Exercice 1 | Cas des séries à termes positifs

On suppose que les séries $\sum a_n$ et $\sum b_n$ sont deux séries à termes positifs et convergentes.

On pose, pour tout
$$n ext{ de } \mathbb{N}$$
, $c_k = \sum_{i=0}^k a_i b_{k-i}$, $A_n = \sum_{k=0}^n a_k$, $B_n = \sum_{k=0}^n b_k$ et $C_n = \sum_{k=0}^n c_k$.

On définit par ailleurs des ensembles d'indices

$$T_n = \{(p,q) \in \mathbb{N}^2 | p + q \leqslant n\} \text{ et } Q_n = \{(p,q) \in \mathbb{N}^2 | p \leqslant n \text{ et } q \leqslant n\}.$$

- 1. Justifier que $T_n \subset Q_n \subset T_{2n}$ et représenter ces trois ensembles.
- $\textbf{2.} \ \text{Exprimer} \ \sum_{(p,q)\in\mathcal{T}_n} a_p b_q, \ \sum_{(p,q)\in\mathcal{Q}_n} a_p b_q \ \text{et} \ \sum_{(p,q)\in\mathcal{T}_{2n}} a_p b_q \ \text{à l'aide des somme} \ \mathcal{A}_n, \ \mathcal{B}_n, \ \mathcal{C}_n \ \text{et} \ \mathcal{C}_{2n}.$
- 3. Justifier alors que $C_n \leqslant A_n B_n \leqslant C_{2n}$ et en déduire que la série $\sum c_n$ est convergente et que

$$\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right).$$

4. Application – Soit $q \in]0$; 1[. En prenant $a_n = b_n = q^n$, existence et valeur de la somme $\sum_{n=0}^{\infty} nq^n$.

Solution (Ex.1 – Cas des séries à termes positifs)

On suppose que les séries $\sum a_n$ et $\sum b_n$ sont deux séries à termes positifs et convergentes.

On pose, pour tout
$$n ext{ de } \mathbb{N}$$
, $c_k = \sum_{i=0}^k a_i b_{k-i}$, $A_n = \sum_{k=0}^n a_k$, $B_n = \sum_{k=0}^n b_k$ et $C_n = \sum_{k=0}^n c_k$.

On définit par ailleurs des ensembles d'indices

$$T_n = \{(p,q) \in \mathbb{N}^2 | p+q \le n\} \text{ et } Q_n = \{(p,q) \in \mathbb{N}^2 | p \le n \text{ et } q \le n\}.$$

1.
$$\bullet \begin{cases}
0 \leqslant p \\
0 \leqslant q \\
p+q \leqslant n
\end{cases} \implies \begin{cases}
0 \leqslant p \leqslant n \\
0 \leqslant q \leqslant n
\end{cases} \quad \text{donc } \mathbf{T}_n \subset \mathbf{Q}_n$$

$$\bullet \begin{cases}
0 \leqslant p \leqslant n \\
0 \leqslant q \leqslant n
\end{cases} \implies \begin{cases}
0 \leqslant p \\
0 \leqslant q \end{cases} \quad \text{donc } \mathbf{Q}_n \subset \mathbf{T}_{2n}$$

$$\bullet \begin{cases}
0 \leqslant p \leqslant n \\
0 \leqslant q \leqslant n
\end{cases} \implies \begin{cases}
0 \leqslant p \\
0 \leqslant q \\
p+q \leqslant 2n
\end{cases} \quad \text{donc } Q_n \subset T_{2n}$$

- En notant O = (0,0), A = (n,0), A' = (2n,0), B = (0,n), B' = (0,2n) et C = (n,n), T_n contient les points à coorodonnées entières du triangle OAB, Q_n contient les points à coorodonnées entières du carré OACB et T_{2n} contient les points à coorodonnées entières du triangle OA'B',
- **2.** Première méthode pour T_n

Par récurrence sur
$$n \in \mathbb{N}$$
, montrons que $\sum_{(p,q)\in \mathcal{T}_n} a_p b_q = \mathcal{C}_n$.
D'abord $\mathcal{T}_0 = \{(0,0)\}$ donc $\sum_{(p,q)\in \mathcal{T}_0} a_p b_q = a_0 b_0 = c_0 = \mathcal{C}_0$.

Ensuite soit $n \in \mathbb{N}$. Supposons $\sum_{(p,q)\in\mathcal{T}_n} a_p b_q = \mathcal{C}_n$.

