Exercice 1

- **1.** $\forall n \geqslant 2, u_n \neq 0$, et : $\left| \frac{u_{n+1}}{u_n} \right| \underset{n \to +\infty}{\sim} \frac{1}{n+1} \text{ donc } \left| \frac{u_{n+1}}{u_n} \right| \xrightarrow[n \to +\infty]{} 0$. D'après le critère de D'Alembert, $\sum_{n \geq 0} u_n$ converge.
 - $v_n \underset{n \to +\infty}{\sim} u_n$ donc par équivalence de termes généraux positifs, $\sum_{n \ge 0} v_n$ converge.
- **2.** $u_0 = u_1 = 0$ et $\forall n \ge 2, u_n = \frac{1}{(n-2)!}$, donc $\sum_{n=0}^{+\infty} u_n = \sum_{n=2}^{+\infty} \frac{1}{(n-2)!} = \sum_{k=0}^{+\infty} \frac{1}{k!} = e$.
 - $v_n = \frac{n^2 n + n 2}{n!} = u_n + \frac{n}{n!} \frac{2}{n!} \text{ donc } \sum_{n=0}^{+\infty} v_n = e + e 2e = 0$
- 3. Je remarque que $v_0 < 0$, $v_1 < 0$ tandis que $\forall n \ge 2, v_n > 0$. En notant $P = v_0 + v_1$ et $M = \sum_{n=2}^{+\infty} v_n$, P + M = 0 donc $M = -P = -v_0 v_1 = |v_0| + |v_1|$. Ainsi $\sum_{n=0}^{1} |v_n| = \sum_{n=2}^{+\infty} |v_n|, \text{ et } N = 1 \text{ convient.}$

Remarque : seul N=1 convient, puisque augmenter N, c'est augmenter strictement le premier membre et diminuer strictement le second membre.

EXERCICE 2

Soit $x \in]-1$; 1[et

$$\forall n \in \mathbb{N}^*, \quad w_n = \frac{x^n}{(1 - x^n)(1 - x^{n+1})}.$$

- **4.** Pour $x=0, w_n=0 \ (\forall n\geqslant 1)$: il s'agit de la série nulle, qui converge.
 - Pour $x \in]-1$; $1[\setminus \{0\}, x^n \xrightarrow[n \to +\infty]{} 0$ donc $w_n \underset{n \to +\infty}{\sim} x^n$ et (attention au signe) $|w_n| \underset{n \to +\infty}{\sim} |x|^n$. Par équivalence de termes positifs, et comme $\sum_n |x|^n$ converge puisque $|x| \in [0; 1[, \sum |w_n|$ converge, donc

 $\sum w_n$ converge absolument donc converge. Le critère de D'Alembert s'applique aussi...

5.
$$(1-x)\sum_{n=1}^{+\infty} w_n = \sum_{n=1}^{+\infty} \frac{x^n - x^{n+1}}{(1-x^n)(1-x^{n+1})} = \sum_{n=1}^{+\infty} \frac{(x^n-1) - (x^{n+1}-1)}{(1-x^n)(1-x^{n+1})} = \sum_{n=1}^{+\infty} \left(\frac{1}{x^{n+1}-1} - \frac{1}{x^n-1}\right) \underset{\text{télescopage}}{=} \lim_{n \to +\infty} \left(\frac{1}{x^{n+1}-1} - \frac{1}{x-1}\right) = \frac{x}{1-x}.$$

$$\operatorname{Donc} \sum_{n=1}^{+\infty} w_n = \frac{x}{(1-x)^2}.$$

PROBLÈME

Partie 1 - Transformation d'Abel

6. Les termes « $u_k v_{k+1}$ » se télescopent tous et les termes « $u_k v_k$ » se télescopent pour les indices 1 à n-1. D'où le résultat.

7. Prenons pour $k \ge 0$, $u_k = B_k$, $v_0 = 0$ et pour $k \ge 1$, $v_k = a_k$ dans la formule (1), on obtient

$$\sum_{k=0}^{n-1} a_{k+1} b_{k+1} + \sum_{k=0}^{n-1} B_k (a_{k+1} - a_k) = B_n a_n - B_0 v_0$$

ce qui donne la formule voulue, en décalant l'indice dans la première somme et faisant passer la seconde somme à droite, compte-tenu de $B_0 = v_0 = 0$.

