
PC Ch. 6 : Réduction des endomorphismes, diagonalisation des matrices carrées 󰂇󰂅󰂇󰂊–󰂇󰂅󰂇󰂋

Exercice 1 Exemple de réduction d’endomorphismes
Soit E = R3, f un endomorphisme de E et A la matrice de f dans la
base canonique de E. Dans chacun des cas suivants, déterminer si f est
diagonalisable, en précisant une base de chacun de ses sous-espaces propres.

1. A =

󰀳

󰁅󰁅󰁅󰁃

3 −4 6

−1 3 −3

−1 4 −4

󰀴

󰁆󰁆󰁆󰁄
; 2. A =

󰀳

󰁅󰁅󰁅󰁃

3 0 2

−1 1 −1

−1 0 0

󰀴

󰁆󰁆󰁆󰁄
;

3. A =

󰀳

󰁅󰁅󰁅󰁃

3 −1 3

−1 2 −2

−1 1 −1

󰀴

󰁆󰁆󰁆󰁄
; 4. A =

󰀳

󰁅󰁅󰁅󰁃

1 −1 0

1 −2 1

1 −4 2

󰀴

󰁆󰁆󰁆󰁄
.

Solution (Ex.1 – Exemple de réduction d’endomorphismes)

1. χA = X3 − 2X2 − X + 2 = (X − 2)(X − 1)(X + 1), Sp(f) = {−1, 1, 2},
E−1 = Vect((−2, 1, 2)), E1 = Vect((−1, 1, 1)), E2 = Vect((−2, 1, 1)), f
diagonalisable.

2. χA = X3 − 4X2 + 5X − 2 = (X − 1)2(X − 2), Sp(f) = {1, 2}, E1 =
Vect((1, 0,−1), (0, 1, 0)), E2 = Vect((−2, 1, 1)), f diagonalisable.

3. χA = X3 − 4X2 + 5X − 2 = (X − 1)2(X − 2), Sp(f) = {1, 2}, E1 =
Vect((−1, 1, 1)), E2 = Vect((−2, 1, 1)), f non-diagonalisable.
Remarque : même polynôme caractéristique pour 2. & 3.

4. χA = X3−X2+X−1 = (X−1)(X2+1), Sp(f) = {1}, E1 = Vect((−1, 0, 1)),
f non-diagonalisable.

Exercice 2 Commutant d’une matrice diagonale

1. Soit D = diag(λ1, . . . ,λn) une matrice diagonale à coefficients diagonaux
deux à deux distincts.
Montrer que A ∈ Mn(K) commute avec D si, et seulement si, A est
diagonale.

2. Soit λ et µ deux scalaires distincts et p et q deux entiers naturels non
nuls.

Déterminer les matrices commutant avec D =

󰀳

󰁃 λIp 0

0 µIq

󰀴

󰁄 ∈

Mp+q(K).

Solution (Ex.2 – Commutant d’une matrice diagonale)
1. Dans ce qui suit, (i, j) décrit 󰌻 1 ; n󰌼2.

Soit A = (ai,j) ∈ Mn(K).
Notons que D = (di,j) = (λiδi,j) où δ est le symbole de Kronecker.
Par la définition du produit matriciel :

AD = DA ⇐⇒ ∀(i, j),
n󰁛

k=1

ai,kλkδk, j =

n󰁛

k=1

λiδi,kak,j ⇐⇒ ∀(i, j), ai,jλj =

λiai,j ⇐⇒ ∀(i, j), (λi − λj)ai,j = 0 ⇐⇒ ∀(i, j), (i ∕= j ⇒ ai,j = 0) ⇐⇒
A diagonale

2. Raisonnons par blocs. Soit M =

󰀳

󰁃 A B

C D

󰀴

󰁄 ∈ Mp+q(K) avec A ∈

Mp(K) et B ∈ Mq(K).

MD = DM ⇐⇒

󰀳

󰁃 λA µB

λC µD

󰀴

󰁄 =

󰀳

󰁃 λA λB

µC µD

󰀴

󰁄 ⇐⇒

󰀫
(µ− λ)B = 0p,q

(λ− µ)C = 0q,p
⇐⇒

󰀫
B = 0p,q

C = 0q,p
⇐⇒ M =

󰀳

󰁃 A 0

0 D

󰀴

󰁄 (dia-

gonale par blocs).

Exercice 3 Dans un espace de polynômes
E = R2[X] désigne l’espace vectoriel des polynômes à coefficients réels, de
degré au plus 2.
Soit f l’application qui, à tout polynôme P de R2[X], associe le polynôme
défini par :

Q(X) = P(X + 1) + XP′(X)

1. Montrer que f est un endomorphisme de R2[X].
2. Donner la matrice M de f dans la base canonique de R2[X].
3. f est-il un automorphisme de R2[X] ?
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4. a) Quelles sont les valeurs propres de f ? f est-il diagonalisable ?
b) Déterminer une base C de E formée de vecteurs propres de f .
c) Quelles sont les coordonnées du polynôme Q(X) = X2 +X+ 1 dans la

base C.

5. Déterminer le polynôme P de R2[X] tel que :
P(X + 1) + XP′(X) = X2 +X+ 1.

Solution (Ex.3 – Dans un espace de polynômes)

1. Pas de problème pour la linéarité.

2. M = matB(f) =

󰀳

󰁅󰁅󰁅󰁃

1 1 1

0 2 2

0 0 3

󰀴

󰁆󰁆󰁆󰁄
où B = (1,X,X2).

