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Exercice 1 Endomorphismes échangeurs
Soit E un C−espace vectoriel. On dit que φ ∈ L(E) est un endomorphisme échangeur s’il existe deux sous-espaces
vectoriels F et G non triviaux (c’est-à-dire distincts de {0} et de E) tels que :

E = F⊕G, φ(F) ⊂ G et φ(G) ⊂ F.

On dit qu’en endomorphisme φ de E est semblable à un endomorphisme ψ s’il existe un automorphisme g de E tel
que ψ = g−1 ◦ φ ◦ g.
On notera que dans ce cas, φ =

(
g−1

)−1 ◦ ψ ◦ g si bien que ψ est aussi semblable à φ.

Partie A - Étude d’un exemple de C3

Dans cette partie, E = C3, B = (e1, e2, e3) désigne la base canonique de E et φ désigne l’endomorphisme de C3

canoniquement associé à la matrice

M =


−2 1 1

2 −1 −1

−7 1 3


1. On pose u1 = (1, 0, 2), u2 = (0, 1,−1), u3 = e3 et C = (u1, u2, u3).

a) Montrer que C est une base de E.
b) Déterminer MC(φ).
c) Montrer que φ est un endomorphisme échangeur de E, en précisant les sous-espaces concernés.

2. En exploitant la famille C′ = (u1, u2,−u3), montrer que φ est semblable à −φ.

Partie B - Propriétés générales

Soit n et p deux entiers naturels non nuls.
Soit A ∈ Mn,p(C) et B ∈ Mp,n(C).
On considère la matrice M de Mn+p(C) définie par blocs par

M =

0n B

A 0p

 .

3. Calculer le carré de

 0n B

0p,n 0p

 et montrer que M est la somme de deux matrices de carré nul.

4. On considère dans Mn+p(C) la matrice de diagonale par blocs

D =

 In 0n,p

0p,n −Ip

 .

Montrer que D est inversible, calculer D−1 et en déduire que M est semblable à −M.
Jusqu’à la fin de cette partie, on suppose que φ est un endomorphisme échangeur d’un C−espace vectoriel

de dimension finie tel que E = F ⊕ G avec F et G deux sous-espaces vectoriels non triviaux de E vérifiant
φ(F) ⊂ G et φ(G) ⊂ F.

5. a) Décrire la matrice représentant φ dans une base adaptée à la décomposition E = F⊕G.
b) En déduire qu’il existe deux endomorphismes a et b de E tels que φ = a+ b, a2 = 0 et b2 = 0.
c) φ et −φ sont-ils semblables ?
d) Que vaut Tr(φ) ?
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Exercice 2
L’objectif de cet exercice est la calcul de l’intégrale

I =

∫ 1

0
ln(1− x) ln(x)dx.

On admettra le résultat classique dû à Léonard Euler
+∞∑
n=1

1

n2
=
π2

6
.

1. Justifier l’existence de l’intégrale I.
2. a) Pour tout k ∈ N∗, on pose sous réserve d’existence

Jk =

∫ 1

0
xk ln(x)dx.

Justifier l’existence des intégrales Jk et les calculer .
b) Pour tout n ∈ N∗, on pose sous réserve d’existence

In =

∫ 1

0
xn ln(1− x) ln(x)dx.

Justifier l’existence des intégrales In.

3. Justifier l’existence de la somme
+∞∑
n=1

1

n(n+ 1)2
et calculer sa valeur.

4. a) Proposer une suite (un)n⩾1 d’éléments de ] 0 ; 1[ qui tend vers 1 et vérifie unn −−−−−→
n→+∞

0.

b) Montrer que, pour tout n de N∗,

0 ⩽ In ⩽ unn

∫ un

0
ln(1− x) ln(x)dx+

∫ 1

un

ln(1− x) ln(x)dx.

c) En déduire la limite de la suite (In).
5. a) Montrer que, pour tout n de N∗ et tout x de [ 0 ; 1[,

ln(1− x) = −
n∑

k=1

xk

k
−
∫ x

0

tn

1− t
dt.

b) En déduire, pour tout n de N∗,

0 ⩽ I +

n∑
k=1

Jk
k

⩽ In.

