PC DEVOIR A LA MAISON N°3 1510 novembre 2025

Exercice 1| Endomorphismes échangeurs

Soit E un C—espace vectoriel. On dit que ¢ € L(E) est un endomorphisme échangeur s’il existe deux sous-espaces
vectoriels F et G non triviaux (c’est-a-dire distincts de {0} et de E) tels que :

E=FaG, ¢F)cG e ¢G)CF.

On dit qu’en endomorphisme ¢ de E est semblable & un endomorphisme ¢ s’il existe un automorphisme g de E tel
quey =g topoyg.

On notera que dans ce cas, ¢ = (g_l)_l o1 o g si bien que 1) est aussi semblable a .

Partie A - Etude d’un exemple de C3

Dans cette partie, E = C3, B = (eq, €2, e3) désigne la base canonique de E et ¢ désigne I'endomorphisme de C3
canoniquement associé a la matrice

1. On pose u; = (1,0,2), ug = (0,1, —1), ug = e3 et C = (uy, ug, us).
a) Montrer que C est une base de E.
b) Déterminer Mc ().
c) Montrer que ¢ est un endomorphisme échangeur de E, en précisant les sous-espaces concernés.

2. En exploitant la famille C' = (u1, u2, —ug), montrer que ¢ est semblable & —¢p.

Partie B - Propriétés générales

Soit n et p deux entiers naturels non nuls.
Soit A € M,, ,(C) et B € M,,,,(C).
On considére la matrice M de M,,,(C) définie par blocs par

0, B
A 0,
0n .
3. Calculer le carré de et montrer que M est la somme de deux matrices de carré nul.
Opn Op

4. On considére dans M,,;,(C) la matrice de diagonale par blocs

Op,n 71}3

Montrer que D est inversible, calculer D™! et en déduire que M est semblable & —M.

Jusqu’a la fin de cette partie, on suppose que ¢ est un endomorphisme échangeur d'un C—espace vectoriel
de dimension finie tel que E = F @ G avec F et G deux sous-espaces vectoriels non triviaux de E vérifiant
o(F) Cc Get p(G) CF.

5. a) Décrire la matrice représentant ¢ dans une base adaptée a la décomposition E = F @ G.
b) En déduire qu’il existe deux endomorphismes a et b de E tels que ¢ = a + b, a®> = 0 et b = 0.
c) ¢ et —p sont-ils semblables ?
d) Que vaut Tr(yp)?
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Exercice 2

L’objectif de cet exercice est la calcul de 'intégrale

1
I= /0 In(1 — z) In(z)dx.

—+00
On admettra le résultat classique dt & Léonard EULER Z —
n

n=1

1. Justifier 'existence de l'intégrale I.

2. a) Pour tout £ € N*, on pose sous réserve d’existence
M

7T2

5

1
Jk:/ 2* In(z)d.
0

Justifier 'existence des intégrales Ji et les calculer .
b) Pour tout n € N*, on pose sous réserve d’existence

1
I, = / 2" In(1 — z) In(x)dz.
0

Justifier 'existence des intégrales I,,.
+o0o

1
3. Justifier 'existence de la somme Z
n=1

n(n +1)2

et calculer sa valeur.

4. a) Proposer une suite (uy),>1 d’éléments de |0; 1] qui tend vers 1 et vérifie u;} ——— 0.

b) Montrer que, pour tout n de N*,

n—-+o0o

Un, 1
0<I, < uﬁ/ In(1 — ) In(z)dz —|—/ In(1 — z) In(z)dz.
0 Un

c) En déduire la limite de la suite (I,,).

5. a) Montrer que, pour tout n de N* et tout = de [0; 1],

n

b) En déduire, pour tout n de N*,

6. Calculer I.
7. Uniquement pour les 5/2!!!

a) Rappeler le développement en série entiére de x +— In(1 — x) en précisant son rayon de convergence.
b) Calculer I a 'aide du théoréme d’intégration terme a terme.

0=4

o= op mreg (q'g
I—u
U

*JUSIATOD £ — 1 = %n onb
1

pYLA zolmod snoa ‘egridsur sed sojgu snoa 1§ (e'§

I=u
91 t+wur—
i i e

14 oo+
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Solution (Ex.1 — Endomorphismes échangeurs)

1 0 O
1. a) det(Mg(C)) =10 1 0| =1 0 donc C est une base. Pourquoi faire plus compliqué ?

