Exercice 1 Relation sur les colonnes, noyau et image

Soit $E = \mathbb{R}^3$, $C = (e_1, e_2, e_3)$ sa base canonique et $f \in \mathcal{L}(E)$.

On note M la matrice représentant f dans C, et on appelle C_1, C_2, C_3 les colonnes de M.

On suppose que la famille (C_1, C_2) est libre et qu'il existe α et β deux réels tels que $C_3 = \alpha C_1 + \beta C_2$.

- **1.** Que vaut le rang de *f* ?
- 2. Déterminer Ker(f) et Im(f).
- 3. Déterminer le noyau et l'image de f lorsque $M = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 2 & -1 & 3 \end{pmatrix}$.

Solution (Ex.1 – Relation sur les colonnes, noyau et image)

- 1. $rg(f) = rg(M) = rg(C_1, C_2, C_3) = rg(C_1, C_2, \alpha C_1 + \beta C_2) = rg(C_1, C_2) = 2$
- 2. $\dim \text{Im}(f) = \text{rg}(f) = 2$ et par le théorème du rang $\dim \text{Ker}(f) = 3 2 = 1$. $\text{Im}(f) = \text{Vect}(f(e_1), f(e_2), f(e_3)) = \text{Vect}(f(e_1), f(e_2))$ car $f(e_3) = \alpha f(e_1) + \beta f(e_2)$. $f(e_3) = \alpha f(e_1) + \beta f(e_2)$ donc $f(\alpha e_1 + \beta e_2 e_3) = 0$ et $\text{Ker}(f) = \text{Vect}(\alpha e_1 + \beta e_2 e_3)$
- 3. En appliquant ce qui précède, (C_1, C_2) est libre et $C_3 = 2C_1 + C_2$ entraîne Im(f) = Vect((1, 0, 2), (-1, 1 1)) et Ker(f) = Vect((2, 1, -1)).

Exercice 2 *Endomorphisme vérifiant une équation polynomiale* Soit *f* un endomorphisme d'un espace vectoriel E vérifiant

$$f^2 - 3f + 2id_{\mathcal{E}} = 0_{\mathcal{L}(\mathcal{E})}.$$

- 1. Montrer que f est un automorphisme de E.
- 2. Établir que $Ker(f id_E)$ et $Ker(f 2id_E)$ sont supplémentaires.
- **3.** On suppose de plus E de dimension finie. Justifier qu'il existe une base de E dans laquelle la matrice représentant *f* est diagonale.
- 4. Soit f l'endomorphisme de $E = \mathbb{R}^3$ canoniquement associé à à la matrice

$$\mathbf{M} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ -1 & 2 & 2 \end{pmatrix}.$$

Montrer qu'il existe une base que l'on déterminera dans laquelle la matrice représentant f est diagonale.

Solution (Ex.2 – Endomorphisme vérifiant une équation polynomiale)

- 1. Puisque $f^2 3f = -2id_E$, en posant $g = \frac{-1}{2}(f 3id_E)$, on a $f \circ g = g \circ f = id_E$, donc f est bijective et $f^{-1} = g$.
- 2. Posons $K_1 = \text{Ker}(f id_E)$ et $K_2 = \text{Ker}(f 2id_E)$ Soit u dans E.

Analyse: supposons qu'il existe $k_1 \in K_1$ et $k_2 \in K_2$ tels que $u = k_1 + k_2$.

Composons par $f - id_E$: $f(u) - u = f(k_2) - k_2 = 2k_2 - k_2 = k_2$.

Composons par $f - 2id_E : f(u) - 2u = f(k_1) - 2k_1 = k_1 - 2k_1 = -k_1$.

Donc s'ils existent, k_1 et k_2 sont uniques.

Synthèse : posons $k_1 = -f(u) + 2u$ et $k_1 = f(u) - u$. On a :

- $k_1 + k_2 = u$;
- $(f id_E)(k_1) = -f^2(u) + 2f(u) (-f(u) + 2u) = -(f^2(u) 3f(u) + 2u) = 0_E$ donc $k_1 \in K_1$;
- $(f 2id_E)(k_2) = f^2(u) f(u) (2f(u) 2u) = -(f^2(u) 3f(u) + 2u) = 0_E$ donc $k_2 \in K_2$.

