ln \frac{2n+1}{2n+2} = \ln \left(1 \frac{1}{2n+2}\right)$ $\ln u_{n+1} - \ln u_n \underset{n \to +\infty}{\sim} -\frac{1}{2n}.$
 - **b)** La série $\sum_{n\geq 0} (\ln u_{n+1} \ln u_n)$ tend vers $-\infty$, donc $\ln u_n \xrightarrow[n \to +\infty]{} -\infty$, donc $u_n = e^{\ln u_n} \xrightarrow[n \to +\infty]{} 0$.
 - c) $\ln ((n+1)u_{n+1}) \ln ((n)u_n) = \ln \frac{2n+1}{2n} \underset{n \to +\infty}{\sim} \frac{1}{2n}$ donc la série $\sum_{n \geq 0} \ln ((n+1)u_{n+1}) \ln ((n)u_n)$ diverge vers $+\infty$, donc $\ln (nu_n) \xrightarrow[n \to +\infty]{} +\infty$ donc $nu_n = e^{\ln(nu_n)} \xrightarrow[n \to +\infty]{} +\infty$.

Comme $nu_n \xrightarrow[n \to +\infty]{} +\infty$, il existe $n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0, nu_n \geq 1$ i.e. $u_n \geq \frac{1}{n}$: $\sum_{n \geq 0} u_n$ diverge par comparaison de termes généraux positifs.

d) $\ln v_{n+1} - \ln v_n = \frac{1}{2} \ln \left(1 + \frac{1}{n} \right) + \ln u_{n+1} - \ln u_n,$ or $\frac{1}{2} \ln \left(1 + \frac{1}{n} \right) = \frac{1}{2n} + \mathcal{O}\left(\frac{1}{n^2} \right)$ et $\ln u_{n+1} - \ln u_n = -\frac{1}{2n} + \mathcal{O}\left(\frac{1}{n^2} \right),$ donc $\ln v_{n+1} - \ln v_n = \mathcal{O}\left(\frac{1}{n^2} \right)$ et la série de terme général $\ln v_{n+1} - \ln v_n$ converge.

On en déduit que $(\ln v_n)$ converge, vers une limite $c \in \mathbb{R}$. Donc $v_n = e^{\ln v_n} \xrightarrow[n \to +\infty]{} \ell = e^c > 0$. Cela signifie au passage que $u_n \underset{n \to +\infty}{\sim} \frac{\ell}{\sqrt{n}}$.

2. $u_n = \frac{(2n)!}{(2^n n!)^2} \mathop{\sim}_{n \to +\infty} \frac{\sqrt{4\pi n} (2n)^{2n} \mathrm{e}^{2n}}{\mathrm{e}^{2n} (2\pi n) n^{2n}} \mathop{\sim}_{n \to +\infty} \frac{1}{\sqrt{\pi n}}$ ce qui permet de retrouver tous les résultats précédents... et même plus : $\ell = 1/\sqrt{\pi}$.

Exercice 8 Exemples de Séries de Bertrand Soit $\alpha \in]0; +\infty[$.

- 1. Étudier la nature de la série de terme général $u_n = \frac{1}{n \ln^{\alpha} n}$.
- **2.** Étudier la nature de la série de terme général $u_n = \frac{1}{n^{\alpha} \ln n}$.

Solution (Ex.8 – Exemples de Séries de Bertrand)

1. $f_{\alpha}: t \mapsto \frac{1}{t \ln^{\alpha} t}$ est continue positive et décroissante sur $[2; +\infty[$ donc $\sum_{n\geq 2} u_n$ est

de même nature que $\int_{2}^{+\infty} f_{\alpha}(t) dt$.

