Exercice 1 Natures

 $\overline{\text{Déterminer}}$ la nature de l'intégrale de la fonction f sur l'intervalle I :

1.
$$f: t \mapsto \frac{1}{t^2 + 2t + 1}$$
, $I = [0; +\infty[$

2.
$$f: t \mapsto \frac{\ln(t)}{\sqrt{t^3 + 1}}$$
, $I = [1; +\infty[$

3.
$$f: t \mapsto \sqrt{\frac{t^2+1}{t^3+t^2}}$$
, $I =]0; 1]$

4.
$$f: t \mapsto \frac{\sin(t) + \cos(t)}{\sqrt{t^3 + 1}}$$
, $I = [0; +\infty[$

5.
$$f: t \mapsto \frac{e^{-t}}{\ln(t)}, I =]1; 2]$$

6.
$$f: t \mapsto \frac{e^{-t}}{\ln(t)}$$
, $I = [2; +\infty[$

7.
$$f: t \mapsto \frac{t - \lfloor t \rfloor}{t^2}$$
, $I =]0; +\infty[$

8.
$$f: t \mapsto \ln\left(1 + \frac{1}{t^2}\right)$$
, $I =]0; +\infty[$

Solution (Ex.1 – Natures)

- 1. Convergente : $f(t) \underset{t \to +\infty}{\sim} \frac{1}{t^2}$, ou encore F : $t \mapsto \frac{-1}{t+1}$;
- 2. Convergente : $f(t) \underset{t \to +\infty}{\sim} \frac{\ln(t)}{t^{3/2}} = o\left(\frac{1}{t^{5/4}}\right)$;
- 3. Divergente: $f(t) \sim \frac{1}{t \to 0}$;
- 4. Convergente : $\forall t \ge 1, |f(t)| \le \frac{2}{t^{3/2}}$;
- **5.** Divergente:

 $f(t) \underset{t \to 1}{\sim} \frac{e^{-1}}{t-1}$, et par translation de la variable $\int_{1}^{2} \frac{dt}{t-1}$ est de même nature que l'intégrale de Riemann $\int_{0}^{1} \frac{du}{u}$, donc divergente.

- **6.** Convergente : $f(t) = o\left(\frac{1}{t^2}\right)$ en $+\infty$, ou encore : $\forall t \ge 3$, $f(t) \le e^{-t}$;
- 7. Divergente : $0 \le f(t) \le \frac{1}{t^2}$ assure l'intégrabilité en $+\infty$,

mais : $\forall t \in]0$; $1[, f(t) = \frac{1}{t}$ entraı̂ne la divergence de $\int_0^1 f(t)dt$;

8. Convergente : $\ln\left(1+\frac{1}{t^2}\right) \sim \frac{1}{t^2}$ assure l'intégrabilité en $+\infty$,

et en 0 : $\ln\left(1 + \frac{1}{t^2}\right) = \ln(t^2 + 1) - 2\ln(t) \underset{t \to 0}{\sim} -2\ln(t)$ or $\int_0^1 \ln(t)dt$ converge ...

Remarque : une intégration par parties peut aussi justifier la convergence (et donner la valeur) :

$$\int_0^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt \stackrel{\text{IPP}}{=} 2 \int_0^{+\infty} \frac{dt}{t^2 + 1} = \pi \dots$$

Exercice 2 Calculs

Montrer l'existence et calculer les intégrales suivantes :

1.
$$I = \int_0^{+\infty} \frac{dx}{(x+1)(x+2)}$$

2.
$$J = \int_0^{+\infty} \frac{dx}{(\exp(x) + 1)(\exp(-x) + 1)}$$

$$3. K = \int_0^{+\infty} \ln\left(1 + \frac{1}{x^2}\right) dx$$

$$4. L = \int_0^{+\infty} e^{-\sqrt{x}} dx$$

5.
$$M = \int_0^{+\infty} \frac{\ln x}{(1+x)^2} dx$$

6.
$$R = \int_0^{\pi/2} \sin(x) \ln(\sin x) dx$$

Solution (Ex.2 – Calculs)