Conclusion : $K_1 \oplus K_2 = E$.

- 3. Concaténant une base \mathcal{B}_1 de K_1 et une base \mathcal{B}_2 de K_2 , on obtient une base \mathcal{C} telle que $\mathcal{M}_{\mathcal{C}}f = \begin{pmatrix} I_{d_1} & 0 \\ \hline 0 & 2I_{d_2} \end{pmatrix}$ où $d_1 = \dim(K_1)$ et $d_2 = \dim(K_2)$ car pour tout $u \in \mathcal{B}_1$, f(u) = u et pour tout $u \in \mathcal{B}_2$, f(u) = 2u.
- 4. Par le calcul : $M^2 = 3M 2I_3$, donc $f^2 3f + 2id_E = 0_{\mathcal{L}(E)}$, et par ce qui précède, dans une base \mathcal{C} adaptée à $K_1 \oplus K_2 = E$, la matrice représentant f est diagonale. Détermination de K_2 et K_2 :

$$\operatorname{Ker}(M-I_3) = \operatorname{Ker} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix} = \operatorname{Vect} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},$$

$$\operatorname{Ker}(M - 2I_3) = \operatorname{Ker} \begin{pmatrix} -1 & 2 & 0 \\ 0 & 0 & 0 \\ -1 & 2 & 0 \end{pmatrix} = \operatorname{Vect} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Ainsi C = ((1,0,1),(2,1,0),(0,0,1)) convient.

Exercice 3 Matrice d'un endomorphisme nilpotent

Soit E un \mathbb{K} -espace vectoriel de dimension $n \ge 2$ et f un endomorphisme de E vérifiant $f^{n-1} \ne 0$ et $f^n = 0$.

Montrer qu'il existe une base $\mathcal B$ de $\mathcal E$ telle que

$$\mathcal{M}_{\mathcal{B}}(f) = \left(\begin{array}{ccccc} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & \dots & 0 \end{array} \right)$$

Solution (Ex.3 – Matrice d'un endomorphisme nilpotent)

Comme $f^{n-1} \neq 0$, il existe $e \in E$ tel que $f^{n-1}(e) \neq 0$.

Soit $\mathcal{B} = (f^{n-1}(e), f^{n-2}(e), \dots, f(e), e)$. \mathcal{B} est une famille de $n = \dim(E)$ vecteurs. Il suffit qu'elle soit libre pour être une base. Montrons que \mathcal{B} est libre.

Soit $(a_0, \ldots, a_{n-1}) \in \mathbb{R}^n$ tel que :

$$a_{n-1}f^{n-1}(e) + \dots + a_1f(e) + a_0e = 0$$
 (\heartsuit).

En composant (\heartsuit) par f^{n-1} , il vient immédiatement $a_0 f^{n-1}(e) = 0$ donc $a_0 = 0$ car $f^{n-1}(e) \neq 0$.

(♥) devient alors $a_{n-1} f^{n-1}(e) + \dots + a_1 f(e) = 0$.

En composant (\heartsuit) par f^{n-2} , il vient immédiatement $a_1 f^{n-1}(e) = 0$ donc $a_1 = 0$ car $f^{n-1}(e) \neq 0$.

En itérant, on a : $\forall k \in [0; n-1]$, $a_k = 0$. Donc \mathcal{B} est une libre et par conséquent \mathcal{B} est une base.

De
$$f^n(e) = 0$$
 car $f^n = 0_{\mathcal{L}(E)}$ vient alors $\mathcal{M}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & 0 \end{pmatrix}$.

Exercice 4 Un endomorphisme de $\mathcal{M}_n(\mathbb{R})$

Soit $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{R}) \setminus \{0\}$ et φ défini sur $\mathcal{M}_n(\mathbb{R})$ par

$$\varphi(M) = Tr(M)A - Tr(A)M.$$

- 1. Montrer que φ est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- 2. Déterminer son noyau, son image et son rang.

