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Les exercices sont indépendants — Durée : 4 heures

Les calculatrices et téléphones sont interdits.

Solution (Ex.1 - Polyndmes de Hilbert)

1. Aucun souci.

k
k\ .
2.a) (X+1)f= X' =XF 4+ exE L
a) (X+1) ZO(Z)
Onaalors: YkeIN*, A(XK)=kX1+... et deg(AXK) =k-1.
d
Et par linéarité, on écrivant P= Y ;X" avec ay #0:
k=0

A(P) = azdX?! +Q avec deg(Q) < d -2, donc deg(A(P)) =d —1 = deg(P) 1.
b) Et si P est constant, P(X+ 1) = P(X) et deg(A(P)) = deg(0) = —co.
c) Soit P € E,,. Comme A € L(E), A(P) € E. Et comme deg(P) < n, deg(A(P)) <
n—1,donc P €E, et E, est stable par A.

N

3. a) Puisque chaque application de A diminue le dégré d’une unité,
deg((A,)"(X") =n—n=0=—oco donc (A,)"(X") =0 donc (A,)" = 0.
Pour la méme raison, si P € E,, deg((A,)""'(P)) < n—(n+1) < -1 donc
(M) (P) =0, et (M) = Oz,
b) e Si deg(P) > 1, deg(A,(P)) > 0 donc A,(P) # 0. Mais si P est constant,
A,(P)=0. Donc Ker(A,) = Ro[X].
e par le théoréeme du rang, rg(A,) = dim(E,) —dim(Ker(A,))=n+1-1=n.
e Toujours en raison des degrés, si P € E,, alors A,(P) ¢ R,_;[X]. Donc
Im(A,) € R,_1[X], et par égalité des dimensions, Im(A,) = R, [X].
4. a) Pour tout polyndme P, deg(7 (P)) = deg(P).
b) Yk € N,T5(P) = P(X +k).
c) Et sila formule précédente avait encore un sens pour k =—-17
Posons U : P+ P(X —1). Alors clairement
ToUP)=T(P(X-1)=PX)etUoT (P)=UPX+1))=P(X).
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Donc 7 est bijectif et &/ =7 ! : T est un automorphisme de E et 7 !(P) =
P(X—1) pour tout polynéome P.

d) Par conservation du degré lorsqu’on applique 7, E,, est stable par 7.

. Toujours par conservation du degré, Ker(7,) = {0}, donc 7 est injectif. Et

comme E,, est de dimension finie, 'endomorphisme 7,, est un automorphisme.
Donc Im(7) =E, et rg(7,) =n+1.

Co(X)=1,0(X%) = 2X+ 1, 0(X3) = 3X2 43X + 1, 6(X*) =4X3 + 6X? +4X + 1,

1 1 11

0 2 3 4

0 0 3 6

0 0 0 4

. dim(Im(9)) = rg(o) = rg(D) = 4 = dim(E;) donc o est surjectif. Comme

dim(F) = dim(E3), o est un isomorphisme.

. On note 7t I'isomorphisme réciproque de o : 7t = 671,

On pose Hy = 1, et pour i dans [ 1; 3]], H; = 7/ (Hp).

a) Puisque P = o(m(P)), deg(P) = deg(m(P)) — 1 donc deg(m(P)) = deg(P) + 1.

b) deg(Hp) = 0, deg(H;) = deg(n(Hp)) = 0+ 1 =1, deg(H,) = deg(n(H,)) =
1+1 =2 et deg(Hs) = deg(rr(H,)) = 2+ 1 = 3, donc H est une famille de
quatre polynomes échelonnée en degré de E5 = R3[X], donc est une base de
E;.

c) A(Hp) =0, et pour tout i de [1; 3], A(H;) = o(rr(H;_1)) = H;_;.

01 00

0 010

Donc My(A;) = , magnifique matrice nilpotente d’ordre 4

0 0 01

00 00
comme prévu par la question 3.
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9. a) Comme 7t =

sentant o dans les bases idoines.

12
H:D‘lzll—z 0
0
0

b) H; = n(Hy) donc en notant V =

W, celle représent

Wl = HVO =

notations

-1/2

1/2
W2 = HV1 =
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-6 2 0
6 -6 3
0 4 -6
0 0 3

0

0
ant H; dans B,on a:

donc H; = X, et V| = M¢(H

1) =

donc Hy = -X/2+X?/2, et V, = Mo(H,) =

671, la matrice représentant 7 est I'inverse de la matrice repré-

la colonne représentant Hy dans C et

. Avec les mémes

-1/2

1/2

1/3

-1/2

W; =T1V, = donc Hy = X/3 - X?/2 + X3/6.