2 -1 1
b) ¢o(u1) = —us, p(u2) = —2us et p(us) = u; — uy donc
0 0 1
Me(p)=10 0 -1
-1 -2 0

Pourquoi s’embéter avec la formule de changement de base et inverser des matrices 7
On prend la méme base au départ et a ’arrivée...
c) Soit F = Vect(ui,u2) et G = Vect(us), alors E = F @& G car C est une base et la matrice précédente montre
que p(u1) € G, p(uz2) € G donc p(F) C G par linéarité, et p(u3) € F donc ¢(G) C F.
Donc ¢ est échangeur de F et G.
Notez les blocs qui apparaissent : on est dans une situation opposée a celles des sous-espaces

stables,
0 0|1
Me(p)=1 0 0 |-1
-1 =20
00 —1
2. Me(p)=10 0 1 |=Mc(—¢p).
12 0

En notant P la matrice de passage de C 4 C’, on a :
Mer (@) = Mc(—p) s’écrit P~IMe(p)P = Mc(—p).

En notant g 'automorphisme de E dont la matrice dans C est P, cette relation s’écrit finalement :

Me(gtopog) =Mec(—p), donc g topog=—p.

Une bonne idée : montrer une fois pour toutes que deux endomorphismes sont semblables si, et

seulement si, les matrices les représentant dans une base donnée sont semblables.
2 2

0 B 0, O
3. " = 0 et de méme R )

Opn Op A 0,
M est la somme de deux matrices de carré nul.

4. D? = I, 4p donc D est inversible, d’inversible D, et le calcul donne DMD = —M donc M et —M sont semblables.
Il faut savoir inverser une matrice diagonale. Au fait, que vaut le produit de deux matrices
diagonales 7

5. a) Dans une base C adaptée a la décomposition E = F @ G, en notant n = dim(F) et p = dim(G), alors

0, B
M = Mec(p) =
A 0,
On Oy 0, B
b) Avec a € L(E) tel que M¢(a) = Tl et b e L(E) tel que Mc(b) = , alors ¢ = a + b,
A 0, Opn Op

a?=0et b? =0.
c) p et —p sont semblables car M et —M semblables.
d) Tr(p) = Tr(—¢) par similitude, mais Tr(—¢) = —Tr(y) par linéarité. Donc Tr(yp) = —Tr(p), donc Tr(y) = 0.
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Solution (Ex.2 — )
1. Tout le monde a commencé par
‘o f:xz—In(1—2z)In(z) est continue sur |0; 1[‘
voire méme a souligné que f est positive.
o f(x) e —z1In(x) or —xIn(x) —5 0 donc f est prolongeable par continuité en 0.

o f(x) ~ (x—1)In(l —x) or (1 —2)In(1 —x) — 0 donc f est aussi prolongeable par continuité en 1.
T—r z—
Ainsi, I est doublement faussement impropre donc existe.
Si vous avez utilisé le critére de négligeabilité (ou d’équivalence) avec f = o(g), il faut préciser soit

que / g converge , soit que g est |intégrable |

2. a) Pour tout k£ € N*, je pose g; : |0; 1] — R, 2+ 2 In(x), qui est continue.
e Chaque g, est continue sur |0; 1] et prolongeable par continuité en 0 puisque g () ———0—> 0. Donc Ji, existe
Tr—r
en tant qu’intégrale faussement impropre.
k+1

sont de classe C! sur |0; 1] avec 2! In(z) — 0,
k+1 x—0

k+1 1 1 k
T CUTC ) R P
k+1 0 o k+1 (k+1)

L’intégration par parties (en toutes lettres) sur une intégrale généralisée se redige :

e Fn intégrant par parties puisque ln et x —

@ on écrit qu’on intégre par parties,
@ on présente les deux fonctions en jeu, en précisant qu’elles sont de classe C?,

@ on détermine les limites aux bornes généralisées (une ou deux), car si elles ne sont pas finies, I'intégration
par parties n’est pas légitime,

@ seulement aprés, on écrit 1’égalité si on sait que 'une des intégrales existe, ou on dit que les
deux intégrales sont de méme nature si cette nature n’est pas encore connue.

b) Pour tout n € N*, on a :
Ve e]0; 1, [|2"In(l —z)In(x)| < f(x)
avec f la fonction intégrable définie a la premiére question, donc par comparaison I,, existe.