Partie 2 – Application aux calculs de sommes finies classiques

8. a) Avec $a_k = k$ et $b_k = 1$, (2) fournit

$$\sum_{k=1}^{n} k = n^2 - \sum_{k=1}^{n-1} k \text{ donc } 2\sum_{k=1}^{n} k = n^2 + n \text{ d'où } \sum_{k=1}^{n} k = \frac{n^2 + n}{2} = \frac{n(n+1)}{2}$$

b) Avec $a_k = k^2 - k$ et $b_k = 1$, $a_{k+1} - a_k = 2k$ et $B_k = k$, (2) fournit

$$\sum_{k=1}^{n} k^2 - \frac{n(n+1)}{2} = n^3 - n^2 - \sum_{k=1}^{n-1} 2k^2 \text{ donc } 3\sum_{k=1}^{n} k^2 = n^3 - n^2 + \frac{n(n+1)}{2} + 2n^2 = \frac{2n^3 + 3n^2 + n}{2}$$
d'où $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

9. a) Avec $a_k = F_k$, $b_1 = 1$ et $\forall k \geq 2$, $b_k = 0$, $a_{k+1} - a_k = F_{k-1}$ et $B_k = 1$, (2) fournit pour $n \geq 2$

$$1 = F_n - \sum_{k=1}^{n-1} F_{k-1} \text{ donc } \sum_{k=0}^{n-2} F_k = F_n - 1, \text{ donc } \forall n \in \mathbb{N}, \quad \sum_{k=0}^n F_k = F_{n+2} - 1.$$

b) Avec $a_k = F_k$, $b_1 = 0$ et $\forall k \ge 2$, $b_k = F_{k-2}$, alors $a_{k+1} - a_k = F_{k-1}$, $B_1 = 0$ et $\forall k \ge 2$, $B_k = F_k - 1$

par le calcul précédent, donc (2) fournit pour
$$n \ge 2$$
, $\sum_{k=2}^{n} F_k F_{k-2} = F_n(F_n - 1) - \sum_{k=2}^{n-1} F_{k-1}(F_k - 1)$

donc
$$\sum_{k=2}^{n-1} F_k(F_{k-1} + F_{k-2}) + F_n F_{n-2} = F_n^2 - F_n + \sum_{k=2}^{n-1} F_{k-1}$$

d'où
$$\sum_{k=2}^{n-1} F_k^2 = F_n(F_n - F_{n-2}) - F_n + F_n - 2$$

et enfin $\sum_{k=2}^{n-1} F_k^2 = F_n F_{n-1} - 2$ et comme $F_0 = F_1 = 1$, on obtient $\forall n \in \mathbb{N}^*$, $\sum_{k=0}^n F_k^2 = F_n F_{n+1}$, vérifiée aussi pour n = 0.

Partie 3 – Critère de Dirichlet et application

10. Puisque (a_n) converge, la série de t.g. $a_n - a_{n+1}$ converge. Comme elle est à termes positifs puisque (a_n) décroît, cette convergence est absolue.

Puisque (B_n) est bornée,
$$(a_{n+1} - a_n)$$
B_n $\underset{n \to +\infty}{=} \mathcal{O}(a_n - a_{n+1})$.

Par le critère de domination, la série de t.g. $(a_{n+1} - a_n)B_n$ converge.

Enfin comme (a_n) converge vers 0 et (B_n) est bornée, (a_nB_n) converge vers 0.

Ainsi, le membre de droite de (2) admet une limite finie donc le membre de gauche aussi. Autrement dit la série de t.g. a_nb_n converge.

- **11.** a) Lorsque x = 0, il s'agit de la série de Riemann de paramètre p, qui converge si, et seulement si, p > 1. Dans toute la suite de cette question, on suppose $x \in]0$; $2\pi[$.
 - **b)** Comme $x \in [0; 2\pi[, e^{ix} \neq 0]]$ et

$$\left| \sum_{n=1}^{m} e^{inx} \right| = \left| e^{ix} \frac{1 - e^{inx}}{1 - e^{ix}} \right| = \left| \frac{e^{inx/2}}{e^{ix/2}} \times \frac{\sin(nx/2)}{\sin(x/2)} \right| \leqslant \frac{1}{\sin(x/2)} \operatorname{car} |\sin(nx/2)| \leqslant 1 \operatorname{et} \sin(x/2) > 0.$$

- c) Comme la suite $\left(\frac{1}{n^p}\right)_{n\geq 1}$ est décroissante de limite nulle et la suite $(B_n)_{n\geq 1}$ définie par $B_n=\sum_{k=1}^n e^{ikx}$ est bornée, le critère de Dirichlet entraı̂ne que la série $\sum_{n\geq 1} \frac{e^{inx}}{n^p}$ converge.
- d) Cette série converge absolument si, et seulement si, la série de Riemann de paramètre p converge, donc si, et seulement si, p > 1.
- e) Les séries $\sum_{n\geqslant 1} \frac{\sin(nx)}{n^p}$ et $\sum_{n\geqslant 1} \frac{\cos(nx)}{n^p}$ étant les parties réelles et imaginaires d'une série convergente, elles convergent.
- Si on a un doute, en notant (S_n) la suite des sommes partielles de la série complexe précédente, puisque (S_n) converge, $(\overline{S_n})$ converge, et par linéarité les suites $\left(\frac{S_n + \overline{S_n}}{2}\right)$ et $\left(\frac{S_n \overline{S_n}}{2}\right)$ convergent, c'est-à-dire les séries partie réelle et partie imaginaire convergent.