1/6

0

Variante : On peut chercher H; = aX car de degré 1 dans F tel que Hy (X +
1)-H;(X)=1,i.e.aX+a—aX=1,donca=1et Hy
avec H, = aX + bX? vérifiant Hy(X + 1) —H,(X) = X, etc.

X(X-1) et H, = X3 —3>6<2+2X _ X(X? —63X+2) _X(X- 16)(X—2)‘

10. a) La famille (Hy)o<k<, st une famille échelonnée en degré, de 0 a n, de E,

= X. Et on recommence

C)sz

donc est une base de E,,.

X+D)X(X-1)...(X=-k+2) XX-1)(X-2)...X-k+1
by et = (TN X ks 2) XXX Xk )
X(X=-1)...(X=k+2 X(X=-1)...(X=k+2
XX =1) (X =(k=1)+1)
¢) On a alors immédiatement A%(Hy) = Hy_,, A3(Hy) = Hi_3, jusqu’a AX(Hy) =
Ho.
Comme A(Hy) = A(1) = 0, A¥1(H;) = 0, et finalement
A'(Hy) = Hy_; pour i < k et A/(Hy) = 0 pour i > k.
11. a) e Pour i <k, A’(H)(0) = Hy_;(0) = 0 car 0 est une racine de H; des que j > 0.

e Pour i =k, A/(H)(0
e Pour i >k, A'(H)(0
e Bilan : A/(H)(0) =

Hy(0) = 1.

)=
) 0 puisque A/(Hy) = 0.

b) Par linéarité, pour tout i de [0; n] :

n n
0)=) apAl(Hp)(0) = ) axdip = a
k=0 k=0
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Pour tout polynome P de E et tout m entier naturel, on cherche a calculer

Sp(m)=P(0)+P(1)+

i=0

On se donne donc un polyndéme quelconque P de E.
12. Sp(m) =

13. a) e Considérons A, : E, ;1 — E, ;1. On sait que Im(A,41)

0 si P est le polyndme nul?

=E, donc comme
P e E,, P posséde un antécédent R dans E, | vérifiant A,,;(R) =P, c’est-a-
dire R(X+ 1) = R(X) = P(X).
e Posons Q(X) = R(X)—R(0). On a toujours Q(X+1)-Q(X) = P(X), avec cette
fois-ci Q(0) =
e Supposons que Q; de E,,; vérifient les conditions requises. Alors
ANpy1(Q =Qq) = 0 donc Q - Q; € Ker(A,,;) donc Q - Q; € Ry[X] donc
Q-Qp=cte.Or Q(0)—=Q4(0) =0donc Q =Q;.
Conclusion : il existe un unique polynéome Q de E,,; tel que

Q(X+1)

-Q(X)=P(X) et Q(0)=0.

M:

b) Prenons Q; =

1+1-
=0
Comme (H;,0<i<n+1)estune base deE, .1, Q1 €E,41.

ZaH =P, donc Q; (X+1)-Q;(X) = P(X).

=

De plus A(Q1) = ) a;A(Hjp)

i=0
n
Enfin Q;(0) = ZHiH (0) = 0 car 0 est racine de tous les H; tels que i < 1.
i=0

Par unicité, Q est le polynome Q cherché.

c) Par télescopage :
m m
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A(P) = 3X? + 3X + 1 (calculé en 6.) et A(P)(0) =1,
=3(2X+1)+3x1=6X+6et A*(P)(0) =6,

A*(P)
A3(P) = 6 et A3(P)(0) = 6.

b) Alors P =H; + 6H, + 6H3, et Q = H, + 6H3 + 6Hy. Ainsi :
Q- X(X-1) +X(X_1)(X_2)+X(X—l)(X4—2)(X—3)
Q= X(X4_1) [2+4(X-2)+(X-2)(X=3)] = X(X4_1) [XZ—X]
0= XZ(X—1)2‘

C)Zl —ZP m+1)zw

15.a) SiP = ZakX avec ay € Z pour tout k, alors : Vm € Z,P(m

Zakm eZ:

P est u];neo solution du probleme P.

b) Soit m e Z.
Si m est un entier pair, écrivons-le m = 2p avec p entier. Alors P(m) =
m =p(2p+1)eZ.
Si m est un entier impair, écrivons-le m = 2p — 1 avec p entier. Alors P(m) =
(2p —21)(219) —(2p-1)peZ

Donc P est une solution du probleme P et P = %XZ + %X n'est pas a coeffi-
cients entiers.
16. a) @==® puisque les A/(P)(0) pour € [ 0; n] sont exactement les coordonnées
de P dans la base de Hilbert.
b)VzeZ, AP)(z)=P(z+1)-
@).
Par récurrence immédiate sur la propriété A;
V e [0; n], Al(P)(0) € Z, 0 étant un entier, si! Donc P vérifie @.
c)eVmeZ, Hy(m)=1eZ.

e Pour ke [[1; n]], Hy(m) =

P(z) e Z car P(z+ 1) € Z, P(z) € Z (P vérifiant

s« AI(P) vérifie ® », on a :

mim—1)(m=2)..(m—-k+1)
k! )
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Doncsi me[[0; k—1]], Hi(m) = 0 (m est une racine de Hy).