• Si $\alpha = 1$, $\int_2^x f_1(t) dt = \left[\ln |\ln(t)| \right]_2^x = \ln(\ln(x)) - \ln(\ln 2) \xrightarrow[x \to +\infty]{} + \infty \dots \sum_{n \ge 2} u_n$

diverge.

$$\bullet \operatorname{Si} \alpha \neq 1,
\int_{2}^{x} f_{\alpha}(t) dt = \left[\frac{1}{(1-\alpha) \ln^{\alpha-1}(t)} \right]_{2}^{x}
= \frac{1}{(1-\alpha) \ln^{\alpha-1}(x)} - \frac{1}{(1-\alpha) \ln^{\alpha-1}(2)} \xrightarrow[x \to +\infty]{} \begin{cases} \frac{1}{(\alpha-1) \ln^{\alpha-1}(2)} & \operatorname{si} \alpha > 1 \\ +\infty & \operatorname{si} \alpha < 1 \end{cases}.$$

Donc $\sum_{n\geq 2} u_n$ converge si, et seulement si, $\alpha>1$.

- Bilan : $\sum_{n\geq 2} u_n$ converge si, et seulement si, $\alpha>1$.
- 2. $f_{\alpha}: t \mapsto \frac{1}{t^{\alpha} \ln t}$ est continue positive et décroissante sur $[2; +\infty[$ donc $\sum_{n\geq 2} u_n$ est

de même nature que $\int_2^{+\infty} f_{\alpha}(t) dt$.

- si $\alpha > 1$, $f_{\alpha}(t) = o(1/t^{\alpha})$ et $t \mapsto 1/t^{\alpha}$ est intégrable ... $\sum_{n \ge 2} u_n$ converge.
- si $\alpha = 1$, $\int_2^x f_1(t) dt = \left[\ln \left| \ln(t) \right| \right]_2^x = \ln(\ln(x)) \ln(\ln 2) \xrightarrow[x \to +\infty]{} + \infty \dots \sum_{n \ge 2} u_n$
- si $\alpha < 1$, $f_{\alpha}(t) \ge f_1(t) \ge 0$ car $t^{\alpha} \le t$, or $\int_{2}^{+\infty} f_1(t) dt$ diverge d'après le point précédent donc $\int_{2}^{+\infty} f_{\alpha}(t) dt$ diverge ... $\sum_{n \ge 2} u_n$ diverge.

Exercice 9 Somme et reste de la série exponentielle

On ne suppose pas connues les propriétés de la série exponentielle. Soit $x \in \mathbb{R}$ fixé.

On pose
$$\forall n \in \mathbb{N}$$
, $u_n = \frac{x^n}{n!}$, et $\forall N \in \mathbb{N}$, $S_N = \sum_{n=0}^N u_n$.

- **1.** Dans cette question, x = 1, et on pose : $\forall N \in \mathbb{N}^*$, $T_N = S_N + \frac{1}{N \times (N!)}$.
 - a) Montrer que les suites S et T sont convergentes, de même limite.
 - **b)** On pose de plus : $\forall N \in \mathbb{N}$, $R_N = \sum_{n=N+1}^{+\infty} u_n$.

 Justifier que : $\forall N \in \mathbb{N}^*$, $|R_N| \leq \frac{1}{N} \frac{1}{N!}$
- **2. a)** On revient au cas général. À l'aide de la formule de Taylor-Lagrange, montrer que $\sum_{n>0} u_n$ converge en précisant sa somme.

Proposer une majoration du reste R_N de cette série.

b) Dans le cas x=1, comparer cette majoration à celle obtenue précédemment.

Solution (Ex.9 – Somme et reste de la série exponentielle)

$$\forall n \in \mathbb{N}, \quad u_n = \frac{x^n}{n!}, \text{ et } \forall \mathbb{N} \in \mathbb{N}, \quad S_{\mathbb{N}} = \sum_{n=0}^{\mathbb{N}} u_n.$$

$$\begin{split} \textbf{1. a)} \ S_{N+1} - S_N &= \frac{1}{(N+1)!} > 0, \\ T_{N+1} - T_N &= \frac{1}{(N+1)!} + \frac{1}{(N+1)(N+1)!} - \frac{1}{N.N!} = \frac{N(N+1) + N - (N+1)^2}{N(N+1)(N+1)!} \\ T_{N+1} - T_N &= \frac{-1}{N(N+1)(N+1)!} < 0, \\ T_N - S_N &= \frac{1}{N.N!} \xrightarrow[N \to +\infty]{} 0, \end{split}$$

donc S et T sont adjacentes, donc convergentes, vers une même limite.

