
PC Devoir surveillé n°3 󰂇󰂇 novembre 󰂇󰂅󰂇󰂊

Les exercices sont indépendants – Durée : 4 heures

Les calculatrices et téléphones sont interdits.

Solution (Ex.1 – Polynômes de Hilbert)

1. Aucun souci.

2. a) (X+1)k =
k󰁛

i=0

󰀣
k

i

󰀤
Xi = Xk + kXk−1 + . . .

On a alors : ∀k ∈N∗, ∆(Xk) = kXk−1 + . . . et deg(∆(Xk)) = k − 1.

Et par linéarité, on écrivant P =
d󰁛

k=0

akX
k avec ad 󲧰 0 :

∆ (P) = addXd−1+Q avec deg(Q) 󰃑 d −2, donc deg(∆(P)) = d −1 = deg(P)−1.
b) Et si P est constant, P(X+1) = P(X) et deg(∆(P)) = deg(0) = −∞.

c) Soit P ∈ En. Comme ∆ ∈ L(E), ∆(P) ∈ E. Et comme deg(P) 󰃑 n, deg(∆(P)) 󰃑

n− 1, donc P ∈ En et En est stable par ∆.

3. a) Puisque chaque application de ∆ diminue le dégré d’une unité,

deg((∆n)n(Xn)) = n−n = 0 󲧰 −∞ donc (∆n)n(Xn) 󲧰 0 donc (∆n)n 󲧰 0.

Pour la même raison, si P ∈ En, deg((∆n)n+1(P)) 󰃑 n − (n + 1) 󰃑 −1 donc

(∆n)n+1(P) = 0, et (∆n)n+1 = 0L(En)

b) • Si deg(P) 󰃍 1, deg(∆n(P)) 󰃍 0 donc ∆n(P) 󲧰 0. Mais si P est constant,

∆n(P) = 0. Donc Ker(∆n) = R0[X].

• par le théorème du rang, rg(∆n) = dim(En)−dim(Ker(∆n)) = n+1− 1 = n.

• Toujours en raison des degrés, si P ∈ En, alors ∆n(P) ⊂ Rn−1[X]. Donc

Im(∆n) ⊂ Rn−1[X], et par égalité des dimensions, Im(∆n) = Rn−1[X].

4. a) Pour tout polynôme P, deg(T (P)) = deg(P).

b) ∀k ∈N,T k(P) = P(X+ k).

c) Et si la formule précédente avait encore un sens pour k = −1?
Posons U : P 󰀁−→ P(X− 1). Alors clairement

T ◦U (P) = T (P(X− 1)) = P(X) et U ◦ T (P) = U (P(X+1)) = P(X).

Donc T est bijectif et U = T −1 : T est un automorphisme de E et T −1(P) =
P(X− 1) pour tout polynôme P.

d) Par conservation du degré lorsqu’on applique T , En est stable par T .

5. Toujours par conservation du degré, Ker(Tn) = {0}, donc T est injectif. Et

comme En est de dimension finie, l’endomorphisme Tn est un automorphisme.

Donc Im(T ) = En et rg(Tn) = n+1.

6. δ(X) = 1, δ(X2) = 2X+1, δ(X3) = 3X2 +3X+1, δ(X4) = 4X3 +6X2 +4X+1,

D =

󰀳
󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 1 1 1

0 2 3 4

0 0 3 6

0 0 0 4

󰀴
󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

7. dim(Im(δ)) = rg(δ) = rg(D) = 4 = dim(E3) donc δ est surjectif. Comme

dim(F) = dim(E3), δ est un isomorphisme.

8. On note π l’isomorphisme réciproque de δ : π = δ−1.

On pose H0 = 1, et pour i dans 󰄶1; 3󰄷, Hi = πi(H0).

a) Puisque P = δ(π(P)), deg(P) = deg(π(P))− 1 donc deg(π(P)) = deg(P) + 1.

b) deg(H0) = 0, deg(H1) = deg(π(H0)) = 0 + 1 = 1, deg(H2) = deg(π(H1)) =

1 + 1 = 2 et deg(H3) = deg(π(H2)) = 2 + 1 = 3, donc H est une famille de

quatre polynômes échelonnée en degré de E3 = R3[X], donc est une base de

E3.

c) ∆(H0) = 0, et pour tout i de 󰄶1; 3󰄷, ∆(Hi) = δ(π(Hi−1)) = Hi−1.

Donc MH(∆3) =

󰀳
󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

󰀴
󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

, magnifique matrice nilpotente d’ordre 4

comme prévu par la question 3.
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9. a) Comme π = δ−1, la matrice représentant π est l’inverse de la matrice repré-

sentant δ dans les bases idoines.

Π = D−1 =
1
12

󰀳
󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

12 −6 2 0

0 6 −6 3

0 0 4 −6

0 0 0 3

󰀴
󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

b) H1 = π(H0) donc en notant V0 =

󰀳
󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1

0

0

0

󰀴
󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

la colonne représentant H0 dans C et

W1 celle représentant H1 dans B, on a :

W1 = ΠV0 =

󰀳
󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1

0

0

0

󰀴
󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

donc H1 = X, et V1 = MC(H1) =

󰀳
󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0

1

0

0

󰀴
󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

. Avec les mêmes

notations

W2 =ΠV1 =

󰀳
󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

−1/2

1/2

0

0

󰀴
󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

donc H2 = −X/2+X2/2, et V2 =MC(H2) =

󰀳
󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0

−1/2

1/2

0

󰀴
󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

W3 =ΠV2 =

󰀳
󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1/3

−1/2

1/6

0

󰀴
󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

donc H3 = X/3−X2/2+X3/6.

