PC CH. 6 : REDUCTION DES ENDOMORPHISMES, DIAGONALISATION DES MATRICES CARREES 2025-2026
Ezxemple de réduction d’endomorphismes AL | 0
Soit E = R3, f un endomorphisme de E et A la matrice de f dans la Déterminer les matrices commutant avec D = =
base canonique de E. Dans chacun des cas suivants, déterminer si f est 0 | ulg
diagonalisable, en précisant une base de chacun de ses sous-espaces propres. Mp4q(K).
3 -4 6 3 0 2 Solution (Ex.2 — Commutant d’une matrice diagonale)
LA=]1-1 3 -=3]; 22A=|-1 1 —1]; 1. Dans ce qui suit, (i,7) décrit [1; n]?.
1 4 —4 10 0 Soit A = (ai,j) € Mn(K)
Notons que D = (d; j) = (A\id;,j) ol 6 est le symbole de Kronecker.
3 -1 3 1 =1 0 Par la définition du produit matriciel :
n n
3. A= —1 2 —21; 4. A = 1 -2 1 AD = DA «— V(i,j), Z aiyk)\kék,j = Z /\15i7kak,j e V(i,j), am')\j =
k=1 k=1
-1 1 -1 1 —4 2

Solution (Ex.1 — FEzemple de réduction d’endomorphismes)

Loxa =X -2X2 =X +2=(X-2)(X-1)(X+1),Sp(f) ={-1,1,2},
E_1 = Vect((—2,1,2)), E; = Vect((—1,1,1)), E2 = Vect((—2,1,1)), f
diagonalisable.

2. xya = X3 —4X?2 45X -2 = (X -1)3(X -2), Sp(f) = {1,2}, By =
Vect((1,0,—-1),(0,1,0)), E2 = Vect((—2,1,1)), f diagonalisable.

3. xa = X3 —4X2+5X -2 = (X - 13X -2), Sp(f) = {1,2}, E; =
Vect((—1,1,1)), E2 = Vect((—2,1,1)), f non-diagonalisable.

Remarque : méme polyndéme caractéristique pour 2. & 3.

4. xa = X3-X24X-1 = (X-1)(X?+1), Sp(f) = {1}, By = Vect((—1,0,1)),

f non-diagonalisable.

Commutant d’une matrice diagonale

1. Soit D = diag(A1, ..., \,) une matrice diagonale a coefficients diagonaux
deux & deux distincts.

Montrer que A € M, (K) commute avec D si, et seulement si, A est
diagonale.

2. Soit A et p deux scalaires distincts et p et ¢ deux entiers naturels non
nuls.
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)\iaiﬂ' < V(’L,]), (/\Z — )\j)ai,j =0 < V(Z,j), (Z 75 j = Q5 =
A diagonale

0) —

A|B
2. Raisonnons par blocs. Soit M = € Mp(K) avec A €
C|D
M, (K) et B € M, (K).
VN A | AB
AC | uD uC | puD
—)\)B = B = AlO
(n—=2A) Op.q — Up.q — M = (dia-
(A= n)C =0qp C=0qp 0|D

gonale par blocs).

Exercice 3| Dans un espace de polynomes

E = Ry[X] désigne I'espace vectoriel des polynomes a coefficients réels, de
degré au plus 2.
Soit f Papplication qui, & tout polynome P de Ry[X], associe le polynome
défini par :
QX)) =P(X+1)+XP'(X)
1. Montrer que f est un endomorphisme de Ry[X].
2. Donner la matrice M de f dans la base canonique de Ra[X].

3. f est-il un automorphisme de Rp[X]?

ol
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4. a) Quelles sont les valeurs propres de f 7 f est-il diagonalisable ?
b) Déterminer une base C de E formée de vecteurs propres de f.
c) Quelles sont les coordonnées du polynéme Q(X) = X2 + X + 1 dans la

base C.

5. Déterminer le polynome P de Ro[X] tel que :
P(X+1) +XP/(X) = X2+ X + 1.

Solution (Ex.3 — Dans un espace de polynémes)

1. Pas de probléme pour la linéarité.

1 1 1

2. M=matg(f)=|0 2 2| ouB=(1,X,X3?).
0 0 3

3. rg(f) = rg(M) = 3 = dim(Rz[X]).