b) Notons ℓ la limite commune de S et T (en fait, la suite de l'exercice montrera que $\ell = e$). Comme S et T sont deux suites respectivement croissante et décroissante de limite ℓ ,

$$\begin{split} &\forall N \in \mathbb{N}^*, \quad S_N \leq \ell \leq T_N, \ donc \ \forall N \in \mathbb{N}^*, \quad 0 \leq \ell - S_N \leq \frac{1}{N.N!}, \\ &\text{et comme} \ R_N = S_N - \ell, \ on \ a \ bien: \forall N \in \mathbb{N}^*, \quad |R_N| \leq \frac{1}{N.N!}. \end{split}$$

- **2. a)** On revient au cas général. À l'aide de la formule de Taylor avec reste intégral, montrer que $\sum_{n\geq 0} u_n$ converge en précisant sa somme.
 - Supposons $x \in \mathbb{R}^+$. En appliquant la formule de Taylor avec reste intégral à exp qui est \mathcal{C}^{∞} donc \mathcal{C}^{N+1} sur [0; x],

$$\exp(x) = S_{N} + \int_{0}^{x} \frac{e^{t}}{N!} (x - t)^{N} dt$$

$$\left| \int_0^x \frac{e^t}{N!} (x-t)^N dt \right| \le \frac{e^x}{N!} \int_0^x (x-t)^N dt \le \frac{e^x}{N!} \times \frac{x^{N+1}}{N+1} \le \frac{e^x x^{N+1}}{(N+1)!}$$
Or $x^N = o(N!)$, donc par domination
$$\int_0^x \frac{e^t}{N!} (x-t)^N dt \xrightarrow[N \to +\infty]{} 0.$$

Par conséquent, $S_N \xrightarrow[N \to +\infty]{} \exp(x)$: la série converge, sa somme est e^x .

• Supposons $x \in]-\infty\,;\ 0[$. L'application de la formule de Taylor sur $[\,x\,;\ 0]$ donne encore :

$$\exp(x) = S_{N} + \int_{0}^{x} \frac{e^{t}}{N!} (x - t)^{N} dt,$$

mais la majoration du reste intégral change :

$$\left| \int_{0}^{x} \frac{e^{t}}{N!} (x - t)^{N} dt \right| \leq \frac{1}{N!} \int_{x}^{0} \left| e^{t} (x - t)^{N} \right| dt \leq \frac{1}{N!} \int_{x}^{0} (t - x)^{N} dt$$
$$\left| \int_{0}^{x} \frac{e^{t}}{N!} (x - t)^{N} dt \right| \leq \frac{(-x)^{N+1}}{(N+1)!}$$

On conclut comme pour $x \geq 0$.

• Pour majorer le reste, on peur écrire en toute généralité :

$$R_N \le \frac{e^{\max(0,x)} |x|^{N+1}}{(N+1)!}.$$

b) Dans le cas x = 1, cette dernière majoration donne $|R_N| \le \frac{e}{(N+1)!}$.

Ce majorant n'est pas meilleur que celui de la première question :

$$\begin{split} \forall \mathbb{N} \in \mathbb{N}^*, \quad \frac{e}{N+1} - \frac{1}{N} &= \frac{eN - N - 1}{N(N+1)} = \frac{(e-1)N - 1}{N(N+1)} > 0, \\ \mathrm{donc}: \quad \frac{1}{N.N!} &\leq \frac{e}{(N+1)!}. \end{split}$$

Exercice 10 Une condition nécessaire pour les t.g. décroissants 0

1. Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite *décroissante* telle que la serie $\sum_{n\geq 1}u_n$ converge.