3. rg(f) = rg(M) = 3 = dim(R2[X]).

4. a) Sp(f) = Sp(M) = {1; 2; 3} puisque M est triangulaire. f ∈ L(E) et
card(Sp(f)) = 3 = dim(E) donc f est diagonalisable.

b) La résolution de f(P) = λP donne : E1 = Vect(1), E2 = Vect(X+1) et
E3 = Vect(2X2 + 4X + 3). C = (1,X+ 1, 2X2 + 4X + 3) convient.

c) En raisonnant sur les coefficients par degrés décroissants :

X2 + X + 1 =
1

2
(2X2 + 4X + 3)− (X + 1) +

1

2
× 1, les coordonnées de

X2 +X+ 1 dans C sont (1/2,−1, 1/2).

Exercice 4 Sous espace propre de dimension n-1

1. Donner une condition nécessaire et suffisante pour qu’une matrice A de
Mn(K) de rang 1 soit diagonalisable.

2. Donner une condition nécessaire et suffisante pour qu’une matrice A de
Mn(K) admettant une valeur propre λ telle que dimEλ = n − 1 soit
diagonalisable.

Solution (Ex.4 – Sous espace propre de dimension n-1 )

1. 0 ∈ Sp(A) avec ω(0) ≥ dimKer(A) = n − 1, donc χA = Xn−1(X − λ) =
Xn − λXn−1, donc λ = Tr (A).

Premier cas : Tr (A) = 0, χA = Xn et dimE0 < ω(0), A n’est pas diago-
nalisable.
Second cas : Tr (A) ∕= 0, χA = Xn−1(X − Tr (A)) et dimE0 = ω(0),
1 ≤ dimETr(A) ≤ ω(1), donc dimETr(A) = 1, et A est diagonalisable.

2. χA = (X− λ)n−1(X− µ) avec éventuellement µ = λ.
χA = (Xn−1−(n−1)λXn−1+ . . . )(X−µ) = Xn−

󰀃
(n−1)λ+µ

󰀄
Xn−1+ . . .

Premier cas : Tr (A) = nλ, donc µ = λ, Sp(A) = {λ} avec dimEλ < ω(λ),
A n’est pas diagonalisable.
Second cas : Tr (A) ∕= nλ, donc µ ≤ λ, Sp(A) = {λ, µ} avec dimEλ = n−1
et dimEµ = 1, A est diagonalisable.
Notons que 1. n’est qu’un cas particulier de ce cas.
Variante efficace – Quitte à plonger dans C si K = R, A est semblable
à

T =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

λ × . . . . . . ×

0 λ
. . .

...
...

. . . . . .
...

...
. . . λ ×

0 . . . . . . 0 µ

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

avec µ = Tr (A)− (n− 1)λ ∈ K.

Premier cas : µ = λ (i.e. Tr (A) = nλ), Sp(A) = {λ} et dimEλ < n donc
A n’est pas diagonalisable.
Second cas : µ ∕= λ (i.e. Tr (A) ∕= nλ), Sp(A) = {λ,Tr (A)− (n− 1)λ} et
dimEλ + dimETr(A)−(n−1)λ = n donc A est diagonalisable.

Exercice 5 Matrice à deux paramètres
Soit n ≥ 2, a, b ∈ R∗ tels que |a| ∕= |b|.

Soit A =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

a b a . . . b

b a b . . . a

a b a . . . b
...

...
...

. . .
...

b a b . . . a

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

∈ M2n(R)
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1. A est-elle diagonalisable ?

2. Déterminer une matrice diagonale semblable à A.

Solution (Ex.5 – Matrice à deux paramètres)

1. A est symétrique réelle donc diagonalisable.

2. rg(A) = 2 donc 0 ∈ Sp(A) et dimE0 = 2n−2 = ω(0) (car diagonalisable).
On note λ et µ les deux autres valeurs propres de A (et il n’est pas exclu
que λ = µ).
Comme A est diagonalisable, semblable à diag(λ, µ, 0, . . . , 0), λ + µ =
Tr (A) = 2na, donc µ = 2na− λ.
Quelques idées pour trouver λ et µ :
• la somme des coefficients de chaque est constante, égale à n(a+ b) donc

A

󰀳

󰁅󰁅󰁅󰁃

1
...

1

󰀴

󰁆󰁆󰁆󰁄
= n(a+ b)

󰀳

󰁅󰁅󰁅󰁃

1
...

1

󰀴

󰁆󰁆󰁆󰁄
, donc λ = n(a+ b) est une valeur propre. Alors

µ = n(a− b).
• En sommant les 2n lignes sur la première ligne, on obtient une factori-
sation :

χA(X) = det (XI2n −A) = (X − n(a + b))

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

1 1 . . . 1

× × ×
...

...
...

× × ×

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

donc λ =

n(a + b) est une racine de χA donc une valeur propre. µ = n(a − b) est
l’autre.
• Tr

󰀃
A2

󰀄
= 2n2(a2 + b2), et comme A2 est semblable à

diag(λ2, µ2, 0, . . . , 0), λ2 + µ2 = n2(a2 + b2).