1. $f: x \mapsto \frac{1}{(x+1)(x+2)}$ continue positive sur $[0; +\infty[$, $f(x) \underset{x \to +\infty}{\sim} \frac{1}{x^2}$: convergence par équivalence.

$$I = \int_0^{+\infty} \frac{1}{x+1} - \frac{1}{x+2} dx = \left[\ln \frac{x+1}{x+2} \right]_0^{+\infty} = \ln 2.$$

2. $f: x \mapsto \frac{1}{(e^x + 1)(e^{-x} + 1)}$ continue positive sur $[0; +\infty[$, $f(x) \underset{x \to +\infty}{\sim} e^{-x}$: convergence par équivalence.

$$J \stackrel{u=e^{x}}{=} \int_{1}^{+\infty} \frac{1}{(u+1)^{2}} du = \frac{1}{2}.$$

- 3. $f: x \mapsto \ln\left(1 + \frac{1}{x^2}\right)$ continue positive sur $]0; +\infty[$, $\sqrt{x}f(x) = \sqrt{x}\ln(1+x^2) - 2\sqrt{x}\ln x \xrightarrow[x\to 0]{} 0$ donc $f(x) = o\left(\frac{1}{\sqrt{x}}\right)$ en 0 et $f(x) \underset{x\to +\infty}{\sim} \frac{1}{x^2}$: convergence par domination en 0 et équivalence en $+\infty$. $K \stackrel{\text{IPP}}{=} \left[x\ln(1+1/x^2)\right]_0^{+\infty} + \left(\frac{1}{x^2}\right)^{+\infty} \frac{2}{1+x^2} dx = \pi$.
- 4. $f: x \mapsto \exp(-\sqrt{x})$ continue positive sur $[0; +\infty[, x^2 f(x) \xrightarrow[x \to +\infty]{} 0 \text{ donc } f(x) = o\left(\frac{1}{x^2}\right) \text{ en } +\infty:$ convergence par domination en $+\infty.$ $L \stackrel{u=\sqrt{x}}{=} \int_{0}^{+\infty} 2u e^{-u} du \stackrel{\text{IPP}}{=} [-2u e^{-u}]_{0}^{+\infty} + \int_{0}^{+\infty} 2e^{-u} du = 2.$
- 5. $f: x \mapsto \frac{\ln x}{(1+x)^2}$ continue sur $]0; +\infty[$, $\sqrt{x}f(x) = \frac{1}{x \to 0}$ 0 donc $f(x) = o\left(\frac{1}{\sqrt{x}}\right)$ en 0 et $x^{3/2}f(x) \xrightarrow[x \to +\infty]{} 0$ donc $f(x) = o\left(\frac{1}{x^{3/2}}\right)$ en $+\infty$: convergence par domination en 0 et en $+\infty$.

 Mullipping $\frac{\ln u}{(u+1)^2}$ du = -M donc M = 0.
- 6. $f: x \mapsto \sin x \ln(\sin x)$ continue sur $]0; \pi/2], f(x) \xrightarrow[x \to 0]{} 0$ donc intégrale faussement impropre. $R \stackrel{x=\cos t}{=} \frac{1}{2} \int_{0}^{1} \ln(1-t^2) dt = \frac{1}{2} \int_{0}^{1} \ln(1-t) + \ln(1+t) dt = \ln 2 - 1.$

Exercice 3 Une différence entre séries et intégrales

- 1. Montrer la convergence de l'intégrale $\int_{\sqrt{\pi}}^{+\infty} \sin(t^2) dt$.

 Indication: On commencera par poser $u = t^2$, puis par faire une intégration par parties...
- 2. a) Est-il nécessaire que le terme général de la suite $(u_n)_{n\geq n_0}$ tende vers 0 pour que la série $\sum_{n\geq n_0} u_n$ converge?
 - **b**) Est-il nécessaire que f, continue par morceaux sur $[a; +\infty[$, admette une limite nulle en $+\infty$ pour que $\int_{a}^{+\infty} f$ existe?