On pose : $\forall n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n u_k$.

- a) Que vaut $\lim_{n\to+\infty} S_{2n} S_n$? En déduire $\lim_{n\to+\infty} 2nu_{2n}$.
- **b)** Montrer que : $u_n = o\left(\frac{1}{n}\right)$.
- **2.** Soit, pour tout n de \mathbb{N}^* , $u_n = \begin{cases} \frac{1}{n} & \text{si } \exists k \in \mathbb{N}^*, n = k^2, \\ 0 & \text{si } n \text{ n'est pas un carré.} \end{cases}$

Montrer que $\sum_{n\geq 1} u_n$ converge.

A-t-on
$$u_n = o\left(\frac{1}{n}\right)$$
?

Solution (Ex.10 – Une condition nécessaire pour les t.g. décroissants)

1. a) Comme la série $\sum_{n\geq 1} u_n$ converge, la suite (S_n) converge, vers une limite S. Alors :

$$S_{2n} - S_n \xrightarrow[n \to +\infty]{n \ge 1} S - S = 0.$$

Or: $\forall n \geq 1$, $S_{2n} - S_n = \sum_{k=n+1}^{2n} u_n \geq nu_{2n}$ car u décroît.

Et comme la serie $\sum_{n\geq 1} u_n$ converge, u tend vers 0. Étant de plus décroissante, u

est une suite positive. Ainsi : $\forall n \geq 1, \quad 0 \leq nu_{2n} \leq S_{2n} - S_n$.

Par encadrement, $nu_{2n} \xrightarrow[n \to +\infty]{} 0$, donc $2nu_{2n} \xrightarrow[n \to +\infty]{} 0$.

b) $\forall n \geq 1, 0 \leq u_{2n+1} \leq u_{2n}$ donc $0 \leq 2nu_{2n+1} \leq 2nu_{2n}$, et par encadrement, $2nu_{2n+1} \xrightarrow[n \to +\infty]{} 0$.

Comme de plus $u_{2n+1} \xrightarrow[n \to +\infty]{} 0$, $(2n+1)u_{2n+1} \xrightarrow[n \to +\infty]{} 0$.

Ainsi, $nu_n \xrightarrow[n \to +\infty]{} 0$, autrement dit : $u_n = o\left(\frac{1}{n}\right)$

2. $\forall N \ge 1, \sum_{n=1}^{N} u_n = \sum_{k=1}^{\lfloor \sqrt{N} \rfloor} \frac{1}{k^2}$. Comme la série $\sum_{k \ge 1} \frac{1}{k^2}$ converge, $\sum_{n \ge 1} u_n$ converge.

 $\forall k \in \mathbb{N}^*, \quad (k^2)u_{k^2} = 1$, ce qui exclut que $nu_n \xrightarrow[n \to +\infty]{} 0$.

On n'a pas :
$$u_n = o\left(\frac{1}{n}\right)$$
.

Exercice 11 Nature

Soit
$$\forall n \geq 0$$
, $u_n = (\sqrt[n]{n} - 1)^n$. Nature de $\sum_{n \geq 0} u_n$.

Solution (Ex.11 - Nature)

$$\frac{1}{n}\ln n \xrightarrow[n \to +\infty]{} 0 \text{ donc } \sqrt[n]{n} - 1 \xrightarrow[n \to +\infty]{} 0 : \text{par definition de la limite, } \exists N \in \mathbb{N}, \forall n \geq N, |\sqrt[n]{n} - 1| \leq \frac{1}{2}.$$

Ainsi :
$$\forall n \ge N, |u_n| \le \left(\frac{1}{2}\right)^n$$
.

Comme $\sum_{n\geq 0} \left(\frac{1}{2}\right)^n$ est une série géométrique convergente, par comparaison $\sum_{n\geq 0} u_n$ est absolument convergente donc convergente.