On en tire : λµ =
1

2

󰀃
(λ+ µ)2 − λ2 − µ2

󰀄
= n2(a2 − b2).

Donc λ et µ sont les racines du trinôme X2 − 2naX+ n2(a2 − b2).
∆ = 4n2b2 = (2nb)2 > 0, λ = n(a+ b) et µ = n(a− b).
Bref, A est semblable à diag

󰀃
n(a+ b), n(a− b), 0, . . . , 0

󰀄
.

Exercice 6 Sommes constantes en ligne ou en colonne
1. Soit A = (ai,j)1≤i,j≤n une matrice. On suppose que : ∀i ∈

󰌻 1 ; n󰌼 ,
n󰁛

j=1

ai,j = s.

Montrer que s ∈ Sp(A).

2. En est-il de même si : ∀j ∈ 󰌻 1 ; n󰌼 ,
n󰁛

i=1

ai,j = s ?

3. Étudier si

A =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄

est diagonalisable. Si oui, proposer une matrice diagonale semblable à A.

Solution (Ex.6 – Sommes constantes en ligne ou en colonne)

1. Avec U =

󰀳

󰁅󰁅󰁅󰁃

1
...

1

󰀴

󰁆󰁆󰁆󰁄
, on a AU = sU donc s ∈ Sp(A) et U ∈ Es.

Variante : χA(X) = det (XIn −A) : on effectue C1 ← C1+C2+ · · ·+Cn

et on factorise la première colonne par X−s, alors χA(X) = (X−s)det (?),
et s est racine de χA.

2. Cette fois, tA vérifie la propriété de 1., donc s ∈ Sp( tA). Or Sp(A) =
Sp( tA) donc s ∈ Sp(A). Donc dim(E0) + dim(E10) = 4 et A ∈ M4(R) :
A est diagonalisable.

3. rg(A) = 1 donc 0 ∈ Sp(A) avec dimE0 = 3. Par 2., 10 ∈ Sp(A). Comme
dimE10 ≥ 1 et dimE0 + dimE10 ≤ 4, dimE10 = 1.

Exercice 7 Calculs explicites en dimension 3
Pour les trois matrices suivantes, déterminer le polynôme caractéristique,
les valeurs propres et les sous-espaces propres, en précisant si elles sont
diagonalisables dans R, voire dans C :
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M =

󰀳

󰁅󰁅󰁅󰁃

4 −4 1

4 −3 0

3 0 −2

󰀴

󰁆󰁆󰁆󰁄
, N =

󰀳

󰁅󰁅󰁅󰁃

−1 3 −1

−3 5 −1

−3 3 1

󰀴

󰁆󰁆󰁆󰁄
et L =

󰀳

󰁅󰁅󰁅󰁃

−2 1 0

1 −4 2

6 −12 5

󰀴

󰁆󰁆󰁆󰁄

Solution (Ex.7 – Calculs explicites en dimension 3 )

• χM = (X − 1) (X + 1)2, Sp(M) = {−1, 1}, E−1(M) = Vect

󰀳

󰁅󰁅󰁅󰁃

󰀳

󰁅󰁅󰁅󰁃

1

2

3

󰀴

󰁆󰁆󰁆󰁄

󰀴

󰁆󰁆󰁆󰁄
,

E1(M) = Vect

󰀳

󰁅󰁅󰁅󰁃

󰀳

󰁅󰁅󰁅󰁃

1

1

1

󰀴

󰁆󰁆󰁆󰁄

󰀴

󰁆󰁆󰁆󰁄
, non diagonalisable, ni dans R, ni dans C.

• χN = (X− 2)2 · (X − 1), Sp(M) = {1, 2}, E1(N) = Vect

󰀳

󰁅󰁅󰁅󰁃

󰀳

󰁅󰁅󰁅󰁃

1

1

1

󰀴

󰁆󰁆󰁆󰁄

󰀴

󰁆󰁆󰁆󰁄
,

E2(M) = Vect

󰀳

󰁅󰁅󰁅󰁃

󰀳

󰁅󰁅󰁅󰁃

1

1

0

󰀴

󰁆󰁆󰁆󰁄
,

󰀳

󰁅󰁅󰁅󰁃

1

0

−3

󰀴

󰁆󰁆󰁆󰁄

󰀴

󰁆󰁆󰁆󰁄
, diagonalisable dans R et dans C.

• χL = (X+1)(X2 +1) = (X+ 1)(X− i)(X+ i), SpR(L) = {−1}, SpC(L) =

{−1, i,−i}, E−1(L) = Vect

󰀳

󰁅󰁅󰁅󰁃

󰀳

󰁅󰁅󰁅󰁃

1

1

1

󰀴

󰁆󰁆󰁆󰁄

󰀴

󰁆󰁆󰁆󰁄
, Ei(L) = Vect

󰀳

󰁅󰁅󰁅󰁃

󰀳

󰁅󰁅󰁅󰁃

1− i

3− i

6

󰀴

󰁆󰁆󰁆󰁄

󰀴

󰁆󰁆󰁆󰁄
,

E−i(L) = Vect

󰀳

󰁅󰁅󰁅󰁃

󰀳

󰁅󰁅󰁅󰁃

1 + i

3 + i

6

󰀴

󰁆󰁆󰁆󰁄

󰀴

󰁆󰁆󰁆󰁄
, non diagonalisable sur R, mais diagonali-

sable sur C.