Alors
$$\sum_{\substack{(p,q)\in\mathcal{T}_{n+1}\\\text{ce qui prouve l'hérédité.}}}a_pb_q=\sum_{\substack{(p,q)\in\mathcal{T}_n\\(p,q)\in\mathcal{T}_{n+1}\backslash\mathcal{T}_n}}a_pb_q=\mathcal{C}_n+\sum_{\substack{p,q\text{ tels que }p+q=n+1\\p,q\text{ tels que }p+q=n+1}}a_pb_q=\mathcal{C}_n+c_{n+1}=\mathcal{C}_{n+1}$$

• Seconde méthode

Changons de description de T_n : en parcourant les segments d'équation y = k - x pour $k \in [0; n]$,

$$T_n = \{(i, k - i) | 0 \le k \le n, 0 \le i \le k\} \text{ et } \sum_{(p,q) \in T_n} a_p b_q = \sum_{k=0}^n \sum_{i=0}^k a_i b_{k-i} = C_n.$$

- Comme pour T_n , $\sum_{(p,q)\in T_{2n}} a_p b_q = C_{2n}$.
- 3. Comme les $a_p b_q$ sont positifs, les inclusions précédentes induisent alors que $C_n \leqslant A_n B_n \leqslant C_{2n}$.
 - En notant A et B les sommes des séries de terme général a_n et b_n , comme les termes généraux sont positifs, les suites (A_n) et (B_n) sont croissantes et $A_nB_n \leq AB$ pour tout n.
 - De même (C_n) est croissante. Étant majorée par AB, elle est convergente : la série $\sum c_n$ est convergente. Notons C sa somme.
 - En tant que suite extraite, (C_{2n}) converge et $C_{2n} \xrightarrow[n \to +\infty]{} C$. De l'encadrement précédent, on déduit alors

$$\mathbf{A}_n \mathbf{B}_n \xrightarrow[n \to +\infty]{} \mathbf{C}. \text{ Autrement dit } \sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right).$$

4. Application – Soit $q \in]0$; 1[. En prenant $a_n = b_n = q^n$, existence et valeur de la somme $\sum_{n=0}^{\infty} nq^n$.

Les séries $\sum a_n$ et $\sum b_n$ sont à termes positifs et convergentes, de somme $\frac{1}{1-a}$. On a : $c_k = \sum^k q^i q^{k-i} =$ $(k+1)q^k$.

Le résultat précédent donne : $\sum_{k=0}^{+\infty} (k+1)q^k = \left(\frac{1}{1-q}\right)^2$. En décalant l'indice, $\sum_{k=0}^{+\infty} nq^k = \frac{q}{(1-q)^2}$.

Exercice 2 | Cas des séries absolument convergentes

On suppose que les séries $\sum a_n$ et $\sum b_n$ sont deux séries **absolument convergentes**.

 $c_n = \sum_{k=0}^{n} a_k b_{n-k}.$ On pose, pour tout n de \mathbb{N} ,

1. Montrer, à l'aide de l'exercice précédent, que la série $\sum c_n$ est absolument convergente et que

$$\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right).$$

2. Application – Soit $q \in]-1$; 0[. Que dire de la somme $\sum_{n=0}^{\infty} nq^n$?

Solution (Ex.2 – Cas des séries absolument convergentes)

1. • Par l'inégalité triangulaire, $|c_n| \leqslant \sum_{k=0}^{\infty} |a_k| \cdot |b_{n-k}|$. Et par l'exercice précédent, la série de terme général

 $c'_n = \sum_{k=0}^{n} |a_k| \cdot |b_{n-k}|$ converge. Alors par comparaison $\sum_{k=0}^{n} |c_n|$ converge. Donc $\sum_{k=0}^{n} c_n$ converge.

• Notons A_n , B_n et C_n les sommes partielles respectives de $\sum a_n$, $\sum b_n$ et $\sum c_n$. On a :

 $|\mathbf{A}_{n}\mathbf{B}_{n} - \mathbf{C}_{n}| = \left| \sum_{(p,q) \in \mathbf{Q}_{n} \setminus \mathbf{T}_{n}} a_{p} b_{q} \right| \leqslant \sum_{(p,q) \in \mathbf{Q}_{n} \setminus \mathbf{T}_{n}} |a_{p} b_{q}| \leqslant \sum_{(p,q) \in \mathbf{Q}_{n} \setminus \mathbf{T}_{n}} |a_{p}| |b_{q}|$ $\text{Or } \sum_{(p,q) \in \mathbf{Q}_{n} \setminus \mathbf{T}_{n}} |a_{p}| |b_{q}| = \mathbf{A}'_{n} \mathbf{B}'_{n} - \mathbf{C}'_{n} \text{ où } \mathbf{A}'_{n}, \mathbf{B}'_{n} \text{ et } \mathbf{C}'_{n} \text{ les sommes partielles respectives de } \sum |a_{n}|, \sum |b_{n}|$

et $\sum c'_n$. Et toujours par l'exercice précédent, $A'_n B'_n - C'_n \xrightarrow[n \to +\infty]{} 0$.