Partie 4 – Théorème de Leibniz et irrationnalité de e

- 12. a) Hypothèse : (a_n) est une suite de réels décroissante et de limite nulle.
 - b) Soit $(a_n)_{n\geq 1}$ une suite de réels décroissante et de limite nulle. Soit pour tout $n\geq 1$ $b_n=(-1)^n$ et $B_n=\sum_{k=1}^n b_n$. On a : $\forall n\geq 1$, $B_n=\begin{cases} -1 & \text{si n est impair} \\ 0 & \text{si n est pair} \end{cases}$, donc $|B_n|\leq 1$. La suite (B_n) est bornée. D'après le critère de Dirichlet, la série alternée de t.g. $a_nb_n=(-1)^na_n$
 - c) On a alors: $\forall n \geq 1$, $|\mathbf{R}_n| = \left| \sum_{k=n+1}^{+\infty} (-1)^k a_k \right| \leqslant a_{n+1}$.
- **13.** a) Comme $\frac{p!q}{p} = (p-1)!q$ est un entier, et pour tout $k \in [0; p]$, $\frac{p!}{k!} = \frac{1 \times 2 \times \cdots \times k \times (k+1) \times \cdots \times p}{1 \times 2 \times \cdots \times k} = \frac{1 \times 2 \times \cdots \times k \times (k+1) \times \cdots \times p}{1 \times 2 \times \cdots \times k}$ Variante du second argument : $\frac{p!}{k!} = \binom{p}{k}(p-k)!$ est un entier.
 - **b)** On sait que $\frac{q}{p} = e^{-1} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!}$, donc $\frac{q}{p} \sum_{k=0}^{p} \frac{(-1)^k}{k!} = \sum_{k=p+1}^{+\infty} \frac{(-1)^k}{k!}$ donc $s = \sum_{k=p+1}^{+\infty} \frac{(-1)^k p!}{k!}$. La majoration du reste pour la série alternée de t.g. $\frac{(-1)^k p!}{k!}$ donne $|s| \leq \frac{p!}{(p+1)!} \leq \frac{1}{p+1}$.
 - c) Il s'agit d'améliorer la conclusion du théorème de Leibniz car l'énoncé demande un signe strict. $^{+\infty}_{-\infty} (-1)^k$

 $s = p! \sum_{k=p+1}^{+\infty} \frac{(-1)^k}{k!}$ est du signe (strict) de $\sum_{k=p+1}^{+\infty} \frac{(-1)^k}{k!}$. Posons puisque p est impair strictement positif, posons p = 2n - 1 avec $n \in \mathbb{N}^*$.

$$\sum_{k=p+1}^{+\infty} \frac{(-1)^k}{k!} = \sum_{k=2n}^{+\infty} \frac{(-1)^k}{k!} = \sum_{k=n}^{+\infty} \left(\frac{(-1)^{2k}}{(2k)!} + \frac{(-1)^{2k+1}}{(2k+1)!} \right) = \sum_{k=n}^{+\infty} \underbrace{\left(\frac{1}{(2k)!} - \frac{1}{(2k+1)!} \right)}_{(2k+1)!}$$

 $\sum_{k=p+1}^{+\infty} \frac{(-1)^k}{k!}$ est une somme de termes positifs strictement, donc est strictement positive. Donc s>0.

- d) Un raisonnement analogue montre que s < 0 pour p pair.
- e) Par la majoration issue de b) et comme finalement $s \neq 0$, on a finalement

$$s \in \mathbb{Z}$$
 et $0 < |s| \leqslant \frac{1}{p+1} \leqslant \frac{1}{2}$,

s est un entier non nul de l'intervalle] $-1/2\,;\ 1/2[,$ ce qui est impossible. Donc e est un nombre irrationnel.