Exercice 8 Matrice à un paramètre

Soit α ∈ K, n ≥ 3 et A =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

α . . . α

1 . . . 1
... (1)

...

1 . . . 1

α . . . α

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

∈ Mn(K)

i.e. ai,j =

󰀫
α si i ∈ {1;n},
1 si i ∈ 󰌻 2 ; n− 2󰌼 .

Étudier, suivant la valeur de α, si A est diagonalisable, et préciser dans tous
les cas ses éléments propres.

Solution (Ex.8 – Matrice à un paramètre)
rg(A) = n− 1 donc 0 ∈ Sp(A) et dimE0 = n− 1.
De plus, E0 = Vect(E1−E2, . . . ,E1−En) où (Ei)1≤i≤n est la base canonique
de Mn,1(K).
Du coup ω(0) ≥ n − 1 et χA = Xn−1(X − λ) = Xn − λXn−1. Mais comme
χA = Xn − Tr (A)Xn−1 + . . . , nécessairement λ = Tr (A) = 2α+ n− 2.

• Premier cas : α = 1− 2

n
.

Alors λ = 0, χA = Xn et dimE0 < ω(0) : A n’est pas diagonalisable
• Second cas : α ∕= 1−n

2
, alors Sp(A) = {0, 2α+n−2} avec dimE2α+n−2 = 1.

A est diagonalisable avec χA = Xn−1(X− (2α+ n− 2)).

Enfin : A

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

α

1
...

1

α

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

= (2α+n− 2)

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

α

1
...

1

α

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

donc E2α+n−2 = Vect

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

α

1
...

1

α

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

Exercice 9 Transposition et symétrie
Soit n 󰃍 2, E = Mn(R) et f ∈ L(E) défini par f(M) = MT −M.
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1. Calculer f2 et en déduire que f est diagonalisable.
2. Déterminer les éléments propres de f .
3. Déterminer le polynôme caractéristique de f .

Solution (Ex.9 – Transposition et symétrie)

1. f2(M) = (MT −M)
T−(MT−M) = 2M−2MT = −2f(M) donc f2 = −2f .

2. X2+2X = X(X+2) est un polynôme annulateur scindé à racines simples
de f donc f est diagonalisable.

3. Sp(f) ⊂ {−2, 0},
f(M) = 0 ⇐⇒ MT = M ⇐⇒ M ∈ Sn(R), donc 0 ∈ Sp(f) et E0 = Sn(R),
f(M) = −2M ⇐⇒ MT = −M ⇐⇒ M ∈ An(R), donc −2 ∈ Sp(f) et
E−2 = An(R).

4. Comme f est diagonalisable,

ω(0) = dimSn(R) =
n(n+ 1)

2
,

ω(−2) = dimAn(R) =
n(n− 1)

2
,

χf = Xn(n+1)/2(X + 2)n(n−1)/2.

Exercice 10 Polynôme annulateur
Soit A ∈ M5(R) telle que A2 − 4A + 3I5 = 05 et Tr (A) = 9.
Déterminer χA.

Solution (Ex.10 – Polynôme annulateur)
X2 − 4X+ 3 = (X− 1)(X− 3) est un polynôme annulateur scindé à racines
simples A donc A est diagonalisable, avec Sp(A) ⊂ {1, 3}.
On a alors Tr (A) =

󰁛

λ∈Sp(f)

λ× ω(λ) = 9, la seule possibilité étant ω(3) = 2

et ω(1) = 3 puisque ω(1) + ω(3) = 5.
Donc χA = (X− 1)3(X− 3)2.

Exercice 11 Un endomorphisme de Mn(R)
Soit n un entier au moins égal à 2. Soit E = Mn(R).
Soit ϕ : E −→ E,M 󰀁−→ M− Tr (M) In.

1. Vérifier que ϕ est un endomorphisme de E.

2. Soit P = X2 + (n− 2)X + 1− n. Calculer P(ϕ).
3. Justifier que ϕ est diagonalisable et donner une matrice diagonale repré-

sentant ϕ dans une base idoine.
4. En déduire Tr (ϕ) et det (ϕ).

Solution (Ex.11 – Un endomorphisme de Mn(R))
1. Aucun souci grâce à la linéarité de la trace.
2. Pour tout M de Mn(R),

ϕ2(M) = ϕ(M) − Tr (M)ϕ(In) = M − Tr (M) In − Tr (M) (1 − n)In =
M+ (n− 2)Tr (M) In.
P(ϕ)(M) = M+(n−2)Tr (M) In+(n−2)M− (n−2)Tr (M) In+(1−n)M,
i.e. P(ϕ)(M) = 0n.
Donc P(ϕ) = 0L(Mn(R)).

3. P = (X−(1−n))(X−1) est un polynôme annulateur de ϕ scindé à racines
simples donc ϕ est diagonalisable avec Sp(ϕ) ⊂ {1− n, 1}.
ϕ(M) = M ⇐⇒ Tr (M) = 0 ⇐⇒ M ∈ ker(Tr) donc 1 ∈ Sp(M) et
dim(E1) = dim(ker(Tr)) = n2 − 1 par la fomule du rang appliquée à
Tr : Mn(R) → R.
Comme ϕ est diagonalisable et dim(Mn(R)) = n2, cela suffit pour affirmer
que 1− n ∈ Sp(ϕ) et dim(E1−n) = 1.
Dans une base B adaptée à la supplémentarité E1 ⊕ E1−n = Mn(R),

MB(ϕ) = diag( 1, . . . , 1󰁿 󰁾󰁽 󰂀
n2−1 fois

, 1− n).