Solution (Ex.3 – Une différence entre séries et intégrales)

- 1. Le changement de variable $u = t^2$ conduit à l'intégrale $\int_{\pi}^{+\infty} \frac{\sin(u)}{2\sqrt{u}} du$, qui en intégrant par parties est de même nature que $\int_{\pi}^{+\infty} \frac{\cos(u)}{u^{3/2}} du$, elle-même absolument convergente par comparaison à l'intégrale de Riemann $\int_{\pi}^{+\infty} \frac{du}{u^{3/2}}$.
- 2. a) Si une série converge, son terme général tend vers 0 :

$$u_n = \sum_{k=n_0}^n u_k - \sum_{k=n_0}^{n-1} u_k \xrightarrow[n \to +\infty]{} \sum_{k=n_0}^{+\infty} u_k - \sum_{k=n_0}^{+\infty} u_k = 0.$$

C'est dans le cours de première année.

b) $f: t \mapsto \sin(t^2)$ est continue sur $\left[\sqrt{\pi}; +\infty\right]$, n'admet aucune limite en $+\infty$ et pourtant $\int_{\sqrt{\pi}}^{+\infty} f$ existe...

Exercice 4 Fonction gamma d'Euler et suite double d'intégrales Pour tout x de]0; $+\infty[$, on pose, sous réserve d'existence,

$$\Gamma(x) \stackrel{\text{déf.}}{=} \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

- 1. Justifier que la fonction Γ est effectivement définie sur]0; $+\infty$ [. Γ s'appelle la fonction gamma d'Euler.
- 2. a) Montrer que, pour tout x de]0; $+\infty[$, $\Gamma(x+1) = x\Gamma(x)$.
 - **b**) Montrer que, pour tout n de \mathbb{N}^* ,

$$\Gamma(n) = (n-1)!$$

En quelque sorte, Γ prolonge la factorielle sur]0; $+\infty[...$ au décalage d'une unité près.

- 3. On admet que Γ est une fonction continue. Déterminer un équivalent de $\Gamma(x)$ au voisinage de 0.
- 4. Pour tous p et q de \mathbb{N} , on pose sous réserve d'existence,

$$I_{p,q} \stackrel{\text{déf.}}{=} \int_0^1 z^p \ln^q z dz.$$

En utilisant le changement de variable $u = -(p+1)\ln z$, justifier l'existence de $I_{p,q}$ et la calculer.

Solution (Ex.4 – Fonction gamma d'Euler et suite double d'intégrales)

- 1. $t^{x-1}e^{-t} = o\left(\frac{1}{t^2}\right)$ en $+\infty$ assure la convergence en $+\infty$. $t^{x-1}e^{-t} \underset{t\to 0}{\sim} t^{x-1}$ et x-1>-1 assure la convergence en 0 (et aussi la divergence si $x\leq 0...$).
- 2. a) Soit x > 0. Les fonctions $t \mapsto t^x$ et $t \mapsto -e^{-t}$ sont de classe \mathcal{C}^1 sur l'intervalle]0; + ∞ [. Comme $t^x e^{-t} \xrightarrow[t \to +\infty]{} 0$ et $t^x e^{-t} \xrightarrow[t \to 0]{} 0$, par une intégration par parties,

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt = \left[-t^x e^{-t} \right]_0^{+\infty} + \int_0^{+\infty} x t^{x-1} e^{-t} dt = x \Gamma(x).$$

- **b**) Par récurrence sur $n \in \mathbb{N}^*$...
- 3. $\forall X > 0, \Gamma(x) = \frac{\Gamma(x+1)}{r}$ or $\Gamma(x+1) \xrightarrow[x \to 0]{} \Gamma(1)$ par continuité donc $\Gamma(x+1) \underset{x \to 0}{\sim} 1$. D'où $\Gamma(x) \sim \frac{1}{x \to 0} \frac{1}{x}$.
- 4. Le changement proposé étant une bijection \mathcal{C}^1 strictement décroissante,

$$I_{p,q} \stackrel{u=1(p+1)\ln z}{=} \int_{+\infty}^{0} \left(e^{-u/(p+1)} \right)^{p} \left(\frac{-u}{p+1} \right)^{q} \left(\frac{-1}{p+1} e^{-u/(p+1)} \right) du$$
$$= \frac{(-1)^{q}}{(p+1)^{q+1}} \Gamma(q+1) = (-1)^{q} \frac{q!}{(p+1)^{q+1}}.$$

Exercice 5 *Intégrales à paramètre* a désigne un réel de $]0; +\infty[$.