Et si m > k, Hy(m) = k!(mLik)!:(’}?:)EN‘

Et enfin si m < 0, Hi(m) = (_1)k_m(1—m)(2—kr'n)...(k—l—m) _
(k=1om) k=l !

(=1) m—( 1)( L )EZ

n
d) @ siginifie que P = Zaka avec ay € Z pour tout k de [[0; n].

k=0
Zaka

Alors par la question précédente, Yme Z, P(m
Donc P vérifie la condition @.

Solution (Ex.2 - )

In(x+1 . Ly
17. x+— % est continue sur ]0; 1] et prolongeable par continuité en 0 car
In(x+1 . .
% ~, 1, donc J existe (elle est faussement imprope).
X—

18. Les fonctions u : x — In(x + 1) et v : x —> In(x) sont de classe C! sur ]0; 1]

avec u(x)v(x) — 0 car u(x)v(x) ~ xIn(x)—— 0.
x—0 x—0 x—0

1 1
o— | w(x)v(x)dx = -
" L o/ (x)(x)dx L

19. a) Par absolue convergence ou par le théoréeme des séries alternées.

WFEL YLy Loy (T T A

k impair k pair k pair

In(x)
x+1

2) g

k pair

Par intégration par parties, ] = [u(x)v(x dx.

k palr

1 1
o Zk2 sz sz_z
k pair

DOHCZ(_ :(__ )ZkZ 12'

20. g, est continue comme produ1t de fonctions continues sur |0; 1] et continue

Lycée Henri PoiNcARE
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en 0 car g,(x) g 0 = g,(0) par croissances comparées usuelles.

g, étant continue sur le segment I, elle est bornée.

21. a) e ¥neIN% g,(0) = g,(1) = 0 donc g,(0 )—+)O€tgn( )?0
e Vxe]0; 1], x”—>0doncgn( )—>n " 0.
cvs

Conclusion : g, — 0.

b) Toutes les fonctions g, sont continues sur |0; 1] ainsi que leur limite simple
0, et
VnelN,Vxe]0;1], [g.(x)] <
In € L'(]0; 1],IR). Donc le théoréme de convergence dominée s’applique et

1 1
gn( )dﬂc—J‘ 0dx=0
0

[In(x)| puisque |x"| < 1, or d’apres le cours

lim

n—+oo

22. Pour tout n de IN*, I’étude de la fonction g, montre que ||g,||, = o
e
..o
Donc par encadrement ||g, — 0||, — 0. Ainsi g, — 0 sur le segment [0; 1].
n—+oo

Comme les fonctions g, sont toutes continues, le théoréme d’interversion sur
n

1 1
lim gn( )d\—f 0dx = 0.
0

un segment s’applique : Jlim

n+1

23. Comme - n In(x) 7 0, 'intégration par parties avec les fonctions x +—
n Xx—
+1
et In de classe C! sur ]0; 1] fournit :
n+
J. 1

o+l 1 X" 1
In(x)| - J- dx = ————, et effectivement
n+1 0 o n+1 (n+1)?

x)dx —— 0.
n—+oo

Partie B — Calcul de I’intégrale ] par une premiére méthode

24. eSix=0o0ux=1, f,(x)
e Soit x €
intoo01. La suite (|g(¥)])5; = (x*[In(x)])

= 0 pour tout n donc f,(0) —— 0 et f,(1) —— 0.

n—+oo n—+o0

. est décroissante de limite nulle.

Par le théoréme de Leibniz, la série de terme général (—1)*!

Sk(x) converge.
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25. a) f,(x) —€(x) étant le reste d’ordre n de la série précédente, le théoréme de

Leibniz assure, toujours pour x fixé dans |0; 1[, |f,(x <|gne1 (X))

Et pour x € {0, 1}, f,(x) = €(x) = 0 = g1 (%)

b) Par la question précédente, Vx eI, |f,(x)—€(x)| <|gne1(X)]-

Or (cf. 22) de |[gm41]l Donc f, — ¢ est une fonction bornée et

© = tl)e

vérifie || f,, — || Par encadrement, ||f, — ||, —= 0.

