Compétences évaluées en colle :

Les exercices se placent en dimension 3 ou 4.

- I. Savoir montrer qu'une application est linéaire;
- II. Savoir montrer qu'une application est un endomorphisme;
- III. Savoir établir la matrice représentant un endomorphisme relativement à une base donnée;
- IV. Savoir déterminer le rang, le noyau et l'image d'un endomorphisme en exploitant une matrice représentative;
- V. Savoir étudier l'injectivité, la surjectivité ou la bijectivité d'un endomorphisme;
- VI. Savoir montrer qu'un ensemble est un sous-espace vectoriel;
- VII. Savoir montrer que deux sous-espaces sont en somme directe;
- VIII. Savoir montrer que deux sous-espaces sont supplémentaires.

1 Séries numériques

1.1 • Série Géométrique - $\sum_{n\geq 0}q^n$ converge si, et seulement si, |q|<1.

Dans ce cas, $\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$.

- Série de Riemann $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ converge si, et seulement si, $\alpha>1$.
- Série exponentielle $\sum_{n>0} \frac{x^n}{n!}$ converge pour tout x de \mathbb{R} . Sa somme est $\exp(x)$.

1.2 Divergence grossière

Si $\sum_{n \geqslant n_0} u_n$ converge alors $u_n \xrightarrow[n \to +\infty]{} 0$.

Si u_n ne tend pas vers 0 lorsque n tend vers $+\infty$, la série $\sum_{n\geqslant n_0}u_n$ diverge grossièrement.

1.3 Série des différences

La série $\sum_{n\geqslant n_0} (u_{n+1}-u_n)$ converge si, et seulement si, la suite $(u_n)_{n\geqslant n_0}$ converge.

1.4 Critère de D'Alembert

Soit $(u_n)_{n\geq n_0}$ une suite ne s'annulant pas.

• Si $\left| \frac{u_{n+1}}{u_n} \right| \xrightarrow[n \to +\infty]{} \ell$ avec $\ell \in [0; 1[$, alors la série $\sum_{n \geq n_0} u_n$ converge absolu-

ment

• Si $\left| \frac{u_{n+1}}{u_n} \right| \xrightarrow[n \to +\infty]{} \ell$ avec $\ell \in]1; +\infty]$, alors la série $\sum_{n \geq n_0} u_n$ diverge grossièrement.

1.5 Absolue convergence

Si la série $\sum_{n\geq n_0} |u_n|$ converge, alors la série $\sum_{n\geq n_0} u_n$ converge.

Dans ce cas, on dit que la série $\sum_{n\geq n_0} u_n$ est absolument convergente.

Remarque: lors qu'elles convergent, les séries de référence du premier point sont absolument convergente.

1.6 Critères de convergence

- Comparaison Si $\forall n \geq n_0, |u_n| \leq v_n$ et $\sum_{n \geq n_0} v_n$ converge alors $\sum_{n \geq n_0} u_n$ converge (absolument).
- Domination, négligeabilité Si $u_n = \mathcal{O}(v_n)$ (en particulier si $u_n = o(v_n)$) et $\sum_{n \geq n_0} v_n$ est **absolument** convergente alors $\sum_{n \geq n_0} u_n$ converge (absolument).
- Équivalence Si $u_n \underset{n \to +\infty}{\sim} v_n$ avec v_n de signe constant au voisinage de $+\infty$ alors $\sum_{n \ge n_0} u_n$ et $\sum_{n \ge n_0} v_n$ sont de même nature.

1.7 Théorème spécial des séries alternées (Leibniz)

Soit $(u_n)_{n\geq n_0}$ une suite réelle décroissante de limite nulle. Alors :

- $\sum_{n \ge n_0} (-1)^n u_n$ converge, ainsi que $\sum_{n \ge n_0} (-1)^{n+1} u_n$,
- $R_N = \sum_{n=N+1}^{+\infty} (-1)^n u_n$ est du signe de $(-1)^{N+1} u_{N+1}$ (*i.e.* de son premier terme),
- on a la majoration : $|R_N| \le u_{N+1}$.