1. Justifier l'existence et déterminer la valeur de

$$I_a \stackrel{\text{déf.}}{=} \int_0^{+\infty} \frac{\mathrm{d}t}{a^2 + t^2}.$$

2. Justifier l'existence de

$$J_a \stackrel{\text{déf.}}{=} \int_0^{+\infty} \frac{\ln t}{a^2 + t^2} dt.$$

3. À l'aide du changement de variable $u = a^2/t$, calculer J_a .

Solution (Ex.5 – *Intégrales à paramètre*)

1. $t \mapsto \frac{1}{a^2 + t^2}$ est continue et positive sur $[0; +\infty[$. Comme $\frac{1}{a^2 + t^2} \sim \frac{1}{t^2}$, on obtient l'existence par équivalence.

$$I_a \stackrel{u=t/a}{=} \frac{1}{a^2} \int_0^{+\infty} \frac{1}{1+u^2} a du = \frac{1}{a} [Arctan u]_0^{+\infty} = \frac{\pi}{2a}.$$

- 2. $\frac{\ln t}{a^2 + t^2} \sim \frac{1}{a^2} \ln t$ donc par équivalence de fonctions négatives (et comme $\int_{0}^{1} \ln t dt$ existe), $\int_{0}^{1} \frac{\ln t}{a^{2} + t^{2}} dt$ existe. $t^{3/2} \frac{\ln t}{a^2 + t^2} \xrightarrow[t \to +\infty]{} 0 \operatorname{donc} \frac{\ln t}{a^2 + t^2} = o\left(t^{3/2}\right) \operatorname{et} \int_{1}^{+\infty} \frac{\ln t}{a^2 + t^2} dt$ existe par domination.
- 3. $J_a \stackrel{u=a^2/t}{=} \int_a^0 \frac{2 \ln a \ln u}{a^2 + a^4/u^2} \left(\frac{-a^2}{u^2} \right) du = \int_a^{+\infty} \frac{2 \ln a \ln u}{u^2 + a^2} du = 2 \ln(a) I_a J_a$ d'où $J_a = \ln(a)I_a = \frac{\pi \ln a}{2a}$

Exercice 6 Développement asymptotique d'une suite d'intégrales Pour *n* dans \mathbb{N}^* , on pose :

$$I_n = \int_0^{+\infty} e^{-nx} \ln(n+x) dx.$$

- 1. Établir que, pour tout entier naturel non nul n, I_n existe.
- 2. À l'aide d'une intégration par parties, montrer que

$$I_n = \frac{\ln n}{n} + \mathcal{O}\left(\frac{1}{n^3}\right).$$

Solution (Ex.6 – Développement asymptotique d'une suite d'intégrales)

- 1. $\lim_{x \to +\infty} \frac{e^{-nx} \ln(n+x)}{1/x^2} = \lim_{x \to +\infty} \frac{x^3}{e^{nx}} \frac{\ln(n+x)}{x} = 0 \times 0 = 0$, ainsi $e^{-nx} \ln(n+x) = o_{x \to +\infty} \left(\frac{1}{x^2}\right)$ et on conclut par négligeabilité ...
- 2. $I_n \stackrel{\text{IPP}}{=} \left[\frac{-e^{-nx}}{n} \ln(n+x) \right]_0^{+\infty} + \int_0^{+\infty} \frac{e^{-nx}}{n(n+x)} dx = \frac{\ln n}{n} + \int_0^{+\infty} \frac{e^{-nx}}{n(n+x)} dx.$ Alors $\forall x > 0$, $0 \le \frac{e^{-nx}}{n(n+x)} \le \frac{e^{-nx}}{n^2}$ et $\int_0^{+\infty} e^{-nx} dx \stackrel{\text{primit.}}{=} \frac{1}{n}$ donne $\frac{\ln n}{n} \le I_n \le \frac{\ln n}{n} + \frac{1}{n^3}$, donc $I_n - \frac{\ln n}{n} = \mathcal{O}\left(\frac{1}{n^3}\right)$

Exercice 7 | Convergence de l'intégrale de Dirichlet

L'intégrale de Johann Peter Gustav Lejeune Dirichlet (1805-1859) est l'intégrale

$$D = \int_0^{+\infty} \frac{\sin(t)}{t} dt.$$

C'est souvent l'intégrale citée comme exemple d'intégrale convergente mais non absolument convergente. On parle parfois d'intégrale semi-convergente.