6. Calculer I.
7. Uniquement pour les 5/2 ! ! !

a) Rappeler le développement en série entière de x 7→ ln(1− x) en précisant son rayon de convergence.
b) Calculer I à l’aide du théorème d’intégration terme à terme.

Indications,siçabloquetrop:

Exercice1
2.Vuladéfinitiondesendomorphismessemblables,deux
endomorphismessontsemblablessi,etseulementsi,
leursmatricessont???
Exercice2
1.Connaissez-vousunéquivalentdeln(x)lorsquex−→
1?
2.a)Merciderédigezproprementl’I.P.P.

Jk=−
1

(k+1)2.

3.
+∞∑
n=1

1

n(n+1)2=2−
π
2

6
.

4.a)Sivousn’êtespasinspirée,vouspourrezvérifier

queun=1−
1
√
n

convient.

5.b)Partirde
n−1 ∑
k=0

t
k
=...
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Solution (Ex.1 – Endomorphismes échangeurs)

1. a) det(MB(C)) =

∣∣∣∣∣∣∣∣∣
1 0 0

0 1 0

2 −1 1

∣∣∣∣∣∣∣∣∣ = 1 ̸= 0 donc C est une base. Pourquoi faire plus compliqué ?

b) φ(u1) = −u3, φ(u2) = −2u3 et φ(u3) = u1 − u2 donc

MC(φ) =


0 0 1

0 0 −1

−1 −2 0

.

Pourquoi s’embêter avec la formule de changement de base et inverser des matrices ?
On prend la même base au départ et à l’arrivée...

c) Soit F = Vect(u1, u2) et G = Vect(u3), alors E = F ⊕ G car C est une base et la matrice précédente montre
que φ(u1) ∈ G, φ(u2) ∈ G donc φ(F) ⊂ G par linéarité, et φ(u3) ∈ F donc φ(G) ⊂ F.
Donc φ est échangeur de F et G.
Notez les blocs qui apparaissent : on est dans une situation opposée à celles des sous-espaces
stables,

MC(φ) =


0 0 1

0 0 −1

−1 −2 0

.

2. MC′(φ) =


0 0 −1

0 0 1

1 2 0

 = MC(−φ).

En notant P la matrice de passage de C à C′, on a :
MC′(φ) = MC(−φ) s’écrit P−1MC(φ)P = MC(−φ).
En notant g l’automorphisme de E dont la matrice dans C est P, cette relation s’écrit finalement :
MC(g

−1 ◦ φ ◦ g) = MC(−φ), donc g−1 ◦ φ ◦ g = −φ.
Une bonne idée : montrer une fois pour toutes que deux endomorphismes sont semblables si, et
seulement si, les matrices les représentant dans une base donnée sont semblables.

3.

 0n B

0p,n 0p

2

= 0 et de même

0n 0n,p

A 0p

2

= 0

M est la somme de deux matrices de carré nul.
4. D2 = In+p donc D est inversible, d’inversible D, et le calcul donne DMD = −M donc M et −M sont semblables.

Il faut savoir inverser une matrice diagonale. Au fait, que vaut le produit de deux matrices
diagonales ?

5. a) Dans une base C adaptée à la décomposition E = F ⊕ G, en notant n = dim(F) et p = dim(G), alors

M = MC(φ) =

0n B

A 0p

 .

b) Avec a ∈ L(E) tel que MC(a) =

0n 0n,p

A 0p

 et b ∈ L(E) tel que MC(b) =

 0n B

0p,n 0p

, alors φ = a + b,

a2 = 0 et b2 = 0.
c) φ et −φ sont semblables car M et −M semblables.
d) Tr(φ) = Tr(−φ) par similitude, mais Tr(−φ) = −Tr(φ) par linéarité. Donc Tr(φ) = −Tr(φ), donc Tr(φ) = 0.
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Solution (Ex.2 – )
1. Tout le monde a commencé par

• f : x 7→ ln(1− x) ln(x) est continue sur ] 0 ; 1[

voire même a souligné que f est positive.
• f(x) ∼

x→0
−x ln(x) or −x ln(x) −−−→

x→0
0 donc f est prolongeable par continuité en 0.