Solution (Ex.4 – *Un endomorphisme de* $\mathcal{M}_n(\mathbb{R})$)

- 1. Sans souci.
- 2. Remarquons que si $M \in Ker(\varphi)$, alors $\varphi(M) = 0 \Rightarrow Tr(M)A = Tr(A)M$.
 - Premier cas : $Tr(A) \neq 0$.

Si $M \in Ker(M)$, alors $M \in Vect(A)$. Et réciproquement, si $M \in Vect(A)$, en posant $M = \lambda A$, $\varphi(M) = \lambda Tr(A)A - Tr(A)\lambda A = 0$.

Donc $Ker(\varphi) = Vect(A)$.

Alors $rg(\varphi) = n^2 - 1$.

De plus : $\forall M \in \mathcal{M}_n(\mathbb{R})$, $Tr(\varphi(M)) = 0$ donc $Im(\varphi) \subset Ker(tr)$. Par égalité des dimensions, $Im(\varphi) = Ker(tr)$.

• Second cas : Tr(A) = 0.

Alors Tr(M) = 0. Et réciproquement, si Tr(M) = 0, alors $\varphi(M) = 0$.

Donc $Ker(\varphi) = Ker(tr)$.

Alors $rg(\varphi) = n^2 - (n^2 - 1) = 1$.

De plus : $\forall M \in \mathcal{M}_n(\mathbb{R}), \varphi(M) = \text{Tr}(M)A \in \text{Vect}(A)$ donc $\text{Im}(\varphi) \subset \text{Vect}(A)$, et par égalité des dimensions, $\text{Im}(\varphi) = \text{Vect}(A)$.

Exercice 5 Supplémentaires

Soit $n \ge 2$ et $E = \mathbb{R}_n[X]$.

Pour tout $i \in \llbracket 0; n \rrbracket$, on considère

$$\mathbf{F}_i = \Big\{ \mathbf{P} \in \mathbf{E} | \forall j \in \llbracket \ \mathbf{0} \ ; \ n \rrbracket \setminus \{i\}, \mathbf{P}(j) = 0 \Big\}.$$

- 1. Vérifier que, pour tout $i \in [0; n]$, F_i est un espace vectoriel.
- 2. Montrer que

$$F_0 \oplus F_1 \oplus \cdots \oplus F_n = E$$
.

- 3. Justifier que chaque F_i est une droite vectorielle et donner pour chacun d'eux un polynôme générateur P_i vérifiant $P_i(i) = 1$.
- 4. Que dire de la famille $(P_i)_{0 \le i \le n}$?

Solution (Ex.5 – Supplémentaires)

- 1. $F_i \subset E$, $0_E \in F_i$ et $(P(j) = 0, Q(j) = 0) \Longrightarrow (\lambda P + Q)(j) = 0...$
- 2. Soit $(P_i)_{0 \le i \le n} \in \prod_{i=0}^n F_i$ tel que $\sum_{i=0}^n P_i = 0_E$ (\heartsuit) .

Soit $k \in [0; n]$. (\heartsuit) évaluée en X = k donne $P_k(k) = 0$ car $P_i(k) = 0$ pour tous les $i \neq k$. Donc P_k s'annule pour tout $\in [0; n] \setminus \{k\}$ car $P_k \in F_k$, ainsi qu'en $k : P_k$ possède aumoins n + 1 racines distinctes et est de degré au plus n, donc $P_k = 0_E$.

Ceci prouve que la somme $\sum_{i=1}^{n} F_i$ est directe.

Comme chaque F_i n'est pas réduit à $\{0_E\}$ puisqu'il contient

$$\dim(\mathbf{F}_i) \ge 1$$
, donc $\dim\left(\bigoplus_{i=0}^n \mathbf{F}_i\right) = \sum_{i=0}^n \dim(\mathbf{F}_i) \ge n+1$

Or $\bigoplus_{i=0}^{n} F_i \subset E$ donc dim $\left(\bigoplus_{i=0}^{n} F_i\right) \leq n+1$.