3=
) = {1;2;3} puisque M est triangulaire. f € L(E) et
card(Sp(f)) = 3 = dim(E) donc f est diagonalisable.
b) La résolution de f(P) = AP donne : E; = Vect(1), Es = Vect(X+1) et
E3 = Vect(2X? 4+ 4X 4 3). C = (1,X + 1,2X? + 4X + 3) convient.
c) En raisonnant sur les coefficients par degrés décroissants :
1
X24+X+1= 5(2X2+4X+3)— (X+1)+
X2 + X + 1 dans C sont (1/2,—1,1/2).

4. a) Sp(f) = Sl)?(

1
3 x 1, les coordonnées de

Exercice 4| Sous espace propre de dimension n-1

1. Donner une condition nécessaire et suffisante pour qu’'une matrice A de
M,,(K) de rang 1 soit diagonalisable.

2. Donner une condition nécessaire et suffisante pour qu'une matrice A de
M, (K) admettant une valeur propre A telle que dimEy, = n — 1 soit
diagonalisable.

Solution (Ex.4 — Sous espace propre de dimension n-1)

1. 0 € Sp(A) avec w(0) > dimKer(A) = n — 1, donc ya = X" }(X - \) =
X" — AX""1 donc A = Tr (A).
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Premier cas : Tr(A) =0, xa = X" et dimEy < w(0), A n’est pas diago-
nalisable.
Second cas : Tr(A) # 0, xao = X" }{(X — Tr(A)) et dimEy = w(0),
1 <dimEp(a) < w(1), donc dimEqya) = 1, et A est diagonalisable.

. xa = (X = \)""1(X — p) avec éventuellement p = .
xa = X" —(n—DAX" 14+ )(X—p) =X"—((n—1)A+p) X" 1+...
Premier cas : Tr (A) = nA, donc p = A, Sp(A) = {\} avec dimEy < w(\),
A n’est pas diagonalisable.
Second cas : Tr (A) # nA, donc u < A\, Sp(A) = {\, u} avec dimEy = n—1
et dimE, =1, A est diagonalisable.
Notons que 1. n’est qu’'un cas particulier de ce cas.
Variante efficace — Quitte & plonger dans C si K = R, A est semblable
a

A X . X
0 A
T = avec p=Tr(A) — (n— 1A e K.
A X
0 ... ... 0 pu

Premier cas nA), Sp(A) = {\} et dimE) < n donc

=X (le. Tr(A) =
A n’est pas diagonalisable.

Second cas : pu # A (i.e. Tr(A) # n)), Sp(A) = {\,Tr(A) — (n — 1)A} et
dim E) + dim EqyA)_(n—1)» = n donc A est diagonalisable.
Matrice o deux parameétres
Soit n > 2, a,b € R* tels que |a| # |b].
a b a ... b
b a b ... a
SoitA=1|a b a ... b | €Mp(R)
b a b a
ol
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. A est-elle diagonalisable ? Sommes constantes en ligne ou en colonne
. Déterminer une matrice diagonale semblable a A. 1. Soit A = (aij)i<ij<n une matrice. On suppose que : Vi €

Solution (Ex.5 — Matrice a deux parameétres)

. A est symétrique réelle donc diagonalisable.

rg(A) =2 donc 0 € Sp(A) et dimEg = 2n—2 = w(0) (car diagonalisable).
On note X et p les deux autres valeurs propres de A (et il n’est pas exclu
que A = p).

Comme A est diagonalisable, semblable & diag(\, u,0, ...
Tr (A) = 2na, donc p = 2na — A.

Quelques idées pour trouver A et p :

0, A+ =

e la somme des coefficients de chaque est constante, égale a n(a+b) donc

1 1

Al =n(a+b) , donc A = n(a + b) est une valeur propre. Alors
1 1

u=mn(a—Db).

e En sommant les 2n lignes sur la premiére ligne, on obtient une factori-
sation :

1 1 1
X X X

xa(X) = det (XIg, — A) = (X — n(a + b)) donc A =
X X X

n(a + b) est une racine de xa donc une valeur propre. u = n(a — b) est
I’autre.

e Tr(A?) = 2n%® + b%), et comme A? est semblable a
diag(\?, 1i%,0,...,0), A2 + u? = n%(a® + b?).
1
On en tire : Ay = 5(()\ + )% = X2 = p?) = n?(a® - b%).
Donc A et p sont les racines du trinéme X? — 2naX + n?(a® — v?).
A = 4n%b? = (2nb)? > 0, A = n(a +b) et p=n(a —b).
Bref, A est semblable a diag(n(a + b),n(a — b),0,...,0).
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n
[1; n], Zam- = s.
j=1

Montrer que s € Sp(A).

n
2. En est-il de mémessi: Vj € [1; n], Zai’j —5 ?
i=1

3. Etudier si

11 11

2 2 2 2
A=

3 3 3 3

4 4 4 4

est diagonalisable. Si oui, proposer une matrice diagonale semblable & A.