4. Tr (ϕ) = n2 − 1 + 1− n = n2 − n et det (ϕ) = 1− n.

Exercice 12 Puissances n-èmes et trigonalisation
Soit

M =

󰀳

󰁅󰁅󰁅󰁃

7 2 3

−8 −1 −4

−12 −4 −5

󰀴

󰁆󰁆󰁆󰁄
.

1. Déterminer χM et étudier si M est diagonalisable.
2. a) M est-elle trigonalisable ?

Lycée Henri Poincaré 5/10 ●❏



PC Ch. 6 : Réduction des endomorphismes, diagonalisation des matrices carrées 󰂇󰂅󰂇󰂊–󰂇󰂅󰂇󰂋

b) Déterminer une matrice inversible P de M3(R) dont tous les de la
première ligne valent 1 et telle que

P−1MP =

󰀳

󰁅󰁅󰁅󰁃

−1 0 0

0 1 −1

0 0 1

󰀴

󰁆󰁆󰁆󰁄
.

On appelle T cette matrice.
3. a) Justifier l’existence de trois matrices A, B et C dans M3(R) telles que :

∀n ∈ N, Mn = A+ (−1)nB+ nC.

b) Déterminer A, B et C en fonction I3, M et M2.

Solution (Ex.12 – Puissances n-èmes et trigonalisation)
1. χM = X3 −X2 −X+ 1 = (X− 1)2 · (X + 1)

mais dimE1 = 3− rg(M− I3) = 3− rg

󰀳

󰁅󰁅󰁅󰁃

6 2 3

−8 −2 −4

−12 −4 −6

󰀴

󰁆󰁆󰁆󰁄
= 1

2. a) M est trigonalisable car χM est scindé.

b) P =

󰀳

󰁅󰁅󰁅󰁃

1 1 1

−1 0 −2

−2 −2 −1

󰀴

󰁆󰁆󰁆󰁄
,P−1 =

󰀳

󰁅󰁅󰁅󰁃

−4 −1 −2

3 1 1

2 0 1

󰀴

󰁆󰁆󰁆󰁄

3. a) Récurrence ou Newton : qqn ∈ N,Dn =

󰀳

󰁅󰁅󰁅󰁃

(−1)n 0 0

0 1 −n

0 0 1

󰀴

󰁆󰁆󰁆󰁄
= A′ +

(−1)nB′ +C′n avec A′,B′,C′ adéquates.
Alors Mn = PDnP−1 = A+ (−1)nB+ Cn où A = PA′P−1 etc.

b) On peut calculer A,B,C à l’aide de P−1.
On peut aussi remarquer :
n = 0 =⇒ A+ B = I3,

n = 1 =⇒ A− B+ C = M,
n = 2 =⇒ A+ B+ 2C = M2.

D’où : C =
1

2
(M2 − I3), etc...

Exercice 13 Trigonalisation et nilpotence

1. Soit

M =

󰀳

󰁅󰁅󰁅󰁃

3 1 2

−1 0 −1

−5 −2 −3

󰀴

󰁆󰁆󰁆󰁄
.

a) Étudier la diagonalisabilité de M.
b) Justifier que M est trigonalisable et déterminer une matrice de passage

P telle que

P−1MP =

󰀳

󰁅󰁅󰁅󰁃

0 1 0

0 0 1

0 0 0

󰀴

󰁆󰁆󰁆󰁄
déf.
= T.

c) Justifier que M est nilpotente d’indice 3.
d) Montrer que, pour toute matrice M de M3(C), si SpC(M) = {0}, alors

M est nilpotente.

2. a) Étudier la diagonalisabilité de A =

󰀳

󰁅󰁅󰁅󰁃

0 0 0

0 0 −1

0 1 0

󰀴

󰁆󰁆󰁆󰁄

dans M3(R), puis dans M3(C).
b) La propriété démontrée en 1.d) demeure-t-elle en remplaçant C par R ?

Solution (Ex.13 – Trigonalisation et nilpotence)

1. χM = X3, Sp(M) = {0} mais dimE0 = dimKerM = 1 : non diagonali-
sable.

Lycée Henri Poincaré 6/10 ●❏



PC Ch. 6 : Réduction des endomorphismes, diagonalisation des matrices carrées 󰂇󰂅󰂇󰂊–󰂇󰂅󰂇󰂋

P =

󰀳

󰁅󰁅󰁅󰁃

−1 1 0

1 0 1

1 −2 0

󰀴

󰁆󰁆󰁆󰁄
convient.

T2 ∕= 0, T3 = 0 donc M2 ∕= 0 mais M3 = 0 : M nilpotente d’indice 3.
Pour 1.d), dans C, M est trigonalisable et il existe P telle que

T = P−1MP =

󰀳

󰁅󰁅󰁅󰁃

0 ×

× 0

0 ×

󰀴

󰁆󰁆󰁆󰁄
000

car Sp(T) = Sp(M) = {0}.
Alors T3 = 0, donc M3 = 0.