Dans cet exercice, on établit sa convergence de deux façons, et on étudie ensuite sa « non-absolue convergence ».

- 1. Pourquoi la convergence de D en 0 est-elle un faux problème? La vraie difficulté est donc la convergence en $+\infty$.
- 2. *Méthode citée en 1829 par Dirichlet* On pose, pour tout *k* de N,

$$I_k = \int_{k\pi}^{(k+1)\pi} \frac{\sin(t)}{t} dt.$$

a) Justifier que, pour tout k de \mathbb{N} ,

$$I_k = (-1)^k |I_k|.$$

- **b**) En déduire la convergence de la série de terme général I_k.
- c) Conlure.
- 3. Méthode visant à augmenter la puissance du dénominateur
 - a) Montrer que

$$J = \int_0^{+\infty} \frac{1 - \cos t}{t^2} dt$$

converge.

- **b**) Conclure.
- 4. Non absolue convergence
 - a) Montrer que, pour tout k de \mathbb{N} ,

$$|\mathbf{I}_k| \geqslant \frac{2}{(k+1)\pi}$$

- **b**) Conclure.
- 5. On admet que $D = \frac{\pi}{2}$ et on pose, sous réserve d'existence,

$$g:]0; +\infty[\longrightarrow \mathbb{R}, x \longmapsto \int_0^{+\infty} \frac{\sin(xt)}{t} dt.$$

Justifier l'existence et calculer la valeur de g(x) pour $x \in]0$; +∞[.

6. Que dire de

$$\Delta = \int_{-\infty}^{+\infty} \frac{\sin(t)}{t} dt ?$$

Solution (Ex.7 – Convergence de l'intégrale de Dirichlet)

- 1. $\frac{\sin(t)}{t} \xrightarrow[t \to 0]{} 1$ donc D en 0 est faussement impropre. La vraie difficulté est donc la convergence en $+\infty$.
- 2. Méthode citée en 1829 par Dirichlet On pose, pour tout k de \mathbb{N} ,

$$I_k = \int_{k\pi}^{(k+1)\pi} \frac{\sin(t)}{t} dt.$$

- a) Si k est pair, on a : $\forall t \in [k\pi; (k+1)\pi], \frac{\sin(t)}{t} \ge 0$ donc $I_k \ge 0$, et $I_k = (-1)^k |I_k|$. Si k est impair, on a : $\forall t \in [k\pi; (k+1)\pi], \frac{\sin(t)}{t} \le 0$ donc $I_k \le 0$, et $I_k = -|I_k| = (-1)^k |I_k|$.
- b) Établissons que $(|I_k|)_k$ est une suite décroissante de limite nulle. Notons que $|I_k| = \int_{t_0}^{(k+1)\pi} \frac{|\sin(t)|}{t} dt$.
 - Pour tout k de \mathbb{N} , on a :

 $|I_{k+1}| - |I_k| = \int_{(k+1)\pi}^{(k+2)\pi} \frac{|\sin(t)|}{t} dt - \int_{k\pi}^{(k+1)\pi} \frac{|\sin(t)|}{t} dt$, effections la translation de $t \mapsto t - \pi$ dans la première intégrale :