Solution (Ex.6 — Sommes constantes en ligne ou en colonne)
1

1. Avec U = ,on a AU = sU donc s € Sp(A) et U € E;.

1

Variante : xa(X) = det (XI,, — A) : on effectue C; «+~ C1+Co+---4+C,
et on factorise la premiére colonne par X —s, alors ya(X) = (X—s)det (?),
et s est racine de xa.

2. Cette fois, "A vérifie la propriété de 1., donc s € Sp(*A). Or Sp(A) =

Sp(*A) donc s € Sp(A). Donc dim(Eg) + dim(E1g) = 4 et A € My(R) :
A est diagonalisable.

3. rg(A) =1 donc 0 € Sp(A) avec dimEg = 3. Par 2., 10 € Sp(A). Comme

dimEjg > 1 et dimEg + dimEg <4, dimEg = 1.

Calculs explicites en dimension 3

Pour les trois matrices suivantes, déterminer le polynéme caractéristique,
les valeurs propres et les sous-espaces propres, en précisant si elles sont
diagonalisables dans R, voire dans C :

ol
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4 -4 1 -1 3 -1 -2 1 0
M=| 4 -3 0 , N=| -3 5 -1 et L= 1 -4 2
3 0 -2 -3 3 1 6 —-12 5

Solution (Ex.7 — Calculs explicites en dimension 3)

e xu = (X —1)(X+1)% SpM) = {~1,1}, E_;(M) = Vect 2 | 1,

E;(M) = Vect 1 , non diagonalisable, ni dans R, ni dans C.

e xn = (X—2)7- (X - 1), SpM) = {12}, Ex(N) = Veet | | 1 | ].

1
1 1
E2(M) = Vect 11,10 , diagonalisable dans R et dans C.
0 -3
o v = (X4 D)X +1) = (X +1)(X = i)(X+1), Spa(L) = {~1}, Spe(L) =
1 1—1
{-1,i,—i}, E_1(L) = Vect 1| |, Ei(L) = Vect 3—i ,
1 6
1+
E_;(L) = Vect 344 , non diagonalisable sur R, mais diagonali-
6
sable sur C.
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Exercice 8| Matrice a un parameétre

a ... o«
1
Soita € K,n>3et A=| © (1) € M, (K)
1 1
a ... o«
sii e {l;n},

Q@
i.e. Qq5 = L

1 siie[2; n—2].
Etudier, suivant la valeur de a, si A est diagonalisable, et préciser dans tous
les cas ses éléments propres.

Solution (Ex.8 — Matrice a un paramétre)
rg(A) =n —1donc 0 € Sp(A) et dimEg =n — 1.
De plus, Eg = Vect(E; —Eq, ..
de My, 1(K).

Du coup w(0) >n —1 et ya = X" 1(X - \) = X® — AX""L. Mais comme
xa = X" — Tr (A) X" ! + ... nécessairement \ = Tr (A) = 2a +n — 2.

. 2
e Premiercas: o =1 — —.

., E1—Ey) ot (E;)1<i<n est la base canonique

n
Alors A =0, xa = X" et dimEg < w(0) : A n’est pas diagonalisable

e Second cas : o # 1—%, alors Sp(A) = {0, 2a+n—2} avec dim Egq4p—2 = 1.
A est diagonalisable avec ya = X" (X — (2a +n — 2)).

e a a
1 1 1
Enfin : A =(2a+n—-2) donc Eoy1pn—2 = Vect
1 1 1
e a a

Exercice 9| Transposition et symétrie

Soit n > 2, E = M,(R) et f € L(E) défini par f(M) =MT — M.

ol
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1. Calculer f? et en déduire que f est diagonalisable.
2. Déterminer les éléments propres de f.

3. Déterminer le polynéme caractéristique de f.

Solution (Ex.9 — Transposition et symétrie)
1. f2(M) = MT = M)" = (MT—M) = 2M—2MT = —2f(M) donc f2 = —2f.