Ainsi dim $\left(\bigoplus_{i=0}^{n} F_i\right)$ = dim(E) et finalement $\bigoplus_{i=0}^{n} F_i$ = E.

3. On a déjà justifié $\forall i, \dim(F_i) \ge 1$. S'il existe un i tel que $\dim(F_i) > 1$, alors $\sum_{i=0}^{n} \dim(\mathbf{F}_i) > n+1 \text{ ce qui contredit ce qui précède. Donc } \forall i, \dim(\mathbf{F}_i) = 1.$ Soit $i \in [0; n]$. On a déjà $\mathbf{Q}_i = \prod_{k \in [0; n] \setminus \{i\}} (\mathbf{X} - k) \in \mathbf{F}_i$. Posons alors

$$P_i = \frac{1}{\prod_{k \in [[0;n]] \setminus \{i\}}} Q_i, \text{ de sorte que } P_i(i) = 1.$$

4. $(P_i)_{0 \le i \le n}$ forme une base de E par concaténation des bases des F_i ... c'est la base de Lagrange associée aux points de [0; n], non?

Exercice 6 Égalité

Soit $F_1, ..., F_n$ et $G_1, ..., G_n$ 2n sous-espaces vectoriels d'un espace E vérifiant

$$\forall \in [1; n], \quad F_i \subset G_i \quad \text{et} \quad F_1 + F_2 + \dots + F_n = G_1 \oplus G_2 \oplus \dots \oplus G_n.$$

On ne suppose pas la somme des F_i directe.

Démontrer que pour tout i de [1; n], $F_i = G_i$.

Solution (Ex.6 – Égalité)

Si E est de dimension finie -

Notons d_i et δ_i les dimensions respectives de F_i et G_i .

On a : $\forall i \in [1; n]$, $d_i \leq \delta_i$ car $F_i \subset G_i$, donc s'il existe un i tel que $d_i < \delta_i$,

$$\sum_{i=1}^{n} d_i < \sum_{i=1}^{n} \delta_i, \text{ ce qui est absurde car } \sum_{i=1}^{n} d_i \geqslant \dim \left(\sum_{i=1}^{n} F_i \right) = \dim \left(\bigoplus_{i=1}^{n} G_i \right) = \sum_{i=1}^{n} \delta_i.$$

Donc: $\forall i \in [1; n], d_i = \delta_i$, donc $\dim(F_i) = \dim(G_i)$, donc $F_i = G_i$ puisque $F_i \subset G_i$. Si non, ou si on n'en sait rien -

Soit $(g_1, ..., g_n) \in G_1 \times \cdots \times G_n$ quelconque.

$$\sum_{i=1}^{n} g_i \in \sum_{i=1}^{n} F_i \text{ donc il existe } (f_1, \dots, f_n) \in F_1 \times \dots \times F_n \text{ tel que } \sum_{i=1}^{n} g_i = \sum_{i=1}^{n} f_i.$$

Alors $\sum_{i=1}^{n} (g_i - f_i) = 0_E$ donc par unicité de la décomposition dans la somme directe

 \bigoplus G_i car $\forall i, g_i - f_i \in$ G_i, on a : $\forall i, g_i - f_i = 0$ donc $g_i = f_i \in$ F_i.

Exercice 7 | Encore un endomorphisme de $\mathcal{M}_n(\mathbb{R})$

Soit n un entier au moins égal à 2. Soit $E = \mathcal{M}_n(\mathbb{R})$.

 $\varphi: E \longrightarrow E, M \longmapsto M - Tr(M)I_n$. Soit

- 1. a) Vérifier que φ est un endomorphisme de E.
 - **b**) Déterminer Ker φ .
 - c) φ est-il un automorphisme?
- 2. a) Déterminer l'ensemble E₁ des matrices M telles que

$$\varphi(M) = M$$
.