Partie 5 - Formule sommatoire d'Abel et constante d'Euler

14. Soit $x \in]0$; $+\infty[$ et $N = \lfloor x \rfloor$. Par la transformation d'Abel (2) où je substitue a_n à b_n de sorte que $B_n = A(n)$, et on substitue $\varphi(n)$ à a_n , j'obtiens

$$\sum_{1 \le n \le r} a_n \varphi(n) = \sum_{n=1}^{N} a_n \varphi(n) \stackrel{(2)}{=} A(N) \varphi(N) - \sum_{n=1}^{N-1} (\varphi(n+1) - \varphi(n)) A(n)$$

Constatons alors que, puisque sur les intervalles [n; n+1] A est constante égale à A(n), on a :

$$\left(\varphi(n+1)-\varphi(n)\right)\times \mathbf{A}(n)=\mathbf{A}(n)\int_{n}^{n+1}\varphi'(u)\mathrm{d}u=\int_{n}^{n+1}\mathbf{A}(u)\varphi'(u)\mathrm{d}u,\text{ ce qui conduit à}$$

$$\sum_{1 \leqslant n \leqslant x} a_n \varphi(n) = A(N)\varphi(N) - \int_1^N A(u)\varphi'(u) du$$

De même : $\varphi(N) = \varphi(x) - (\varphi(x) - \varphi(N)) = \varphi(x) - \int_{N}^{x} \varphi'(u) du$, et comme sur [N; x], A(N) = A(u), on

a: $A(N)\varphi(N) = A(x)\varphi(x) - \int_{N}^{x} A(u)\varphi'(u)du$. On obtient alors la formule voulue:

$$\sum_{1 \le n \le x} a_n \varphi(n) = A(x)\varphi(x) - \int_1^x A(u)\varphi'(u) du$$

15.
$$u_{n+1} - u_n = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right) = \frac{1}{n+1} - \frac{1}{n} + \mathcal{O}\left(\frac{1}{n^2}\right) = -\frac{1}{n(n+1)} + \mathcal{O}\left(\frac{1}{n^2}\right) = \mathcal{O}\left(\frac{1}{n^2}\right)$$

Or la série de Riemann de t.g. $\frac{1}{n^2}$ est absolument convergent donc la série de t.g. $u_{n+1} - u_n$ converge. Donc la suite u converge.

- **16.** a) $\forall x > 0, x 1 \leqslant \lfloor x \rfloor \leqslant x \text{ donc } 1 \frac{1}{x} \leqslant \frac{\lfloor x \rfloor}{x} \leq 1$. Ce qui prouve par encadrement que $\frac{\lfloor x \rfloor}{x} \xrightarrow[x \to +\infty]{} 1$, donc $\lfloor x \rfloor \underset{x \to +\infty}{\sim} x$.
 - **b)** $f: u \mapsto \frac{\lfloor u \rfloor}{u^2}$ est c.p.m. et positive sur $]0; +\infty[$. De plus, $f(u) \underset{u \to +\infty}{\sim} \frac{1}{u}$ et $\int_1^{+\infty} \frac{\mathrm{d}u}{u}$ est divergente. Par équivalence de fonctions positives, $\int_1^{+\infty} \frac{\lfloor u \rfloor}{u^2} \mathrm{d}u$ diverge.
 - $\forall u \in]1; +\infty[, 0 \le u \lfloor u \rfloor \le 1 \text{ donc } \frac{u \lfloor u \rfloor}{u^2} = \mathcal{O}\left(\frac{1}{u^2}\right)$. Comme $u \mapsto 1/u^2$ est intégrable sur $[1; +\infty[, \int_1^{+\infty} \frac{\lfloor u \rfloor}{u^2} du \text{ converge par domination.}]$
 - c) Prenons $\forall n \in \mathbb{N}^*$, $a_n = 1$ de sorte que $A(x) = \sum_{n=1}^{\lfloor x \rfloor} 1 = \lfloor x \rfloor$, et $\varphi :]0; +\infty[\to \mathbb{R}, x \mapsto \frac{1}{x}]$. Alors (3) conduit exactement à $\sum_{1 \le n \le x} \frac{1}{n} = \frac{\lfloor x \rfloor}{x} + \int_1^x \frac{\lfloor u \rfloor}{u^2} du$.
 - d) La formule précédente prise en $x = n \in \mathbb{N}^*$ quelconque donne $\sum_{k=1}^n \frac{1}{k} = 1 + \int_1^n \frac{\lfloor u \rfloor}{u} du$.

Retranchons $\ln(n) = \int_1^n \frac{du}{u}$ aux deux membres : $u_n = 1 - \int_1^n \frac{u - \lfloor u \rfloor}{u^2} du$

Comme (u_n) et $\int_1^{+\infty} \frac{u - \lfloor u \rfloor}{u^2} du$ convergent, on obtient en passant à la limite

$$\gamma = 1 - \int_{1}^{+\infty} \frac{u - \lfloor u \rfloor}{u^2} du.$$