1.8 Formule de Stirling

$$n! \underset{n \to +\infty}{\sim} \sqrt{2\pi n} n^n e^{-n}$$

1.9 Constante γ d'Euler - Hors programme mais utile

 $\exists \gamma \in \mathbb{R} \text{ telle que } \sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1). \text{ En conséquence, } \sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln(n).$

1.10 Produit de Cauchy

① Soit $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}v_n$ deux séries numériques. Le produit de Cauchy de ces

séries est la série
$$\sum_{n\geqslant 0} w_n$$
 où : $\forall n\geq 0$, $w_n=\sum_{k=0}^n u_k v_{n-k}=\sum_{p+q=n} u_p v_q$.

Cauchy
$$\sum_{n\geqslant 0} w_n$$
 converge absolument et $\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$.

2 Intégrales généralisées

2.1 Intégrales de Riemann

- Pour a > 0, $\int_{a}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge si, et seulement si, $\alpha > 1$.
- $\int_0^1 \frac{\mathrm{d}t}{t^{\alpha}}$ convergent si, et seulement si, $\alpha < 1$.

2.2 Intégrales de référence en exp et ln

- $\int_0^{+\infty} e^{-\alpha t} dt$ existe si, et seulement si, $\alpha \in]0$; $+\infty[$, et vaut $\frac{1}{\alpha}$ dans ce cas.
- $\int_0^1 \ln t dt$ existe et vaut -1.

2.3 Translation de la variable

- $f:]a; b] \to \mathbb{R}$ est intégrable en a^+ si, et seulement si, $t \mapsto f(a+t)$ est intégrable en 0^+ .
- De même sur $[a; b[: f \text{ intégrable en } b^- \text{ ssi } t \mapsto f(b-t) \text{ intégrable en } 0^+.$

$2.4 \ {\bf Int\'egrales \ faussement \ impropres}$

Pour $f: [a; b[(b \neq +\infty) \to \mathbb{R} \text{ continue telle que } \lim_{t \to b} f(t) \text{ existe et est finie,}$ $\int_a^b f(t) \mathrm{d}t \text{ existe. } f \text{ est prolongeable par continuit\'e en } b \text{ et on dit que } \int_a^b f(t) \mathrm{d}t \text{ est } faussement \ impropre.}$

Idem pour $f: a; b \mid (a \neq -\infty) \to \mathbb{R}$ continue de limite finie en a.

Une intégrale n'est jamais faussement impropre en $-\infty$ ou $+\infty$

2.5 Absolue convergence, inégalité triangulaire et intégrabilité

Si
$$\int_a^b |f(t)| dt$$
 existe, alors $\int_a^b f(t) dt$ existe, et on a l'inégalité triangulaire :
$$\left| \int_a^b f(t) dt \right| \leq \int_a^b |f(t)| dt.$$

On dit dans ce cas que $\int_a^b f(t)dt$ est absolument convergente ou que f est intégrable sur] a; b[. Dans les exemples de référence des points 1 et 2, lorsque que les intégrales convergent, elles convergent absolument et les intégrandes sont intégrables.

2.6 Critères de convergence

On considère $f,g:[a;b[\to\mathbb{R} \text{ continues par morceaux, éventuellement }b=+\infty.$

Les critères ci-dessous sont valables aussi pour $f, g :]a; b] \to \mathbb{R}$ en permutant les rôles de a et de b, avec éventuellement $a = -\infty$.

 $\bullet \ Comparaion \ - \ Version \ sign\'ee$

On suppose $\boxed{\mathbf{0} \leq f} \leq g$. Alors

- (i) si $\int_a^b g(t)dt$ converge alors $\int_a^b f(t)dt$ converge.
- (ii) si $\int_a^b f(t)dt$ diverge alors $\int_a^b g(t)dt$ diverge.
- ullet Comparaion Version intégrabilité

Si $|f| \le g$ et g est intégrable sur [a; b] alors f est intégrable sur [a; b].

• Domination, négligeabilité -

Si $f = \mathcal{O}(g)$ en b (en particulier si f = o(g)) et g est intégrable sur [a; b[alors f est intégrable sur [a; b[.