2. χA = X(X2+1) = X(X− i)(X+ i) n’est pas scindé sur R mais est scindé à
racines simples sur C, donc A n’est pas diagonalisable dans M3(R) mais
l’est dans M3(C).

1.d) est fausse dans R. On a : A4 =

󰀳

󰁅󰁅󰁅󰁃

0 0 0

0 1 0

0 0 1

󰀴

󰁆󰁆󰁆󰁄
donc : ∀n ∈ N,A4n =

(A4)n =

󰀳

󰁅󰁅󰁅󰁃

0 0 0

0 1 0

0 0 1

󰀴

󰁆󰁆󰁆󰁄
∕= 0... aucune puissance de A n’est nilpotente.

Exercice 14 Commutant
Soit

M =

󰀳

󰁅󰁅󰁅󰁃

−1 2 2

2 −1 −2

−2 2 3

󰀴

󰁆󰁆󰁆󰁄

1. Montrer que M est diagonalisable, en précisant une matrice P inversible
et une matrice D diagonale telles que

D = P−1MP

Pour tout matrice A ∈ Mn(K), on note

C(A)
déf.
= {B ∈ Mn(K)/AB = BA}

son commutant.
2. a) Montrer que, pour tout A de M3(K), C(A) est un espace vectoriel.

b) Déterminer C(D) en précisant sa dimension et en donnant une base de
ses bases. On pourra commencer par raisonner par blocs.

c) En déduire la dimension ainsi qu’une base de C(M).
3. Que vaut D2 ? Que peut-on en déduire pour l’endomorphisme de K3 ca-

noniquement associé à M.

Solution (Ex.14 – Commutant)

1. χM = X3 −X2 −X+ 1 = (X− 1)2 · (X + 1)

Avec P =

󰀳

󰁅󰁅󰁅󰁃

1 1 0

−1 0 1

1 1 −1

󰀴

󰁆󰁆󰁆󰁄
, D =

󰀳

󰁅󰁅󰁅󰁃

−1 0 0

0 1 0

0 0 1

󰀴

󰁆󰁆󰁆󰁄
et P−1 =

󰀳

󰁅󰁅󰁅󰁃

1 −1 −1

0 1 1

1 0 −1

󰀴

󰁆󰁆󰁆󰁄
, on a P−1MP = D.

2. a) Laissée au lecteur.

b) Soit N =

󰀳

󰁃α A

B C

󰀴

󰁄 avec α ∈ K, A ∈ M1,2(K), B ∈ M2,1(K) et C ∈

M2(K).

ND =

󰀳

󰁃−α A

−B C

󰀴

󰁄, DN =

󰀳

󰁃−α −A

B C

󰀴

󰁄
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ND = DN ⇐⇒
󰀫
A = −A

B = −B
⇐⇒ A = 0,B = 0.

Donc C(D) =

󰀻
󰀿

󰀽

󰀳

󰁃α 0

0 C

󰀴

󰁄 /C ∈ M2(K)

󰀼
󰁀

󰀾 =

Vect(E1,1,E2,2,E2,3,E3,2,E3,3)

c) A ∈ C(M) ⇐⇒ AM = MA ⇐⇒ P−1APD = DP−1AP ⇐⇒ P−1AP ∈
C(D) ⇐⇒ A ∈

󰀋
P∆P−1/∆ ∈ C(D)

󰀌

Donc C(M) = Vect
󰀃
(PEP−1)E∈{E1,1,E2,2,E2,3,E3,2,E3,3}

󰀄

Et dim(C(M)) = 5.

3. D2 = I3 donc M2 = PD2P−1 = I3 donc l’endomorphisme ϕ associé à M
vérifie ϕ2 = id, donc est une symétrie (d’axe E1 et de direction E−1).

Exercice 15 Racines carrées
Soit

M =

󰀳

󰁅󰁅󰁅󰁃

1 −1 −1

−2 3 −2

−4 5 −2

󰀴

󰁆󰁆󰁆󰁄
.

1. Montrer que M est diagonalisable, en précisant une matrice P inversible
et une matrice D diagonale telles que

D = P−1MP

2. a) Soit R ∈ M3(K). On pose ∆ = P−1RP.
Montrer que R2 = M =⇒

󰀃
∆2 = D et ∆D = D∆

󰀄
.

b) Combien l’équation R2 = M d’inconnue R a-t-elle de solutions dans
M3(R) ? Et dans M3(C) ?

Solution (Ex.15 – Racines carrées)

1. χM = X3 − 2 ·X2 −X+ 2 = (X− 2) · (X− 1) · (X + 1).