2. X2 +2X = X(X +2) est un polynéme annulateur scindé & racines simples
de f donc f est diagonalisable.

3. Sp(f) - {_270}7
fM) =0 <= MT =M <= M € S,(R), donc 0 € Sp(f) et Eg = S,(R),
fM) = —2M <= MT = -M <= M € A,(R), donc —2 € Sp(f) et
E_» = A,(R).

4. Comme f est diagonalisable,

w(O)::dhné%(Rjzzﬁiﬁétil,
w(—2):(ﬁHLAnGR)::ﬁQ%;El,

Xf = Xn(n+1)/2(X + 2)n(n—1)/2.

Polynome annulateur

Soit A € M5(R) telle que A% — 4A + 3I5 = 05 et Tr (A) = 9.
Déterminer 4.

Solution (Ex.10 — Polynéome annulateur)

X2 —4X +3 = (X —1)(X — 3) est un polynéme annulateur scindé a racines

simples A donc A est diagonalisable, avec Sp(A) C {1, 3}.

On a alors Tr (A) = Z A X w(A) =9, la seule possibilité étant w(3) = 2
A€Sp(f)

et w(1) = 3 puisque w(1l) + w(3) = 5.

Donc xa = (X —1)3(X — 3)2.

Un endomorphisme de M, (R)

Soit n un entier au moins égal a 2. Soit E = M,,(R).
Soit ¢:E—EMr—M-Tr(M)IL,.

1. Vérifier que ¢ est un endomorphisme de E.
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2. Soit P = X%+ (n — 2)X + 1 — n. Calculer P(yp).

3. Justifier que ¢ est diagonalisable et donner une matrice diagonale repré-
sentant ¢ dans une base idoine.

4. En déduire Tr (¢) et det (¢).

Solution (Ex.11 — Un endomorphisme de My (R))
1. Aucun souci grace a la linéarité de la trace.

2. Pour tout M de M,,(R),
PO = (M) — Tr (M) () = M = Te (M) T, — Tr (M) (1 — )T, =
M+ (n —2)Tr (M) L,.
P(e)M) =M+ (n—2)Tr (M) L, + (n—2)M—(n—2)Tr (M) I, + (1 —n)M,
ie. P(p)(M) =0,.
Donc P((p) = OE(Mn(R))

3. P=(X—(1-n))(X—1) est un polynéme annulateur de ¢ scindé a racines
simples donc ¢ est diagonalisable avec Sp(y) C {1 —n,1}.
M) =M <= Tr(M) = 0 <= M € ker(Tr) donc 1 € Sp(M) et
dim(E;) = dim(ker(Tr)) = n? — 1 par la fomule du rang appliquée a
Tr : M, (R) — R.
Comme ¢ est diagonalisable et dim(M,,(R)) = n?, cela suffit pour affirmer
que 1 —n € Sp(p) et dim(E;_,) = 1.
Dans une base B adaptée a la supplémentarité Eq @ Eq_,, = M, (R),

Mg(p) = diag(1,...,1,1—n).
n2—1 fois

4. Tr(p)=n?>—1+1-n=n>—-netdet(p)=1-—n.

Exercice 12| Puissances n-émes et trigonalisation

Soit
7 2 3
M=1] -8 -1 —4
-12 -4 -5

1. Déterminer xn et étudier si M est diagonalisable.

2. a) M est-elle trigonalisable ?

ol
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b) Déterminer une matrice inversible P de M3(R) dont tous les de la
premiére ligne valent 1 et telle que

-1 0 0
P'MP=|0o 1 -1
0 0 1

On appelle T cette matrice.
3. a) Justifier I'existence de trois matrices A, B et C dans M3(R) telles que :

VneN, M'=A+(-1)"B+nC.

b) Déterminer A, B et C en fonction I3, M et M2.

Solution (Ex.12 — Puissances n-émes et trigonalisation)
Lo yMm=X2-X2-X+1=(X-1?2-(X+1)

6 2 3
mais dimE; =3 —rgM—-1I3)=3—-rg| -8 -2 —4|=1
-12 -4 —6
2. a) M est trigonalisable car xy est scindé.
1 1 1 -4 -1 -2
byP=| -1 0 -2 |[P'=] 3 1 1
-2 -2 -1 2 0 1
(=™ 0 0
3. a) Récurrence ou Newton : 9gn € N, D" = 0 1 —n = A"+
0 0 1

(—1)"B’ + C'n avec A’, B’, C’ adéquates.