• Équivalence - Version signée

Mise en garde : « f et g sont de signe constant » n'est pas équivalent à « f et g sont de même signe ».

Si $f \sim g$ en b et **si f et g sont de signe constant** alors les intégrales $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ sont de même nature.

• Équivalence - Version intégrabilité

Si $f \sim g$ en b alors f est intégrable sur [a; b] si, et seulement si, g l'est.

2.7 Changement de variable

Soit $\varphi:]a; b[\to \mathbb{R}$ (où éventuellement $a = -\infty$ et/ou $b = +\infty$) une bijection \mathcal{C}^1 et strictement monotone. Soit $f: \varphi(]a; b[) \longrightarrow \mathbb{R}$ continue par morceaux.

Alors $\int_{\varphi(a^+)}^{\varphi(b^-)} f(u) du$ et $\int_a^b f(\varphi(t)) \varphi'(t) dt$ sont de même nature, et égales en cas d'existence. En général, on baptise $u:]a; b[\to \mathbb{R}, t \mapsto \varphi(t)$ et on écrit $\frac{du}{dt} = \varphi'(t)$. Autrement dit, on assimile la nouvelle variable à la fonction φ .

2.8 Intégration par parties

Soit $u, v :]a; b[\to \mathbb{R}$ (où éventuellement $a = -\infty$ et/ou $b = +\infty$) de classe \mathcal{C}^1 .

Si $\lim_{t\to a^+} u(t)v(t)$ et $\lim_{t\to b^-} u(t)v(t)$ existent et sont finies, alors $\int_a^b u'v$ et $\int_a^b uv'$ sont de même nature.

En cas d'existence, on a : $\int_a^b u'v = \left[uv\right]_{a^+}^{b^-} - \int_a^b uv'.$

2.9 Fonction continue positive d'intégrale nulle

Soit $f: I \to \mathbb{R}$ continue et intégrable sur l'intervalle I. Si $\int_I |f| = 0$ alors f = 0 sur I.

3 Rappels d'algèbre linéaire

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

3.1 Espaces vectoriels de référence

• \mathbb{K}^n est un espace de dimension n admettant (e_1, e_2, \dots, e_n) pour base canonique avec

$$e_1 \stackrel{\text{déf.}}{=} (1, 0, 0, \dots, 0),$$

$$e_2 \stackrel{\text{déf.}}{=} (0, 1, 0, \dots, 0),$$

$$\vdots$$

$$e_n \stackrel{\text{déf.}}{=} (0, 0, 0, \dots, 1).$$
Pour tout $x = (x_1, x_2, \dots, x_n) \in \mathbb{K}^n$, $x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = \sum_{i=1}^n x_i e_i.$

 $\bullet \mathcal{M}_{n,1}(\mathbb{K})$ est un espace de dimension n admettant (E_1, E_2, \dots, E_n) pour base canonique avec

$$\mathbf{E}_{1} \stackrel{\text{def.}}{=} \begin{pmatrix} 1\\0\\0\\0\\\vdots\\0 \end{pmatrix}, \quad \mathbf{E}_{2} \stackrel{\text{def.}}{=} \begin{pmatrix} 0\\1\\0\\\vdots\\0 \end{pmatrix}, \quad \dots, \quad \mathbf{E}_{n} \stackrel{\text{def.}}{=} \begin{pmatrix} 0\\0\\0\\\vdots\\1 \end{pmatrix}.$$

Pour tout
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K}), X = x_1 E_1 + x_2 E_2 + \dots + x_n E_n = \sum_{i=1}^n x_i E_i.$$

• $\mathcal{M}_{n,p}(\mathbb{K})$ est un espace de dimension np admettant $(E_{i,j})_{1 \leq i \leq n, 1 \leq j \leq p}$ pour base canonique où, pour tout (i,j), $E_{i,j}$ est la matrice dont tous les coefficients sont nuls, sauf celui situé *i*-ème ligne et *j*-ème colonne qui vaut 1.