D'où par encadrement $A_n B_n - C_n \xrightarrow[n \to +\infty]{} 0$, c'est-à-dire $\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right)$.

2. Application – Pour $q \in]-1$; 0[, les séries géométriques sont absolument convergentes donc le même raisonnement conduit à l'existence de la somme $\sum_{n=1}^{+\infty} nq^n$, qui vaut $\frac{q}{(1-q)^2}$.

Exercice 3 Et en cas de convergence non absolue?

- **1.** On pose : $\forall n \in \mathbb{N}$, $u_n = v_n = \frac{(-1)^n}{\sqrt{n+1}}$ et $w_n = \sum_{k=0}^n u_k v_{n-k}$.
 - a) Justifier que, pour tout couple de réels (a,b), $4ab \leqslant (a+b)^2$, puis que $\frac{2}{n+2} \leqslant \frac{1}{\sqrt{n-k+1}\sqrt{k+1}}$ pour tout k de [0; n].
 - b) En déduire que la série de terme général w_n diverge.
- **2.** On pose maintenant : $\forall n \in \mathbb{N}$, $u_n = v_n = \frac{(-1)^n}{n+1}$ et $w_n = \sum_{k=0}^n u_k v_{n-k}$.
 - a) Déterminer α_n tel que, pour tout k de $\llbracket 0; n \rrbracket$, $\frac{1}{(k+1)(n-k+1)} = \alpha_n \left(\frac{1}{k+1} + \frac{1}{n-k+1} \right)$.
 - b) Montrer que la série de terme général w_n converge.

Solution (Ex.3 – Et en cas de convergence non absolue?)

1. a) • $(a+b)^2 - 4ab = (a-b)^2 \ge 0$.

•
$$4(n-k+1)(k+1) \le (n+2)^2$$
 donc $\frac{2}{n+2} \le \frac{1}{\sqrt{n-k+1}\sqrt{k+1}}$.

b)
$$w_n = \sum_{k=0}^n \frac{(-1)^{k+n-k}}{\sqrt{k+1}\sqrt{n-k+1}} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{k+1}\sqrt{n-k+1}}$$
, et en particulier

 $|w_n| \ge (n+1)\frac{2}{n+2}$ donc (w_n) ne peut pas tendre vers 0 et la série de terme général w_n diverge (grossièrement).

2. a) Pour tout k de [0; n], $\frac{1}{(k+1)(n-k+1)} = \frac{1}{n+2} \left(\frac{1}{k+1} + \frac{1}{n-k+1} \right)$.

b)
$$w_n = (-1)^n \sum_{k=0}^n \frac{1}{(k+1)(n-k+1)} = \frac{(-1)^n}{n+2} \sum_{k=0}^n \left(\frac{1}{k+1} + \frac{1}{n-k+1} \right) = \frac{2(-1)^n}{n+2} \sum_{k=1}^{n+1} \frac{1}{k} = \frac{2(-1)^n}{n+2} H_{n+1},$$

(H_n) désignant la suite des sommes partielles de la série harmonique.

Montrons que la série alternée des w_n est convergente.

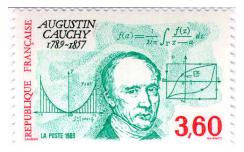
D'abord :
$$|w_n| \underset{n \to +\infty}{\sim} \frac{2}{n} \ln(n+1) \xrightarrow[n \to +\infty]{} 0.$$

Ensuite:

$$|w_{n+1}| - |w_n| = \frac{2}{n+3} H_{n+2} - \frac{2}{n+2} H_{n+1} = 2 \left(H_{n+1} \left(\frac{1}{n+3} - \frac{1}{n+2} \right) + \frac{1}{(n+3)(n+2)} \right) = \frac{2}{(n+3)(n+2)} \left(-\frac{1}{(n+3)(n+2)} \right) = \frac{2}{(n+3)(n+2)} \left(-\frac{1}{($$

 $H_{n+1} + 1 \leq 0 : (|w_n|) \text{ décroît.}$

La série alternée des w_n est convergente.



Augustin Cauchy (1789–1857)