Justifier qu'il s'agit d'un sous-espace vectoriel de E, préciser sa dimension.

b) Déterminer l'ensemble E2 des matrices M telles que

$$\varphi(M) = (1 - n)M.$$

Justifier qu'il s'agit d'un sous-espace de E, préciser sa dimension.

- 3. a) Justifier que E_1 et E_2 sont stables par φ , et supplémentaires.
 - b) Donner la matrice représentant φ dans une base obtenue en concaténant une base de E_1 et une base E_2 .

Solution (Ex.7 – Encore un endomorphisme de $\mathcal{M}_n(\mathbb{R})$)

- 1. a) Par la linéarité de Tr(), on vérifie sans peine que φ est linéaire.
 - b) $M \in \text{Ker}\varphi \implies M = \text{Tr}(M)I_n \implies \text{Tr}(M) = \text{Tr}(()\text{Tr}(M)I_n) \implies \text{Tr}(M) =$ $\operatorname{Tr}(M)\operatorname{Tr}(()I_n) \Longrightarrow \operatorname{Tr}(M) = n\operatorname{Tr}(M)$, et comme $n \neq 1$, $\operatorname{Tr}(M) = 0$. Or $M = Tr(M)I_n$ donc M = 0. $Ker \varphi = \{0\}$.
 - c) φ est un endomorphisme de E, de dimension finie n^2 . Comme φ est injectif (puisque $Ker \varphi = \{0\}$), φ est un automorphisme.
- 2. a) $\varphi(M) = M \iff M Tr(M)I_n = M \iff Tr(M) = 0 \iff M \in Ker(Tr()).$ $E_1 = Ker(Tr())$, comme tout noyau, c'est un sous-e.v. de E. Comme Tr() est une forme linéaire non nulle $(Tr(:)E \to \mathbb{R})$, $Im(Tr()) = \mathbb{R}$, rg(Tr()) = 1, et par la

formule du rang, $\dim(\text{Ker}(\text{Tr}())) = \dim E - \text{rg}(\text{Tr}())$, donc $\dim(E_1) = n^2 - 1$.

b) $\varphi(M) = (1 - n)M \iff M - Tr(M)I_n = (1 - n)M \iff \frac{Tr(M)}{n}I_n = M.$

Donc: $M \in \mathbb{E}2 \Longrightarrow M \in Vect(I_n)$.

Réciproquement, si $M \in Vect(I_n)$, en écrivant $M = \alpha I_n$, $\frac{Tr(M)}{n}I_n = \frac{\alpha n}{n}I_n = \alpha I_n = \frac{\alpha n}{n}$ M donc $M \in E_2$.

Donc E_2 = Vect(I_n), sous-espace vectoriel de dimension 1 de E.

- **3.** a) On a déjà $\dim(E_1) + \dim(E_2) = n^2 = \dim(E)$. Soit $M \in E_1 \cap E_2$. Alors Tr(M) = 0 et $\exists \alpha \in \mathbb{R}, M = \alpha I_n$. Alors $0 = \text{Tr}(M) = \text{Tr}((\alpha I_n) = \alpha \text{Tr}((\alpha I_n) = \alpha I_n, \text{donc } \alpha = 0 \text{ puisque } n \neq 0.$ Donc M = 0.
 - **b**) Soit $\mathcal{B} = (A_1, \dots, A_{n^2-1}, B)$ une base de E avec $A_i \in E_1$ pour $1 \le i \le n^2 1$ et $B \in E_2$. $\forall i \in [1; n^2 - 1], \varphi(A_i) = 1 \times A_i \text{ et } \varphi(B) = (1 - n)B.$

Du coup, la matrice de $\mathcal{M}_{n^2}(\mathbb{R})$ représentant φ est la matrice diagonale : $mat_{\mathcal{B}}(\varphi) = diag(1, \dots, 1, 1-n)$

Exercice 8 Rang et trace d'un projecteur

Soit *p* un projecteur d'un espace vectoriel E de dimension finie. Montrer que rg(p) = Tr(p).