Pour tout
$$M = (m_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{K}), M = \sum_{i,j} m_{i,j} E_{i,j}.$$

- • $\mathbb{K}_n[X]$ est un espace de dimension n+1 admettant $(1, X, X^2, \dots, X^n)$ pour base canonique.
- $3.2 \ f : E \rightarrow F$ est une application linéaire ssi :

$$\forall (u, v) \in E^2, \forall \lambda \in \mathbb{K}, f(\lambda u + v) = \lambda f(u) + f(v).$$

3.3 Soit $f : E \to F$ est une application linéaire. Le **noyau** de f est : $\operatorname{Ker}(f) \stackrel{\text{déf.}}{=} \{ u \in E / f(u) = 0_{F} \}.$

3.4 Soit $f: E \to F$ est une application linéaire. L'**image** de f est : $\operatorname{Im}(f) \stackrel{\text{def.}}{=} \{ f(u)/u \in E \} = \{ v \in F/\exists u \in E \ tq \ f(u) = v \}.$

3.5 Détermination pratique de l'image

 $f: E \to F$ est une application linéaire avec E de dimension fine n.

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

Alors
$$\operatorname{Im}(f) = \operatorname{Vect}(f(\mathcal{B})) = \operatorname{Vect}(f(e_1), \dots, f(e_n)).$$

¡La famille $(f(e_1), \dots, f(e_n))$ n'est pas nécessairement libre!

3.6 Caractérisation de l'inversibilité d'une matrice

Soit $M \in \mathcal{M}_n(\mathbb{K})$. Il y a équivalence entre :

- i. M est inversible.
- $ii. \operatorname{rg}(M) = n.$
- iii. $det(M) \neq 0$.

- iv. Le système MU = 0 admet une unique solution (U = 0!).
- v. Ker(M) = $\{0_{\mathcal{M}_{n,1}(\mathbb{K})}\}$

3.7 Caractérisation des isomorphismes en dimension finie

Soit E et F de dimension finie, $f: E \to F$ est une application linéaire.

- \bullet Si dim E \neq dim F alors f n'est pas un isomorphisme.
- Si $\dim E = \dim F$ alors il y a équivalence entre :
- i. f est un isomorphisme.
- $ii.\ f$ est injective.
- iii. f est surjective.

- $iv. \operatorname{rg}(f) = \dim F \ (= \dim E).$
- v. $\mathcal{M}_{\mathcal{B}}(f)$ est inversible.
- $vi. \det(f) \stackrel{\text{def.}}{=} \det(\mathcal{M}_{\mathcal{B}}(f)) \neq 0.$
- 3.8 Soit $\mathcal{B} = (u_1, \dots, u_n)$ et $\mathcal{C} = (v_1, \dots, v_n)$ deux bases d'un espace vectoriel de dimension n. La **matrice de passage** de \mathcal{B} vers \mathcal{C} , notée $\mathcal{P}_{\mathcal{B},\mathcal{C}}$, est

$$\mathcal{P}_{\mathcal{B},\mathcal{C}}\stackrel{\mathrm{def.}}{=}\mathcal{M}_{\mathcal{B}}(\mathcal{C}),$$

autrement dit : les colonnes de $\mathcal{P}_{\mathcal{B},\mathcal{C}}$ sont formés des coordonnées des vecteurs de \mathcal{C} dans la bases \mathcal{B} .

3.9 Passage réciproque

Soit \mathcal{B} et \mathcal{C} deux bases d'un espace vectoriel de dimension n. La matrice de passage de $\mathcal{P}_{\mathcal{B},\mathcal{C}}$ est inversible, et

$$\mathcal{P}_{\mathcal{C},\mathcal{B}}=\mathcal{P}_{\mathcal{B},\mathcal{C}}^{-1}$$

3.10 Formules de changement de bases

Soit \mathcal{B} et \mathcal{C} deux bases d'un espace vectoriel E de dimension finie n.

 \bullet Soit x un vecteur de E. Alors :

$$\mathcal{M}_{\mathcal{C}}(x) = \mathcal{P}_{\mathcal{C},\mathcal{B}}\mathcal{M}_{\mathcal{B}}(x)$$

 \bullet Soit f un endomorphisme de E. Alors :

$$\mathcal{M}_{\mathcal{C}}(f) = \mathcal{P}_{\mathcal{C},\mathcal{B}}\mathcal{M}_{\mathcal{B}}(f)\mathcal{P}_{\mathcal{B},\mathcal{C}}$$

3.11 Similitude

Deux matrices carrées A et B sont dites semblables s'il existe une matrice inversible P telle que

$$B = P^{-1}AP$$
.