Alors M" = PD"P~! = A + (~1)"B + Cn ou A = PA'P~! etc.
b) On peut calculer A, B, C & laide de P~

On peut aussi remarquer :

n=0=A+B= 13,

Lycée Henri POINCARE

n=2= A+B+2C =M

Dou: C= %(M2 —1I3), etc...
Trigonalisation et nilpotence
1. Soit
3 1 2
M= -1 0 -1
-5 -2 -3

a) Etudier la diagonalisabilité de M.
b) Justifier que M est trigonalisable et déterminer une matrice de passage
P telle que

010
0 01
0 0O

déf

P~IMP = = T.

c) Justifier que M est nilpotente d’indice 3.
d) Montrer que, pour toute matrice M de M3(C), si Spe(M) = {0}, alors
M est nilpotente.

00 O
2. a) Etudier la diagonalisabilité de A= |0 0 —1
01 0

dans M3(R), puis dans M3(C).
b) La propriété démontrée en 1.d) demeure-t-elle en remplagant C par R ?

Solution (Ex.13 — Trigonalisation et nilpotence)

1. xym = X3, Sp(M) = {0} mais dimEg = dimKerM = 1 : non diagonali-
sable.

6/10 o
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1 1 0 1. Montrer que M est diagonalisable, en précisant une matrice P inversible
) et une matrice D diagonale telles que
P = 1 0 1 convient.
1 -2 0 D =P 'MP

T2 #0, T? = 0 donc M? # 0 mais M? = 0 : M nilpotente d’indice 3.
Pour 1.d), dans C, M est trigonalisable et il existe P telle que

T=P 'MP = | o | 000

car Sp(T) = Sp(M) = {0}.
Alors T2 = 0, donc M? = 0.
2. ya = X(X?+1) = X(X—4)(X+1i) n’est pas scindé sur R mais est scindé a
racines simples sur C, donc A n’est pas diagonalisable dans M3(R) mais
lest dans M3(C).

0 0O

1.d) est fausse dans R. Ona: A* = [0 1 0| donc:Vn € N,A%" =

0 01
0 00
(AYY* =0 1 0] #0... aucune puissance de A n’est nilpotente.
0 01
Commutant
Soit
-1 2 2
M = 2 -1 =2
-2 2 3

Lycée Henri POINCARE

7/10

Pour tout matrice A € M,,(K), on note

c(A) Y (B e M, (K)/AB = BA}

son commutant.

2. a) Montrer que, pour tout A de M3(K), C(A) est un espace vectoriel.

b) Déterminer C(D) en précisant sa dimension et en donnant une base de

ses bases. On pourra commencer par raisonner par blocs.
c¢) En déduire la dimension ainsi qu’'une base de C(M).

3. Que vaut D?? Que peut-on en déduire pour ’endomorphisme de K3
noniquement associé a M.

Solution (Ex.14 — Commutant)
Lo xM=X-X?-X+1=(X-17° (X+1)

1 1 0 -1 0 0
Avec P = 10 1 |, D = 0 1 0 et P71
1 1 -1 0 0 1
1 -1 -1
0 1 1 |, onaP '!MP=D.
1 0 -1

2. a) Laissée au lecteur.

ca-

b) Soit N = “ avec o € K, A € M13(K), B € Ma;1(K) et C €
B C
M (K).
—a A —a —A
ND - s DN =
-B C B C

ol
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A=-A _ _
ND:DN@j{B e A=0,B=0. 2 11 100 1 2 -1
- P=| 1 0o 1 [,D=]l0o2 o [, P'=] 2 -3 1
a 0
Donc C(D) = /C € M2 (K) = -1 —11 00 -1 I =1 1
0 C 2.2a) R2=M = P'R?P =D = A% = D, puis A2 = D —> AD = A% =
Vect(E1,1,Eg2, Ea3,E32,E33) A2A = DA.
c) A € C(M) < AM =1MA <= P7'APD = DP'AP < P 'AP ¢ b) DA = AD = A diagonale car D est diagonale a valeurs propres 2 a 2
C(D) <= A € {PAP™'/A cC(D)} distinctes.

Donc C(M) = VeCt((PEP_l)EG{E1,1,E2,2,E2,3,E3,2,E3,3}>
Et dim(C(M)) = 5.

3. D? = I3 donc M? = PD?P~! = I3 donc I’endomorphisme  associé a M
vérifie ¢? = id, donc est une symétrie (d’axe E1 et de direction E_).