P =

󰀳

󰁅󰁅󰁅󰁃

2 1 1

1 0 1

−1 −1 1

󰀴

󰁆󰁆󰁆󰁄
, D =

󰀳

󰁅󰁅󰁅󰁃

1 0 0

0 2 0

0 0 −1

󰀴

󰁆󰁆󰁆󰁄
, P−1 =

󰀳

󰁅󰁅󰁅󰁃

−1 2 −1

2 −3 1

1 −1 1

󰀴

󰁆󰁆󰁆󰁄

2. a) R2 = M =⇒ P−1R2P = D =⇒ ∆2 = D, puis ∆2 = D =⇒ ∆D = ∆3 =
∆2∆ = D∆.

b) D∆ = ∆D =⇒ ∆ diagonale car D est diagonale à valeurs propres 2 à 2
distinctes.
On pose ∆ = diag(a, b, c). ∆2 = D ⇐⇒ (a2 = 1, b2 = 2, c2 = −1).
• Il n’y a pas de solution dans M3(R).
• Dans C, ∆2 = D admet les 8 solutions ∆ = diag(±1,±

√
2,±i). Donc

R2 = M a exactement 8 solutions dans M3(C) : R = P∆invP où
∆2 = D.

Exercice 16 Racines carrées d’endomorphismes diagonalisables
Soit E un K-espace vectoriel de dimension finie n et u un endomorphisme
de E.
On suppose que u possède n valeurs propres distinctes deux à deux.

1. u est-il diagonalisable ?
Dans la suite, on note B une base de E formée de vecteurs propres de u
et D la matrice représentant u dans B.

2. On suppose que K = C.
a) Montrer qu’il existe un endomorphisme v de E tel que v2 = u. Un tel

endomorphisme est parfois appelé « racine carrée de u ». Rien ne dit
qu’il soit unique.

b) Montrer qu’il existe un polynôme P de C[X] tel que v = P(u).
c) Soit R ∈ Mn(C) telle que R2 = D. Une telle matrice est appelée «

racine carrée de D ».
Montrer que R et D commutent et en déduire le nombre de racines
carrées de D.

d) Combien existe-t-il d’endomorphismes v tels que v2 = u ?

3. On suppose que K = R.
a) À quelle condition sine qua non u possède-t-il au moins une racine

carrée ?
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b) On suppose que u possède au moins une racine carrée. Combien en
possède-t-il ?

4. On note λi pour i ∈ 󰌻 1 ; n󰌼 les n valeurs propres de u et Ei les sous-
espaces propres associés respectivement.
Pour tout i de 󰌻 1 ; n󰌼, on note pi le projecteur de E sur Ei parallèlement
à
󰁏
j ∕=i

Ej .

a) Justifier que

u =

n󰁛

i=1

λipi et ∀i ∕= j, pi ◦ pj = 0L(E)

b) Justifier que la famille (pi)1󰃑i󰃑n est libre.
c) En déduire une condition nécessaire et suffisante sur les scalaires

µ1, µ2, . . . , µn pour que 󰀣
n󰁛

i=1

µipi

󰀤2

= u.

5. Soit u l’endomorphisme de K3 canoniquement associé à

M =

󰀳

󰁅󰁅󰁅󰁃

0 2 0

0 −1 0

−1 0 1

󰀴

󰁆󰁆󰁆󰁄
.

a) Montrer que u est diagonalisable.
b) On note λ1 < λ2 < λ3 les valeurs propres de u et Ei le sous-espace

propre associé à i pour 1 󰃑 i 󰃑 3.
Expliciter une matrice Q inversible telle que Q−1MQ = diag(λ1,λ2,λ3)
et calculer Q−1.

c) Déterminer les racines carrées du M en distinguant les cas K = C et
K = R.

d) Pour chaque racine carrée v du u, donner un polynôme P de K[X] tel
que v = P(u). On exprimera ces polynômes dans une base de Lagrange
bien choisie que l’on explicitera.

e) Pour tout i de 󰌻 1 ; n󰌼, déterminer la matrice Pi représentant dans la
base canonique C le projecteur pi de E sur Ei parallèlement à

󰁏
j ∕=i

Ej .

f) Pour chaque racine carrée v de u, exprimer v à l’aide des projecteurs
pi.

Solution (Ex.16 – Racines carrées d’endomorphismes diagonalisables)

1. u est diagonalisable car Card(Sp(u)) = dim(E).
Dans la suite, on note B = (e1, . . . , en) une base de E formée de vecteurs
propres de u et D = diag(λ1, . . . ,λn) la matrice représentant u dans B.

2. On suppose que K = C.
a) Soit v l’endomorphisme de E défini par : ∀i ∈ 󰌻 1 ; n󰌼 , v(ei) = µiei où

µi est un complexe vérifiant µ2
i = λi.

Alors : ∀i ∈ 󰌻 1 ; n󰌼 , v2(ei) = µ2
i ei = λiei = u(ei).

v2 et u coïncident sur la base B donc sont égaux.
b) Par le théorème d’interpolation de Lagrange, il existe un polynôme de

degré au plus n− 1 tel que : ∀i ∈ 󰌻 1 ; n󰌼 ,P(λi) = µi.
Comme pour tout i de 󰌻 1 ; n󰌼, u(ei) = λiei, P(u)(ei) = P(λi)ei =
µiei = v(ei).
Donc P(u) = v.

c) RD = R3 = DR, donc les valeurs propres de D étant deux à deux
distinctes, R est diagonale. En notant R = diag(µ1, . . . , µn),

R2 = D ⇐⇒ ∀i ∈ 󰌻 1 ; n󰌼 , µ2
i = λi.