On a alors $A = (P^{-1})^{-1}BP^{-1}$, et $\forall n \in \mathbb{N}$, $B^n = P^{-1}A^nP$.

3.12 Trace

- La trace de $A \in \mathcal{M}_n(\mathbb{K})$ est la somme de ses coefficients diagonaux : $\operatorname{Tr}(A) = \sum_{i=1}^{n} a_{i,i}$.
- Tr : $\mathcal{M}_n(\mathbb{K}) \to \mathbb{R}$, A \mapsto Tr (A) est une forme linéaire.
- $\forall (A, B) \in \mathcal{M}_n(\mathbb{K})^2, \operatorname{Tr}(AB) = \operatorname{Tr}(BA)$
- $B = P^{-1}AP \Rightarrow Tr(B) = Tr(A)$

3.13 Somme directe de deux sous-espaces.

Soit F et G deux sous-espaces de E. Il y a équivalence entre :

- i. la somme F+G est directe (notée $F\oplus G$),
- *ii.* $F \cap G = \{0\},\$
- iii. $\forall u \in F + G, \exists ! (f, g) \in F \times G, \quad u = f + g,$
- et en dimension finie:
- $iv. \dim(F + G) = \dim F + \dim G$
- v. en concaténant une base de F et une base de G on obtient une base de F+G.

4 Polynômes

4.1 **Degré**

- ② $\deg(P+Q) \leq \max(\deg(P),\deg(Q))$ avec égalité si (mais pas seulement) $\deg(P) \neq \deg(Q)$.
- $(3) \deg(PQ) \leqslant \deg(P) + \deg(Q)$
- $\bigoplus \deg(P \circ Q) = \deg(P) \deg(Q)$ si Q non nul

4.2 Formule de Leibniz

$$(PQ)^{(n)} = \sum_{k=0}^{n} {n \choose k} P^{(k)} Q^{(n-k)}$$

4.3 Division euclidienne

Soit A un polynôme quelconque de $\mathbb{K}[X]$ et B un polynôme non nul de $\mathbb{K}[X]$. Alors il existe deux polynômes Q et R tels que

$$A = BQ + R$$
 avec $deg(R) < deg(B)$.

4.4 Formule de Taylor et translation

①
$$P(X) = \sum_{k=0}^{\deg(P)} \frac{P^{(k)}(a)}{k!} (X - a)^k$$

②
$$P(X + a) = \sum_{k=0}^{\deg(P)} \frac{P^{(k)}(a)}{k!} X^k$$

4.5 Racines et multiplicité

Il y a équivalence entre

- ① a est une racine d'ordre de multiplicité $\mu \in \mathbb{N}^*$ de P
- ② $(X-a)^{\mu}$ divise P et $(X-a)^{\mu+1}$ ne divise pas P

4.6 Théorème de D'Alembert-Gau β et conséquence

- ① Tout polynôme non constant de $\mathbb{C}[X]$ possède (au moins) une racine complexe.
- $\ \$ Tout polynôme de degré au plus n admettant strictement plus de n racines comptées avec leur multiplicité est nul.

4.7 Polynômes réels et racines complexes

- ① Si P est un polynôme à coefficients réels admettant une racine complexe α de multiplicité μ , alors $\overline{\alpha}$ est aussi racine de P, de même multiplicité μ .
- 2 Les racines complexes d'un polynôme réel sont deux à deux conjuguées.

4.8 Liens coefficients-racines

① Soit $P = \sum_{k=0}^{d} a_k X^k$ où $d = \deg(P) \in \mathbb{N}^*$ un polynôme **scindé** de $\mathbb{K}[X]$

c'est-à-dire pouvant se décomposer en $P = a_d \prod_{i=1}^r (X - \alpha_i)^{\mu_i}$.