Exercice 15| Racines carrées

Soit
1 -1 -1
M= -2 3 =2
-4 5 =2

1. Montrer que M est diagonalisable, en précisant une matrice P inversible
et une matrice D diagonale telles que

D =P 'MP

2. a) Soit R € M3(K). On pose A = P~IRP.
Montrer que R?2 = M = (A2 =Det AD = DA).

b) Combien I'équation R? = M d’inconnue R a-t-elle de solutions dans
M3(R)? Et dans M3(C)?

Solution (Ex.15 — Racines carrées)

1. xyu=X2-2-X2-X+4+2=X-2)-(X-1)-(X+1)
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8/10

On pose A = diag(a,b,c). A2 =D < (a®> =1,b*> =2,¢* = —1).

e [l n’y a pas de solution dans M3(R).

e Dans C, A% = D admet les 8 solutions A = diag(=+1, +v/2, +i). Donc
R2 = M a exactement 8 solutions dans M3(C) : R = PA'nuvP ot
A? =D.

Exercice 16 | Racines carrées d’endomorphismes diagonalisables

Soit E un K-espace vectoriel de dimension finie n et © un endomorphisme

de E.

On suppose que u posséde n valeurs propres distinctes deux a deux.

1. wu est-il diagonalisable ?
Dans la suite, on note B une base de E formée de vecteurs propres de u

et D la matrice représentant v dans B.

2. On suppose que K = C.

a) Montrer qu’il existe un endomorphisme v de E tel que v? = u. Un tel
endomorphisme est parfois appelé « racine carrée de u ». Rien ne dit
qu’il soit unique.

b) Montrer qu’il existe un polynéme P de C[X] tel que v = P(u).

c) Soit R € M, (C) telle que R? = D. Une telle matrice est appelée «
racine carrée de D ».

Montrer que R et D commutent et en déduire le nombre de racines
carrées de D.
2

d) Combien existe-t-il d’endomorphismes v tels que v* = u?

3. On suppose que K = R.
a) A quelle condition sine qua non u posséde-t-il au moins une racine
carrée ?

ol
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b) On suppose que u posséde au moins une racine carrée. Combien en
posséde-t-il ?
. On note \; pour i € [1; n] les n valeurs propres de u et E; les sous-
espaces propres associés respectivement.
Pour tout 7 de [1; n], on note p; le projecteur de E sur E; parallélement
a P E;.
J#i
a) Justifier que

n
w=>Y_X\pi et Vi#jpiop; =0,
i=1
b) Justifier que la famille (p;)1<i<n est libre.
c) En déduire une condition nécessaire et suffisante sur les scalaires

15 H2, - - - 5 i POUT qUe

n 2
(zmpz) —u
=1

. Soit u 'endomorphisme de K3 canoniquement associé a

0 2 0
M=10 -10
-1 0 1

a) Montrer que u est diagonalisable.

b) On note \; < A2 < A3 les valeurs propres de u et E; le sous-espace
propre associé & ¢ pour 1 <z < 3.

Expliciter une matrice Q inversible telle que Q *MQ = diag(\1, A2, A3)
et calculer Q1.

c) Déterminer les racines carrées du M en distinguant les cas K = C et
K=R.

d) Pour chaque racine carrée v du u, donner un polynéme P de K[X] tel
que v = P(u). On exprimera ces polynomes dans une base de Lagrange
bien choisie que I'on explicitera.

e) Pour tout i de [1; n], déterminer la matrice P; représentant dans la
base canonique C le projecteur p; de E sur E; parallélement a @ E;.

jFi

f) Pour chaque racine carrée v de u, exprimer v a l'aide des projecteurs
pi.
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Solution (Ex.16 — Racines carrées d’endomorphismes diagonalisables)

1. w est diagonalisable car Card(Sp(u)) = dim(E).

Dans la suite, on note B = (ey, ..., e,) une base de E formée de vecteurs
propres de u et D = diag(\1, ..., \,) la matrice représentant u dans B.

2. On suppose que K = C.

a) Soit v 'endomorphisme de E défini par :
pi est un complexe vérifiant pu? = \;.
Alors : Vi € [1; n],v%(ei) = pie; = Mie; = u(e;).

v? et u coincident sur la base B donc sont égaux.

b) Par le théoréme d’interpolation de Lagrange, il existe un polynome de
degré au plus n — 1 tel que : Vi € [1; n],P(\) = pi.

