Exercice 1 Tubes de convergence et intégrales

- 1. Deux limites à maîtriser!
 - a) Soit $\alpha > 0$ et $x \in [0; 1[$ fixés. Que vaut $\lim_{n \to +\infty} n^{\alpha} x^{n}$?
 - **b**) Que vaut $\lim_{n\to+\infty} \left(\frac{n}{n+1}\right)^n$?

Dans cet exercice, on étudie les suites de fonctions définies sur [0; 1] pour tout n de \mathbb{N}^* par

$$\begin{cases} f_n(x) = & x^n(1-x), \\ g_n(x) = & nx^n(1-x), \\ h_n(x) = & (n+1)(n+2)x^n(1-x) \end{cases}$$

- 2. Montrer que les suites de fonctions (f_n) , (g_n) et (h_n) convergent simplement vers une même fonction φ à préciser.
- **3.** a) Montrer que la suite (f_n) converge uniformément.
 - **b**) En déduire que, pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}^*$ tel que, pour tout $n \ge n_0$, la courbe de f_n est toute entière située dans le « tube » de base [0; 1] et de hauteur ε .
 - c) Pour $\varepsilon = 0,04$, donner une valeur possible de n_0 .
- **4. a**) Montrer que la suite (g_n) ne converge pas uniformément.
 - **b**) Justifier que, pour $\varepsilon = 0.1$ et pour tout $N \in \mathbb{N}^*$, il existe (au moins) un indice $n_0 \ge N$ tel que la courbe de g_{n_0} s'échappe du tube de hauteur ε *i.e.* il existe $x_0 \in [0; 1]$ tel que $g_{n_0}(x_0) > \varepsilon$.
- **5.** a) On suppose que la suite (h_n) converge uniformément.

En raisonnant sur les tubes de hauteur $\varepsilon > 0$, montrer que $\lim_{n \to +\infty} \int_{0}^{1} h_n(x) dx = 0$.

- **b**) Calculer explicitement $\int_{0}^{1} h_n(x) dx$.
- c) Conclure.

Exercice 2 Permutation limite/intégrale : les 3 méthodes usuelles

Soit pour tout
$$n \in \mathbb{N}^*$$
, $f_n : [0; \pi] \to \mathbb{R}$, $x \mapsto \frac{n \sin x}{n + x}$.
On se propose de montrer par trois méthodes à maîtriser que
$$\lim_{n \to +\infty} \left(\int_0^{\pi} f_n(x) dx \right) = \int_0^{\pi} \lim_{n \to +\infty} f_n(x) dx = 2 \qquad (\sharp)$$

- 1. Montrer que (f_n) converge simplement vers $f \stackrel{\text{déf.}}{=} \sin \sup [0; \pi]$ et calculer $\int_0^{\pi} f(x) dx$.
- 2. Comme en première année.

En majorant $\int_{0}^{\pi} f_n(x) dx - \int_{0}^{\pi} f(x) dx$, montrer (#).

3. Par convergence uniforme.

Montrer que la convergence de $(f_n)_n$ vers f est uniforme et justifier (\sharp).

4. Par convergence dominée.

Proposer une fonction intégrable dominant toutes les f_n et conclure par le théorème de convergence dominée.