Alors
$$\sum_{i=1}^{r} \mu_i \alpha_i = -\frac{a_{d-1}}{a_d}$$
 et $\prod_{i=1}^{r} \alpha_i^{\mu_i} = (-1)^d \frac{a_0}{a_d}$.

② En particulier, les racines α et β du trinôme X^2-sX+p vérifient $\alpha+\beta=s$ et $\alpha\beta=p.$

4.9 Polynômes irréductibles

- ① Le polynôme P de $\mathbb{K}[X]$ est dit irréductible s'il est non constant et si ses seuls diviseurs sont les polynômes constants et les polynômes de la forme λP avec $\lambda \in \mathbb{K}^*$.
- ② Autrement dit, P non constant est irréductible si, et seulement si, P = AB entraı̂ne A ou B est constant.

4.10 Caractérisation des irréductibles de $\mathbb{C}[X]$ et de $\mathbb{R}[X]$

① Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes du premier degré

$$P = aX + b = a(X - \frac{-b}{a})$$
 avec $a \neq 0$.

2 Les polynômes irréductibles de $\mathbb{R}[X]$ sont les polynômes du premier degré

$$P = aX + b = a(X - \frac{-b}{a})$$
 avec $a \neq 0$

et les polynômes du second degré sans racines réelles

$$P = aX^2 + bX + c \quad \text{avec } b^2 - 4ac < 0.$$

4.11 Décomposition des polynômes dans $\mathbb{K}[X]$

① Tout polynôme de $\mathbb{C}[X]$ peut se factoriser

$$P(X) = \lambda \prod_{k=1}^{r} (X - \alpha_k)^{\mu_k}$$

où les α_k sont les racines de P, de multiplicité respective μ_k ,

 λ est le coefficient dominant de P et $\sum_{k=1}^{r} \mu_k = \deg(P)$.

② Tout polynôme de $\mathbb{R}[X]$ peut se factoriser

$$P(X) = \lambda \prod_{k=1}^{r} (X - \alpha_k)^{\mu_k} \times \prod_{j=1}^{s} (X^2 + \beta_j X + \gamma_j)^{\nu_k}$$

où les α_k sont les racines de P, de multiplicité respective μ_k , $\beta_j^2 - 4\gamma_j < 0 \text{ pour tout } j \text{ de } \llbracket 1 \, ; \ s \rrbracket, \ \lambda \text{ est le coefficient dominant de P et}$ $\sum_{k=1}^r \mu_k + 2\sum_{j=1}^s \mu_j = \deg(\mathrm{P}).$

4.12 **Cas de** $X^n - 1$

$$X^{n} - 1 = \prod_{k=0}^{n-1} (X - e^{2ik\pi/n}) = \prod_{\omega \in \mathbb{U}_n} (X - \omega)$$

où $\mathbb{U}_n = \{e^{2ik\pi/n}, 0 \le k \le n-1\}$ est l'ensemble des racines n-ièmes de 1.

- 4.13 Décomposition en éléments simples
 - ① On appelle fraction rationnelle $F = \frac{P}{Q}$ le quotient de P par Q, défini en tout point où Q ne s'annule pas.
 - 2 Les pôles de F sont les racines du polynôme Q.

 - 4 Si Q est scindé à racines simples (donc les pôles de F sont tous simples) s'écrit Q = $\lambda \prod_{k=1}^{n} (X a_k)$, alors il existe un polynôme E et n scalaires $(b_k)_{1 \leq k \leq n}$ tels que

$$F = E + \frac{b_1}{X - a_1} + \dots + \frac{b_n}{X - a_n}$$

où E s'obtient par division euclidienne de P par Q et chaque b_k s'appelle le résidu de a_k .

- ⑤ Dans le cas précédent, on peut montrer que $b_k = \frac{P(a_k)}{Q'(a_k)}$.
- 6 On rencontre fréquemment

$$\frac{1}{X(X+a)} = \frac{1/a}{X} - \frac{1/a}{X+a}$$
, et $\frac{1}{X^2 - a^2} = \frac{1/(2a)}{X-a} - \frac{1/(2a)}{X+a}$

et notamment les cas $a = \pm 1$.