< —.
® T (n+1)e
On en déduit la convergence uniforme de la suite de fonctlons (fy) ver la

fonction .

¢) Comme les fonctions f, sont continues sur le segment [0,1] et la suite (f,)

1
converge uniformément vers ¢, lim j fn(x)dx existe et vaut j {(x)dx.
0

n—+oo J,

26. a) Comme somme des termes d’une suite géométrique de raison —x # 1, pour

b

n—1 1 ( ‘C)”
Ak — —\7
tout x de ]0; 1], f,,(x) = xIn(x )é(—,\) = xIn(x) Tre
e Les fonctions f, sont c.p.m. sur ]0; 1] pour tout n de IN*;
cvs xIn(x)
¢ R, ;
of,—(:]0; 1] >R x+— Ttz

e lestc.p.m.sur|0; 1];

e Par la question précédente,
VYnelN*Vxe]0; 1], |f,(x)]<x|In(x)|

or —2In € L(]0; 1],R) d’aprés le cours et par linéarité.

M < -2lIn(x)
1 h ’

Le théoréeme de convergence dominée s’applique : lim f fa(x)dx existe
n—+oo
0

1
et vaut J £(x)dx.
0

27. a) Pour tout n de IN¥, par linéarité, I'intégrale de g, ayant été calculé a la fin

n n

1 ! -1
de la partie A : J; fa(x)dx = Z(—l)kHJ; 8k (k)dx = Z(_l)k+l k+1)2

k:1 k:l
k+1

l\i

o~
Il

Lycée Henri PoiNcARE
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En passant a la limite lorsque n tend vers +oo,

P xln(x
0 x+1

bJ;l (1)
f

)dx.

= -1, et par linéarité,

k+1

In(x) .,
~<+1dx__j0

Too (_1)k+1

k2
k=1

x+1

J

P(x+1-x)In(x)

72

1

T (_1)k+1

k2
k=2

1 1
dx = —J In(x)dx + f
0 0

et par la question préliminaire

xIn(x)
x+1

Partie C — Calcul de I’intégrale J par une seconde méthode

n—1
28. a) Z(—nk

k=0

e ik
1+t

suite géométrique de raison —t = 1.

X =

car il s’agit de la somme des n premiers termes d’une

b) En intégrant la relation précédente sur le segment [0; x], on obtient

n-1 k
ZL) — = In(x+ 1)+ (-1)"! fo

k+

k+1

dt

In(x+1

o) = 2+ D
_1\n+1 X 4n
Or (-1) f t
b o 1+t

Alors par le théoréme des gendarmes,

Ainsi h,(x)

< -
X

In(x+1)

n—+0oo

X

X
1f t"dt <
0

= h(x).

X

1

R
—

tﬂ
1+t

29. Par la question précédente, pour x € ]0; 1],

-1 n+1 X th
+( ) j dt
X o 1+t

Y”+1

n+1
_1)n+1

dt.

<

X" 1
<_
n+1 n

tﬂ

X

[

30. a) h est continue sur |0; 1] et prolongeable par continiuité en 0 car h(x) g
X—

dt
1+t

n—+oo
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1. En notant & le prolongement par continuité de h sur le segment I, T est
continue sur le segment I, donc bornée, et il existe une constante M telle

que: Vxel, |E(x)| <M.

< ()| +

Alors : Vxe€]0; 1], |h(x)| = |z(x)| < M. Donc h est bornée sur |0; 1].
b) Pour tout n de IN* et tout x de ]0; 1],
(_1)n+1 Xy
f dr
b b I+t X o 1+t

1 X
|h(x)| <M+ —j 1dt
X Jo

_1\n+1 X
|hn<x)|=|1“(“”+< [
0
En définissant ¢ par ¢ :]0; 1] — R,x +—> M+ 1, ¢ est intégrable sur ]0; 1]

1
<M+;><X<M+1.

et majore |h,| pour tout n de IN™.
c¢) La suite (h,) vérifie toutes les conditions du théoreme de convergence do-

minée, avec pour limite simple h.

1 1
Donc lim h,(x)dx = J h(x)dx =].
0 0

n—+oo0
n

1 n k-1 1 k-1
o (=1) k-1 (=1
Or par linéarité f h,(x)dx = — | xdx= .
! Z ko Jo Z k2

0
k=1 k=1
D’ou par la question préliminaire :

+00
B (_1)k—1 B 7(2
=) et

6/6
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