• f(x) ∼
x→1

(x− 1) ln(1− x) or (1− x) ln(1− x) −−−→
x→1

0 donc f est aussi prolongeable par continuité en 1.
Ainsi, I est doublement faussement impropre donc existe.
Si vous avez utilisé le critère de négligeabilité (ou d’équivalence) avec f = o (g)f = o (g)f = o (g), il faut préciser soit

que
∫
g

∫
g

∫
g converge absolument , soit que g est intégrable .

2. a) Pour tout k ∈ N∗, je pose gk : ] 0 ; 1] → R, x 7→ xk ln(x), qui est continue.
• Chaque gk est continue sur ] 0 ; 1] et prolongeable par continuité en 0 puisque gk(x) −−−→

x→0
0. Donc Jk existe

en tant qu’intégrale faussement impropre.

• En intégrant par parties puisque ln et x 7→ xk+1

k + 1
sont de classe C1 sur ] 0 ; 1] avec xk+1 ln(x) −−−→

x→0
0,

Jk =

[
xk+1 ln(x)

k + 1

]1
0

−
∫ 1

0

xk

k + 1
dx = − 1

(k + 1)2
.

L’intégration par parties (en toutes lettres) sur une intégrale généralisée se redige :

① on écrit qu’on intègre par parties,

② on présente les deux fonctions en jeu, en précisant qu’elles sont de classe C1,

③ on détermine les limites aux bornes généralisées (une ou deux), car si elles ne sont pas finies, l’intégration
par parties n’est pas légitime,

④ seulement après, on écrit l’égalité si on sait que l’une des intégrales existe, ou on dit que les
deux intégrales sont de même nature si cette nature n’est pas encore connue.

b) Pour tout n ∈ N∗, on a :
∀x ∈ ] 0 ; 1[ , |xn ln(1− x) ln(x)| ⩽ f(x)

avec f la fonction intégrable définie à la première question, donc par comparaison In existe.

3.
1

n(n+ 1)2
∼

n→+∞

1

n3
assure la convergence de la série puisque 3 > 1 et ces termes généraux sont positifs.

N∑
n=1

1

n(n+ 1)2
=

N∑
n=1

n+ 1− n

n(n+ 1)2
=

N∑
n=1

(
1

n(n+ 1)
− 1

(n+ 1)2

)
=

N∑
n=1

1

n
−

N∑
n=1

1

n+ 1
−

N∑
n=1

1

(n+ 1)2

= 1− 1

N + 1
−

N∑
n=1

1

(n+ 1)2
−−−−−→
N→+∞

1−
(
π2

6
− 1

)
donc

+∞∑
n=1

1

n(n+ 1)2
= 2− π2

6
.

4. a) • Par exemple cherchons une suite du type : ∀n ∈ N∗, un = 1− vn avec vn −−−−−→
n→+∞

0.

unn −−−−−→
n→+∞

0 ⇐⇒ n ln(1− vn) −−−−−→
n→+∞

−∞ ⇐⇒ −nvn −−−−−→
n→+∞

−∞ ⇐⇒ nvn −−−−−→
n→+∞

+∞ : vn =
1√
n

convient,

donc un = 1− 1√
n

convient.

• Si on cherche un du type un = evn avec vn −−−−−→
n→+∞

0, il nous faut nvn −−−−−→
n→+∞

−∞, vn = −1/
√
n convient,

et un = exp

(
−1√
n

)
convient.

b) Soit n ∈ N∗.
• ∀x ∈ ] 0 ; un] , xn ln(1− x) ln(x) ⩽ unn ln(1− x) ln(x) donc par croissance de l’intégrale∫ un

0
xn ln(1− x) ln(x)dx ⩽ unn

∫ un

0
ln(1− x) ln(x)dx (1)

• ∀x ∈ [un ; 1[ , xn ln(1− x) ln(x) ⩽ ln(1− x) ln(x) donc par croissance de l’intégrale
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∫ 1

un

xn ln(1− x) ln(x)dx ⩽
∫ 1

un

ln(1− x) ln(x)dx (2)

• Par la relation de Chasles,

In ⩽ unn

∫ un

0
ln(1− x) ln(x)dx+

∫ 1

un

ln(1− x) ln(x)dx.