Solution (Ex.8 – Rang et trace d'un projecteur)

Dans une base \mathcal{B} adaptée à la décomposition $\operatorname{Im}(p) \oplus \operatorname{Ker}(p) = E$,

$$\mathcal{M}_{\mathcal{B}}(p) = \begin{pmatrix} \mathbf{I}_{\dim(\operatorname{Im}(p))} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}_{\dim(\operatorname{Ker}(p))} \end{pmatrix} = \begin{pmatrix} \mathbf{I}_{\operatorname{rg}(p)} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}_{n-\operatorname{rg}(p)} \end{pmatrix}$$

Par conséquent, rg(p) = Tr(()p).

Exercice 9
$$AB-BA=I$$
?

Soit $n \in \mathbb{N}^* \mathbb{N}$.

Trouver toutes les matrices A et B de $\mathcal{M}_n(\mathbb{K})$ vérifiant

$$AB - BA = I_n.$$

Solution (Ex.9 – AB-BA=I?)

Comme $Tr(AB - BA) = Tr(AB) - Tr(BA) = 0 \neq n = Tr(I_n)$, cette équation n'a aucune solution...

Exercice 10 Noyau et image supplémentaires

Soit E un espace vectoriel et f un endomorphisme de E.

- 1. Montrer que $Ker(f) \subset Ker(f^2)$ et $Im(f^2) \subset Im(f)$.
- 2. On suppose de plus que E est de dimension finie et que

$$rg(f^2) = rg(f).$$

a) Montrer que

$$Ker(f) = Ker(f^2)$$
 et $Im(f^2) = Im(f)$.

b) Montrer que

$$Ker(f) \oplus Im(f) = E$$
.

Solution (Ex.10 – Novau et image supplémentaires) Soit E un espace vectoriel et f un endomorphisme de E.

- 1. $f(x) = 0 \Rightarrow f^2(x) = 0$ donc $Ker(f) \subset Ker(f^2)$.
 - $x = f^2(y) \Rightarrow x = f(f(y)) \text{ donc } \text{Im}(f^2) \subset \text{Im}(f).$
- 2. a) On a dim $Im(f^2) = dim Im(f)$ donc avec l'inclusion précédente $Im(f^2) =$ Im(f).
 - Le théorème du rang entraı̂ne alors $\dim \operatorname{Ker}(f^2) = \dim \operatorname{Ker}(f)$ donc par l'inclusion précédente $Ker(f) = Ker(f^2)$.
 - b) Le théorème du rang assure que

 $\dim \operatorname{Ker}(f) + \dim \operatorname{Im}(f) = \dim E$.

• Soit $x \in \text{Ker}(f) \cap \text{Im}(f)$.

Posons x = f(y). Alors $f^2(y) = 0$. Donc $y \in \text{Ker}(f^2) = \text{Ker}(f)$, donc f(y) = 0, i.e. x = 0. Donc $Ker(f) \cap Im(f) = \{0\}$.

• Ainsi, on a bien $Ker(f) \oplus Im(f) = E$.

Exercice 11 *Projections et décomposition*

Soit f_1, \dots, f_n n endomorphismes d'un \mathbb{K} -espace vectoriel E tels que

$$f_1 + \dots + f_n = id_E$$
 et $\forall i \neq j$, $f_i \circ f_j = 0$.

- 1. Montrer que chaque f_i est un projecteur.
- 2. Montrer que $\bigoplus_{i=1}^{n} \operatorname{Im}(f_i) = E$.
- 3. Que peut-on dire de f_1 et f_2 lorsque n = 2?