Tout complexe non nul ayant exactement 2 racines carrées distinctes,
et 0 n’en ayant qu’une, le nombre de racines carrées de D est 2n si
0 ∕∈ Sp(D) et 2n−1 si 0 ∈ Sp(D).

d) Comme v2 = u ⇐⇒ MB(v)
2 = MB(u) ⇐⇒ MB(v)

2 = D, le nombre
de racines carrées de u est 2n si 0 ∕∈ Sp(u) et 2n−1 si 0 ∈ Sp(u).

3. On suppose que K = R.
a) u possède une racine carrée si, et seulement si, chaque valeur propre de

u possède une racine carrée au moins, donc si, et seulement si, toutes
ses valeurs propres sont positives.

b) u possède au moins une racine carrée, donc ses valeurs propres sont
toutes positives. La réponse est alors identique à 2.d).

4. a) Je propose ci-après une solution sans utiliser les matrices mais il se-
rait plus efficace d’utiliser les matrices représentant les endo-
morphismes dans B ! ! ! En effet, on a MB(u) = diag(λ1, . . . ,λn) et
MB(pi) = Ei,i, matrice de la base canonique de Mn(K) dont tous les
coefficients sont nuls à l’exception du i-ème coefficient de la diagonale
qui vaut 1. Les questions se résument alors à des calculs sur les matrices
diagonales.
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Comme : ∀j ∈ 󰌻 1 ; n󰌼 ,Ej = Vect(ej), par définition des pi, pi(ej) =󰀫
ei si i = j

0E si i ∕= j
.

Alors : ∀j ∈ 󰌻 1 ; n󰌼,
n󰁛

i=1

λipi(ej) = λjej = u(ej) donc
n󰁛

i=1

λipi = u,

et : ∀i ∕= j, pi ◦ pj(ek) =
󰀫
pi(ej) = 0E si k = j

pi(0E) = 0E si k ∕= j
, donc pi ◦ pj = 0L(E).

b) Supposons que
n󰁛

i=1

αipi = 0L(E). En évaluant ces endomorphismes en

ej , on obtient αjej = 0E, avec ej ∕= 0E, donc αj = 0. La famille (pi) est
libre.

c) En développant avec pi ◦ pj =

󰀫
pi si i ∕= j

0L(E) si i ∕= j
,

󰀣
n󰁛

i=1

µipi

󰀤2

=

n󰁛

i=1

µ2
i pi,

et comme la famille (pi) est libre,
󰀣

n󰁛

i=1

µipi

󰀤2

= u ⇐⇒
n󰁛

i=1

µ2
i pi =

n󰁛

i=1

λipi ⇐⇒ ∀i ∈ 󰌻 1 ; n󰌼 , µ2
i = λi

5. a) Sp(u) = Sp(M) = {−1, 0, 1}, u est diagonalisable car possédant dim(E)
valeurs propres distinctes.

b) En déterminant les vecteurs propres de M, Q =

󰀳

󰁅󰁅󰁅󰁃

2 1 0

−1 0 0

1 1 1

󰀴

󰁆󰁆󰁆󰁄
convient

(ce n’est pas la seule) et Q−1 =

󰀳

󰁅󰁅󰁅󰁃

0 −1 0

1 2 0

−1 −1 1

󰀴

󰁆󰁆󰁆󰁄

c) • Si K = R, M n’a aucune racine carrée.
• Si K = C, M possède exactement 4 racines carrées :

R = Q

󰀳

󰁅󰁅󰁅󰁃

±i 0 0

0 0 0

0 0 ±1

󰀴

󰁆󰁆󰁆󰁄
Q−1 =

󰀳

󰁅󰁅󰁅󰁃

0 −2a 0

0 a 0

−b −a− b b

󰀴

󰁆󰁆󰁆󰁄
avec

󰀫
a = ±i

b = ±1

d) La base de Lagrange pour les points −1, 0, 1 est L−1 =
1

2
(X2 − X),

L0 = −X2 + 1 et L1 =
1

2
(X2 +X).

Les racines carrées de M sont alors

aL−1(M) + bL1(M) =
1

2

󰀃
(a+ b)M2 − (a− b)M

󰀄
=

󰀳

󰁅󰁅󰁅󰁃

0 −2a 0

0 a 0

−b −a− b b

󰀴

󰁆󰁆󰁆󰁄
avec

󰀫
a = ±i

b = ±1

e) Dans la base B, la matrice de p1 est E1,1 car p1 est le projecteur sur
Vect(e1) parallèlement à Vect(e2, e3). Donc

P1 = QE1,1Q
−1 =

󰀳

󰁅󰁅󰁅󰁃

0 −2 0

0 1 0

0 −1 0

󰀴

󰁆󰁆󰁆󰁄
.

De même

P2 = QE2,2Q
−1 =

󰀳

󰁅󰁅󰁅󰁃

1 2 0

0 0 0

1 2 0

󰀴

󰁆󰁆󰁆󰁄
et P3 = QE3,3Q

−1 =

󰀳

󰁅󰁅󰁅󰁃

0 0 0

0 0 0

−1 −1 1

󰀴

󰁆󰁆󰁆󰁄
.

f) v = ap1+bp3 avec a ∈ {−i, i} et b ∈ {−1, 1}, et on retrouve les matrices
racines carrées de M

MC(v) =

󰀳

󰁅󰁅󰁅󰁃

0 −2a 0

0 a 0

−b −a− b b

󰀴

󰁆󰁆󰁆󰁄
avec

󰀫
a = ±i

b = ±1
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