( n 1) ™ o 7,3 BSSUTE la convergence de la série puisque 3 > 1 et ces termes généraux sont positifs.
nin n—-+0o0 n

a n+1-n 1 ARy AR
Znn+ Z n(n +1)?2 _T;< (n+1) n+1) Zﬁ Zn _szl(n—{—l)2

n=1 n:l n
()
n—l— 1 N—+o00
= 1 T
d _— =2 — —.
one nzz:l n(n+1)2 6

4. a) e Par exemple cherchons une suite du type : Vn € N*,  w, =1 — v, avec v, —+> 0.
n—-+0oo

||
EMZ

1 .
up —— 0 <= nln(l —v,) —— —00 <= —nv,, ——— —00 <= NV, —— +00 : v, = convient,

n—-+00 n—-+00 n—-+o0o n—-+00 \/ﬁ
1 .
donc u, =1 — 7 convient.
n
e Si on cherche u,, du type u, = e’ avec v,, — 0, il nous faut nv,, ——— —o0, v, = —1/4/n convient,
n——+o00 n——+o0o

-1

et up = exp <\/ﬁ> convient.
b) Soit n € N*.

eVre]0; uy), 2"In(l—2z)ln(z) <ulln(l —z)In(z) donc par croissance de l'intégrale
/ 2" In(1 — z) In(z)dx < n/ In(1 —z)In(z)de (1)
0 0
eV € [uy; 1[, 2"In(l—z)In(z) <In(1 — z)In(z) donc par croissance de 'intégrale
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1 1

2" In(1 — z) In(x)dz < / In(1 — z)In(x)dz (2)

Un Un

e Par la relation de Chasles,
Un 1
I, < uﬁ/ In(1 — ) In(z)dz +/ In(1 — ) In(x)dx.
0 Un
e Kt par positivité de 'intégrale, I,, > 0 puisque 'intégrande est positive.

Ainsi 0 < I, < UZ/ In(1 — z) In(z)dz + / In(1 — z) In(z)dz.
0 Un

c) e u, —— 1 donc / In(1 —z)In(z)de —— 1,
n—-+oo 0 n—-+oo

Un
e puis u! — 0 donc uZ/ In(1 — z) In(z)dx P 0,
0

n—-+00 n—-+o00

e Par encadrement, I, —— 0.
n—-4o00

1
e et enfin u, —— 1 donc / In(1 — z) In(x)dz —— 0.

5. a) Soit x € [0; 1[. On a par somme de termes géométriques
tn
vt €| th =
Z ~13
En intégrant sur [0; z], on obtient :
n

k=1

;,T‘a
|
:3'_
}_L
|
3/

ﬁ

—_

| |5

~
(o
~

b) Soit n € N*.
Pour tout x de ]0; 1],

n kl’l T n
In(z) In(1 — 2) +Z lk( ):—ln(a:)/o 1t_tdt

Le membre de dr01te étant positif, le membre de gauche ’est aussi.
Remarquons alors que :

—ln(x)/ ! dt /dtcart” "
o 1—

< In(z)z" In(1 — z) en calculant l'intégrale.

Donc : Vx €]0; 1],
0 < In(z)In(1 — z) +Z

Et par crmssance de l 1ntegrale

J
0<I+Zf<ln
k=1

zF In(x)

< In(x)z" In(1 — x)

+oo
J
6. Puisque I, — 0, par encadrement on a : I = — i
n—-+o0o 1 k
+0o0 2
2.a) 1 3. ™
I'= — =2 —.
kzl k(k+1)2 6
7. Uniquement pour les 5/2!!!
+00 k:
a) Le rayon de convergence vaut 1 et : Vo € | —1; 1[,In(1 — ) Z o

Ik 1+
b)I—/ Z—ln dx—/ Z:lhk(x)dx
= k

ou, pour tout k de N*, by : ]0; 1[ = R,z — T In(z) est continue et intégrable d’aprés 2.a) et la série de

terme général hy converge simplement vers f : z — In(1 — x) In(z) continue.
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1 1 k 1 J 1 1
De plus /0 |h ()| da = /0 —xz(x)d:c = —?k = ACESIEL donc la série de terme général /0 |hi(z)| dz
converge.
Toutes les hypothéses du théoréme d’intégration terme a terme sont vérifiées donc

1 foo too .1 +oo 1 )
I= h dx = h dx = —— =2 —
/0 ; k(z)d ;/0 k(x)d kzlk(k+1)2 G
Si on veut appliquer le théoréme de permutation en cas de convergence uniforme, il faut se
placer sur un segment. C’est possible en prolongeant les fonctions Ay en 0 et 1 par continuité, en posant

hi(0) = hy(1) = 0. Une étude de fonction montre que [|hkl[w (o, 1] = ek—g donc la convergence de Z hy est

k
normale donc uniforme : la permutation est licite !
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