Exercice 12 | Ça finira par converger

Soit
$$\forall n \ge 1$$
, $u_n = \frac{n - |\cos n|}{n + |\sin n|}$.

Nature de
$$\sum_{n\geq 0} u_n$$
, de $\sum_{n\geq 1} (u_n-1)$ et de $\sum_{n\geq 1} (u_n-1)^2$.

Solution (Ex.12 – *Ca finira par converger*)

$$n-\left|\cos n\right|\underset{n\to+\infty}{\sim}n,\,n+\left|\sin n\right|\underset{n\to+\infty}{\sim}n\text{ donc }u_n\xrightarrow[n\to+\infty]{}1\text{ et }\sum_{n\geq 1}u_n\text{ diverge grossiè-}$$

rement

$$u_n - 1 = \frac{-|\cos n| - |\sin n|}{n + |\sin n|} = -\frac{|\cos n| + |\sin n|}{n + |\sin n|}.$$

De $|\cos n| \le 1$ et $|\sin n| \le 1$ je tire $|\cos n| + |\sin n| \ge \cos^2 n + \sin^2 \ge 1$, donc $\frac{|\cos n| + |\sin n|}{n + \sin n} \ge \frac{1}{n+1}$.

Comme $\sum_{n\geq 1} \frac{1}{n+1}$ diverge, par comparaison $\sum_{n\geq 1} \frac{|\cos n| + |\sin n|}{n+|\sin n|}$ diverge et par linéa-

rité $\sum_{n>1} (u_n-1)$ diverge.

$$(u_n - 1)^2 = \left(\frac{-|\cos n| - |\sin n|}{n + |\sin n|}\right)^2$$

 $n + |\sin n| \underset{n \to +\infty}{\sim} n \operatorname{car} \sin n = o(n), \operatorname{donc} (n + |\sin n|)^2 \underset{n \to +\infty}{\sim} n^2.$ Et comme

 $(-|\cos n| - |\sin n|)^2 \le 2$, $(u_n - 1)^2 = \mathcal{O}\left(\frac{1}{n^2}\right)$ et $\sum_{n\ge 1} (u_n - 1)^2$ converge (absolument).

Exercice 13 Leibniz: positive de limite nulle ne suffit pas

Soit:
$$\forall n \geq 1$$
, $u_n = \begin{cases} \frac{1}{n} & \text{si } n \text{ est pair,} \\ \frac{1}{n^2} & \text{si } n \text{ est impair.} \end{cases}$

Déterminer la nature de $\sum_{n\geq 1} u_n$, puis de $\sum_{n\geq 1} (-1)^n u_n$.

Solution (Ex.13 – Leibniz : positive de limite nulle ne suffit pas)

• Soit $H_N = \sum_{n=1}^N \frac{1}{n}$.

$$\sum_{n=1}^{2N} u_n = \sum_{n=1}^{N} \frac{1}{2k} + \sum_{n=1}^{N} \frac{1}{(2k-1)^2} = \frac{1}{2} H_N + \sum_{n=1}^{N} \frac{1}{(2k-1)^2} \ge \frac{1}{2} H_N \xrightarrow[N \to +\infty]{} + \infty \text{ donc}$$

$$\sum_{n\geq 1} u_n \text{ diverge.}$$

Le théorème de Leibniz ne s'applique pas directement car la suite n'est pas monotone.

$$\sum_{n=1}^{N} (-1)^n u_n = \sum_{k=1}^{\lfloor N/2 \rfloor} \frac{1}{2k} - \sum_{n=0}^{\lfloor (N-1)/2 \rfloor} \frac{1}{(2k+1)^2}$$

Or la première somme diverge vers $+\infty$ car la série harmonique diverge, la seconde domination par la série de Riemann de paramètre 2 converge car $\frac{1}{(2k+1)^2}$ =

$$\mathcal{O}\left(\frac{1}{k^2}\right)$$
.

Donc $\sum_{n\geq 1} (-1)^n u_n$ diverge... bien que u soit positive de limite nulle...