 $\begin{aligned} |\mathbf{I}_{k+1}| - |\mathbf{I}_k| &= \int_{k\pi}^{(k+1)\pi} \frac{|\sin(t+\pi)|}{t+\pi} \mathrm{d}t - \int_{k\pi}^{(k+1)\pi} \frac{|\sin(t)|}{t} \mathrm{d}t \text{ et par } \pi\text{-p\'eriodicit\'e de |sin|} \\ |\mathbf{I}_{k+1}| - |\mathbf{I}_k| &= \int_{k\pi}^{(k+1)\pi} |\sin(t)| \Big(\frac{1}{t+\pi} - \frac{1}{t}\Big) \mathrm{d}t = \int_{k\pi}^{(k+1)\pi} - \frac{|\sin(t)|\pi}{(t+\pi)t} \mathrm{d}t \leqslant 0 \text{ par positivit\'e de l'int\'egrale.} \end{aligned}$

- $\bullet |\mathbf{I}_k| = \int_{k\pi}^{(k+1)\pi} \frac{|\sin(t)|}{t} \mathrm{d}t \leqslant \frac{1}{k\pi} \int_{k\pi}^{(k+1)\pi} |\sin(t)| \, \mathrm{d}t = \frac{1}{k\pi} \int_0^\pi \sin(t) \mathrm{d}t \text{ toujours par } \pi\text{-p\'eriodicit\'e de } |\sin|, \, \mathrm{donc} \, |\mathbf{I}_k| \leqslant \frac{2}{k\pi}.$ Par encadrement, $\mathbf{I}_k \xrightarrow[k \to +\infty]{} 0.$
- \bullet Par le théorème des séries alternées, la série $\sum_k \mathbf{I}_k$ converge

c) On a donc : $\lim_{n \to +\infty} \sum_{t=0}^{n} I_{t} = \lim_{n \to +\infty} \int_{0}^{(n+1)\pi} \frac{\sin(t)}{t} dt$ qui existe et est finie : appelons-la S.

Reste à passer des multiples de π aux réels quelconques. Pour $x \ge 0$, notons n_x l'entier tel que $(n_x + 1)\pi \le x < (n_x + 2)\pi$.

Explicitement $n_x = \left| \frac{x}{\pi} \right| - 1$, et $n_x \xrightarrow[x \to +\infty]{} + \infty$.

On a:
$$\int_0^x \frac{\sin(t)}{t} dt = \sum_{k=0}^{n_x} I_k + \int_{(n_x+1)\pi}^x \frac{\sin(t)}{t} dt$$

 $\left| \int_{(n_x+1)\pi}^x \frac{\sin(t)}{t} dt \right| \le \int_{(n_x+1)\pi}^x \frac{|\sin(t)|}{t} dt \le \left(x - (n_x+1)\pi\right) \frac{1}{(n_x+1)\pi} \text{ et comme } x - \frac{1}{(n_x+1)\pi} = 0$ $(n_x+1)\pi \leqslant \pi$, on a: $\left| \int_{(n_x+1)\pi}^x \frac{\sin(t)}{t} dt \right| \leqslant \frac{1}{n_x+1}$.

$$\sum_{k=0}^{n_x} I_k \xrightarrow[x \to +\infty]{} S \text{ et } \int_{(n_x+1)\pi}^x \frac{\sin(t)}{t} dt \xrightarrow[x \to +\infty]{} 0 \text{ par encadrement,}$$

donc $\int_{a}^{x} \frac{\sin(t)}{t} dt \xrightarrow[x \to +\infty]{} S : D$ converge (et S n'est autre que D.)

- 3. a) $\lim_{t \to 0} \frac{1 \cos t}{t^2} = \frac{1}{2}$ donc I est faussement impropre en 0. $0 \le \frac{1 - \cos t}{t^2} \le \frac{2}{t^2}$ permet de comparer I à une intégrale convergente en $+\infty$.
 - b) Une intégration par parties permet de conclure, avec en plus I = J.
- 4. a) $|I_k| = \int_{t}^{(k+1)\pi} \frac{|\sin(t)|}{t} dt \ge \frac{1}{(k+1)\pi} \int_{t-1}^{(k+1)\pi} |\sin(t)| dt = \frac{1}{(k+1)\pi} \int_{0}^{\pi} \sin(t) dt$ toujours par π-périodicité de |sin|, donc $|I_k| \ge \frac{2}{(k+1)\pi}$.
 - **b**) Ainsi $\int_0^{n\pi} \frac{|\sin(t)|}{t} dt = \sum_{k=0}^{n-1} |I_k| \ge \sum_{k=0}^{n-1} \frac{2}{(k+1)} \pi = \frac{2}{\pi} \sum_{k=0}^{n} \frac{1}{k}$

Or $\sum \frac{1}{k} \xrightarrow[n \to +\infty]{} +\infty$ par divergence de la série harmonique.