Solution (Ex.11 – Projections et décomposition)

1. En composant l'égalité par f_k , on obtient $f_k \circ f_k = f_k$.

- 2. Soit $x \in E$. On $a : x = \sum_{i=1}^{n} f_i(x)$ donc $x \in \sum_{i=1}^{n} \operatorname{Im}(f_i)$. Ainsi $E \subset \sum_{i=1}^{n} \operatorname{Im}(f_i)$.
 - L'inclusion réciproque étant évidente, $E = \sum_{i=1}^{n} Im(f_i)$.
 - Supposons que $\sum_{i=1}^{n} y_i = 0$ avec $\forall i, y_i \in \text{Im}(f_i)$. En écrivant chaque y_i sous la forme $y_i = f_i(x_i)$, on a $\sum_{i=1}^{n} f_i(x_i) = 0$, et en composant par f_k , $f_k(x_k) = 0$. Donc $y_k = 0$. Et

ceci pour tout k de [1; n]. Donc la somme est directe.

3. f_1 et f_2 sont deux projecteurs associés : f_1 est la projection de E sur $Im(f_1)$ parallèlement à $Im(f_2)$ et f_1 est la projection de E sur $Im(f_2)$ parallèlement à $Im(f_1)$.

Exercice 12 Polynôme annulateur et inversion

- 1. Soit $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
 - a) Calculer M² et en déduire un polynôme annulateur de M de degré 2.
 - b) En déduire l'inversibilité de M ainsi que son inverse.
- 2. Soit $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_n(\mathbb{K})$. Soit P un polynôme annulateur de M. Montrer que si $P(0) \neq 0$, alors M est inversible et M^{-1} est une combinaison linéaire de puissance (d'exposant positif) de M.

Solution (Ex.12 – Polynôme annulateur et inversion)

- 1. a) $M^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix} = 5M + 2I_2$ donc $P = X^2 5X 2$ est un polynôme annulateur de
 - **b**) $M(M 5M) = 2I_2$.

Exercice 13 *Polynôme annulateur et bijectivité* Soit $E = \mathbb{R}_3[X]$ et φ défini sur E par

$$\forall P \in E$$
, $\varphi(P) = P - P'$.

- 1. Vérifier que φ est un endomorphisme de E.
- 2. Déterminer un polynôme annulateur non nul de φ .

- 3. Justifier que φ est bijectif et déterminer φ^{-1} à l'aide des puissances de φ , puis en explicitant $\varphi^{-1}(P)$ en fonction de P.
- 4. Reprendre les questions précédentes en remplaçant $E = \mathbb{R}_3[X]$ par $E = \mathbb{R}_n[X]$ où $n \in \mathbb{N}^*$ est quelconque.

Solution (Ex.13 – Polynôme annulateur et bijectivité) Soit $E = \mathbb{R}_3[X]$ et φ défini sur E par

$$\forall P \in E$$
, $\varphi(P) = P - P'$.

- 1. Sans souci φ est un endomorphisme de E.
- 2. En écrivant la matrice M de φ dans la base canonique de E, on remarque que $M-I_4$ est nilpotente, avec $(M-I_4)^4=0$. Donc $(X-1)^4=X^4-4X^3+6X^2-4X+1$ est un polynôme annulateur de φ .
- 3. On a alors $\varphi \circ (-\varphi^3 + 4\varphi^2 6\varphi + 4id_E) = id_E$ donc φ est bijective avec $\varphi^{-1} = -\varphi^3 + 4\varphi^2 6\varphi + 4id_E$. $\varphi^0 = id_E$, $\varphi^1 = \varphi$, $\varphi^2 : P \mapsto P 2P' + P''$, $\varphi^3 : P \mapsto P 3P' + 3P'' P^{(3)}$ conduit à $\varphi^{-1}(P) = P + P' + P'' + P^{(3)}$.
- 4. Les mêmes raisonnements donne comme polynôme annulateur

$$(X-1)^{n+1} = \sum_{k=0}^{n+1} {n+1 \choose k} (-1)^k X^{n+1-k}$$

et

$$\varphi^{-1} = \sum_{k=0}^{n} {n+1 \choose k} (-1)^{k+1} \varphi^{n-k} : P \mapsto P + P' + \dots + P^{(n)}$$

Pour la dernière expression, on voit sans peine qu'avec cette expression de φ , on a bien $\varphi \circ \varphi^{-1}(P) = P$ puisque $P^{(n+1)} = 0$.