• Et par positivité de l’intégrale, In ⩾ 0 puisque l’intégrande est positive.

Ainsi 0 ⩽ In ⩽ unn

∫ un

0
ln(1− x) ln(x)dx+

∫ 1

un

ln(1− x) ln(x)dx.

c) • un −−−−−→
n→+∞

1 donc
∫ un

0
ln(1− x) ln(x)dx −−−−−→

n→+∞
I,

• puis unn −−−−−→
n→+∞

0 donc unn

∫ un

0
ln(1− x) ln(x)dx −−−−−→

n→+∞
0,

• et enfin un −−−−−→
n→+∞

1 donc
∫ 1

un

ln(1− x) ln(x)dx −−−−−→
n→+∞

0.

• Par encadrement, In −−−−−→
n→+∞

0.

5. a) Soit x ∈ [ 0 ; 1[. On a par somme de termes géométriques :

∀t ∈ [ 0 ; x] ,
n−1∑
k=0

tk =
1

1− t
− tn

1− t

En intégrant sur [ 0 ; x], on obtient :
n∑

k=1

xk

k
= − ln(1− x)−

∫ x

0

tn

1− t
dt.

b) Soit n ∈ N∗.
Pour tout x de ] 0 ; 1[,

ln(x) ln(1− x) +

n∑
k=1

xk ln(x)

k
= − ln(x)

∫ x

0

tn

1− t
dt

Le membre de droite étant positif, le membre de gauche l’est aussi.
Remarquons alors que :

− ln(x)

∫ x

0

tn

1− t
dt ⩽ − ln(x)xn

∫ x

0

1

1− t
dt car tn ⩽ xn

⩽ ln(x)xn ln(1− x) en calculant l’intégrale.

Donc : ∀x ∈ ] 0 ; 1[,

0 ⩽ ln(x) ln(1− x) +
n∑

k=1

xk ln(x)

k
⩽ ln(x)xn ln(1− x)

Et par croissance de l’intégrale

0 ⩽ I +
n∑

k=1

Jk
k

⩽ In

6. Puisque In −−−−−→
n→+∞

0, par encadrement on a : I = −
+∞∑
k=1

Jk
k

, i.e.

I
2.a)
=

+∞∑
k=1

1

k(k + 1)2
3.
= 2− π2

6
.

7. Uniquement pour les 5/2 ! ! !

a) Le rayon de convergence vaut 1 et : ∀x ∈ ]−1 ; 1[ , ln(1− x) = −
+∞∑
k=1

xk

k
.

b) I =

∫ 1

0
−

+∞∑
k=1

xk

k
ln(x)dx =

∫ 1

0

+∞∑
k=1

hk(x)dx

où, pour tout k de N∗, hk : ] 0 ; 1[ → R, x 7→ −x
k

k
ln(x) est continue et intégrable d’après 2.a) et la série de

terme général hk converge simplement vers f : x 7→ ln(1− x) ln(x) continue.
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De plus
∫ 1

0
|hk(x)| dx =

∫ 1

0
−x

k ln(x)

k
dx = −Jk

k
=

1

k(k + 1)2
, donc la série de terme général

∫ 1

0
|hk(x)| dx

converge.
Toutes les hypothèses du théorème d’intégration terme à terme sont vérifiées donc

I =

∫ 1

0

+∞∑
k=1

hk(x)dx =
+∞∑
k=1

∫ 1

0
hk(x)dx =

+∞∑
k=1

1

k(k + 1)2
= 2− π2

6

Si on veut appliquer le théorème de permutation en cas de convergence uniforme, il faut se
placer sur un segment. C’est possible en prolongeant les fonctions hk en 0 et 1 par continuité, en posant

hk(0) = hk(1) = 0. Une étude de fonction montre que ||hk||∞,[ 0 ; 1] =
e−1

k2
donc la convergence de

∑
k

hk est

normale donc uniforme : la permutation est licite !
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