Comme pour tout i de [1; n], u(e;) = Aies, P(u)(e;) = P(N\)e; =
wie; = v(e;).
Donc P(u) = v.

c) RD = R?® = DR, donc les valeurs propres de D étant deux a deux

distinctes, R est diagonale. En notant R = diag(p1, - . ., pin),
R?2=D <= Vie[l; n],u?=\.

Tout complexe non nul ayant exactement 2 racines carrées distinctes,

et 0 n’en ayant qu’une, le nombre de racines carrées de D est 2" si

0 ¢ Sp(D) et 27! i 0 € Sp(D).

d) Comme v? = u <= Mpg(v)? = Mp(u) <= Mpz(v)? = D, le nombre
de racines carrées de u est 2" si 0 € Sp(u) et 2"~ ! si 0 € Sp(u).

Vie[1; n],v(e;) = pie; ou

On suppose que K = R.

a) u posséde une racine carrée si, et seulement si, chaque valeur propre de
u posséde une racine carrée au moins, donc si, et seulement si, toutes
ses valeurs propres sont positives.

b) u posséde au moins une racine carrée, donc ses valeurs propres sont
toutes positives. La réponse est alors identique & 2.d).

4. a) Je propose ci-aprés une solution sans utiliser les matrices mais il se-

rait plus efficace d’utiliser les matrices représentant les endo-
morphismes dans B!!! En effet, on a Mp(u) = diag(A1,...,\,) et
Mp(pi) = E;;, matrice de la base canonique de M, (K) dont tous les
coefficients sont nuls a 'exception du i-éme coefficient de la diagonale
qui vaut 1. Les questions se résument alors a des calculs sur les matrices
diagonales.

ol
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Comme : Vj € [1; n],E; = Vect(e;), par définition des p;, pi(e;) = +i 0 0 0 -2 0
€; sit =173 _ a = +i
ioos =g R=Q|lo0 0 0]|Q'=]0 a o0fave
Op sii#] b=+1
0 0 %1 b —a—-0b b

n n
Alors : Vj € [1; n], z/\ipi(ej) = \je; = u(ej) donc Z)\ipi = u,
i=1 =1

o pi(ej) = O
et:vz%j,])op-(ek):
B pi(Og) = O

sik=j d 0
, donc p; op; = .
Sik#j piopj L(E)

n
b) Supposons que Zaipi = Og(g). En évaluant ces endomorphismes en
i=1
e;, on obtient aje; = Og, avec e; # Og, donc a; = 0. La famille (p;) est
libre.

2
o . . n
; si 4
c) En développant avec p; o p; = {pZ 7 (Z Nz’]%’) =

Opmy sii#j —
n
Z#?Pi,
=1

et comme la famille (p;) est libre,

n 2 n n
(ZHiPi) =u<= Y wpi=Y Apie=Vie[l;n]u =X\
i=1

=1 i=1
5. a) Sp(u) = Sp(M) = {—1,0, 1}, u est diagonalisable car possédant dim(E)
valeurs propres distinctes.

2 10
b) En déterminant les vecteurs propresde M, Q = | —1 0 0 | convient
1 11
0 -1 0
(cen'est pas laseule) et Q" '=1 1 2 0
-1 -1 1

c) ¢ Si K =R, M n’a aucune racine carrée.

e Si K = C, M posséde exactement 4 racines carrées :
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L1 (M) + bL1 (M) =

1
d) La base de Lagrange pour les points —1, 0, 1 est L_; = §(X2 - X),

1
Ly = —X241et L, = §(X2 -I-X).
Les racines carrées de M sont alors
0 —2a 0
((a+b)M? = (a—b)M) = | 0 a 0| avec {

-b —a—-b b
e) Dans la base B, la matrice de p; est E;; car p; est le projecteur sur
Vect(ep) parallelement a Vect(eg, e3). Donc

a= =1
b=41

N | =

0 -2 0
Pi=QE1Q'=|0 1 o0
0 -1 0
De méme
1 20 0 0 O
Po=QE22Q'=10 0 0|etP3=QE;3Q'=[0 0 o0
1 2 0 -1 -1 1

f) v =api1+bps avec a € {—i,i} et b € {—1, 1}, et on retrouve les matrices
racines carrées de M

0 —2a 0
{a =+
0 a 0| avec

Me(v) = b= 41
b —a—b b

ol