Par comparaison, $\int_{0}^{nn} \frac{|\sin(t)|}{t} dt \xrightarrow[n \to +\infty]{} +\infty$ et l'intégrale de Dirichlet n'est pas absolument convergente.

5. Puisque x > 0, le changement de variable $u : t \mapsto xt$ est de classe C^1 bijectif

strictement croissant de]0; +∞[sur lui-même.

 $g(x) \stackrel{u=xt}{=} \int_{0}^{+\infty} \frac{\sin u}{u} du = D = \frac{\pi}{2}$, qui prouve au passage la convergence puisque D

6. L'intégrande est paire (à vérifier!), donc Δ existe (et vaut 2D).

Exercice 8 | Couple d'intégrales

Soit sous réserve d'existence,

$$I = \int_0^{\pi/2} \ln(\sin x) dx \text{ et } J = \int_0^{\pi} \ln(\sin x) dx.$$

- 1. Montrer que I converge.
- 2. Montrer que I = $\int_{0}^{\pi/2} \ln(\cos u) du$.
- 3. À l'aide du changement de variable $u = \pi x$ dans I, montrer que J existe et vaut
- 4. Montrer que $2I = \frac{1}{2}J \frac{\pi}{2} \ln 2$.
- 5. En déduire la valeur de I, puis celle de J.

Solution (Ex.8 – Couple d'intégrales)

1. On sait : $\sin x \sim_{x\to 0} x$. A-t-on $\ln \sin x \sim_{x\to 0} \ln x$?

$$\frac{\ln \sin x}{\ln x} = \frac{\ln(\frac{\sin x}{x}x)}{\ln x} = \frac{\ln(\frac{\sin x}{x})}{\ln x} + 1 \xrightarrow[x \to 0]{} 1, \text{ donc } \ln \sin x \underset{x \to 0}{\sim} \ln x.$$

Or $\int \ln x dx$ existe (en utilisant la primitive $x \mapsto x \ln x - x$ par exemple). Dernier détail : ln sin x et ln x sont négatives au voisinage de 0. On passe à l'absolue convergence : $|\ln \sin x| \sim -\ln x$, donc par le critère des équivalents, I est absolument convergente, donc existe.

- 2. $I \stackrel{u=\frac{\pi}{2}-x}{=} \int_{0}^{0} \ln \sin(\pi/2 u) \times (-1) du = \int_{0}^{\pi/2} \ln \cos u du$.
- 3. $I \stackrel{u=\pi-x}{=} \int_{0}^{\pi/2} \ln \sin(\pi-u) \times (-1) du = \int_{0}^{\pi} \ln \sin u du$.

Par Chasles: $J = \int_{0}^{\pi} \ln \sin x dx = \int_{0}^{\pi/2} \ln \sin x dx + \int_{0}^{\pi} \ln \sin x dx = I + I$

4. $2I = \int_{0}^{\pi/2} \ln \sin x dx + \int_{0}^{\pi/2} \ln \cos x dx = \int_{0}^{\pi/2} \ln (\sin x \cos x) dx =$

- $\int_0^{\pi/2} \ln(\frac{\sin(2x)}{2}) dx = \int_0^{\pi/2} \ln\sin(2x) dx \int_0^{\pi/2} \ln 2 dx$ Et en posant u = 2x dans la première intégrale, $2I = \int_0^{\pi} (\ln\sin x) \times (\frac{1}{2}) du - \frac{\pi}{2} \ln 2 = \frac{1}{2} J - \frac{\pi}{2} \ln 2.$
- 5. 3. dans 4. donne $2I = I \frac{\pi}{2} \ln 2$ donc $I = -\frac{\pi \ln 2}{2}$.