Variante : On peut chercher H1 = aX car de degré 1 dans F tel que H1(X +

1)−H1(X) = 1, i.e. aX+ a− aX = 1, donc a = 1 et H1 = X. Et on recommence

avec H2 = aX+ bX2 vérifiant H2(X+1)−H2(X) = X, etc.

c) H2 =
X(X− 1)

2
et H3 =

X3 − 3X2 +2X
6

=
X(X2 − 3X+2)

6
=
X(X− 1)(X− 2)

6
.

10. a) La famille (Hk)0󰃑k󰃑n est une famille échelonnée en degré, de 0 à n, de En

donc est une base de En.

b) ∆(Hk) =
(X+1)X(X− 1) . . . (X− k +2)

k!
− X(X− 1)(X− 2) . . . (X− k +1)

k!

∆(Hk) =
X(X− 1) . . . (X− k +2)

k!
((X+ 1)− (X− k +1)) =

X(X− 1) . . . (X− k +2)
k!

k

∆(Hk) =
X(X− 1) . . . (X− (k − 1) + 1)

(k − 1)! = Hk−1

c) On a alors immédiatement ∆2(Hk) = Hk−2, ∆3(Hk) = Hk−3, jusqu’à ∆k(Hk) =

H0.

Comme ∆(H0) = ∆(1) = 0, ∆k+1(Hk) = 0, et finalement

∆i(Hk) = Hk−i pour i 󰃑 k et ∆i(Hk) = 0 pour i > k.

11. a) • Pour i < k, ∆i(Hk)(0) = Hk−i(0) = 0 car 0 est une racine de Hj dès que j > 0.

• Pour i = k, ∆i(Hk)(0) = H0(0) = 1.

• Pour i > k, ∆i(Hk)(0) = 0 puisque ∆i(Hk) = 0.

• Bilan : ∆i(Hk)(0) = δi,k .

b) Par linéarité, pour tout i de 󰄶0; n󰄷 :

∆i(P)(0) =
n󰁛

k=0

αk∆
i(Hk)(0) =

n󰁛

k=0

αkδi,k = αi
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Pour tout polynôme P de E et tout m entier naturel, on cherche à calculer

SP(m) = P(0) +P(1) + · · ·+P(m) =
m󰁛

i=0

P(i)

On se donne donc un polynôme quelconque P de E.

12. SP(m) = 0 si P est le polynôme nul?

13. a) • Considérons ∆n+1 : En+1 −→ En+1. On sait que Im(∆n+1) = En donc comme

P ∈ En, P possède un antécédent R dans En+1 vérifiant ∆n+1(R) = P, c’est-à-

dire R(X+1)−R(X) = P(X).

• Posons Q(X) = R(X)−R(0). On a toujours Q(X+1)−Q(X) = P(X), avec cette

fois-ci Q(0) = 0.

• Supposons que Q1 de En+1 vérifient les conditions requises. Alors

∆n+1(Q − Q1) = 0 donc Q − Q1 ∈ Ker(∆n+1) donc Q − Q1 ∈ R0[X] donc

Q −Q1 = cte. Or Q(0)−Q1(0) = 0 donc Q = Q1.

Conclusion : il existe un unique polynôme Q de En+1 tel que

Q(X+1)−Q(X) = P(X) et Q(0) = 0.

b) Prenons Q1 =
n󰁛

i=0

αiHi+1.

Comme (Hi ,0 󰃑 i 󰃑 n+1) est une base de En+1, Q1 ∈ En+1.

De plus ∆(Q1) =
n󰁛

i=0

αi∆(Hi+1) =
n󰁛

i=0

αiHi = P, donc Q1(X+1)−Q1(X) = P(X).

Enfin Q1(0) =
n󰁛

i=0

Hi+1(0) = 0 car 0 est racine de tous les Hi tels que i 󰃑 1.

Par unicité, Q1 est le polynôme Q cherché.

c) Par télescopage :
m󰁛

i=0

P(i) =
m󰁛

i=0

(Q(i +1)−Q(i)) = Q(m+1)−Q(0) = Q(m+1)

14. a) ∆0(P)(0) = P(0) = 0,

∆(P) = 3X2 +3X+1 (calculé en 6.) et ∆(P)(0) = 1,

∆2(P) = 3(2X+1) + 3× 1 = 6X+6 et ∆2(P)(0) = 6,

∆3(P) = 6 et ∆3(P)(0) = 6.

b) Alors P = H1 +6H2 +6H3, et Q = H2 +6H3 +6H4. Ainsi :

Q =
X(X− 1)

2
+X(X− 1)(X− 2) + X(X− 1)(X− 2)(X− 3)

4

Q =
X(X− 1)

4
[2 + 4(X− 2) + (X− 2)(X− 3)] = X(X− 1)

4

󰁫
X2 −X

󰁬

Q =
X2(X− 1)2

4
.

c)
m󰁛

i=0

i3 =
m󰁛

i=0

P(i) = Q(m+1) =
m2(m+1)2

4
.

15. a) Si P =
n󰁛

k=0

αkX
k avec αk ∈ Z pour tout k, alors : ∀m ∈Z,P(m) =

n󰁛

k=0

αkm
k ∈Z :

P est une solution du problème P .
b) Soit m ∈Z.

Si m est un entier pair, écrivons-le m = 2p avec p entier. Alors P(m) =
2p(2p +1)

2
= p(2p +1) ∈Z.

Si m est un entier impair, écrivons-le m = 2p − 1 avec p entier. Alors P(m) =
(2p − 1)(2p)

2
= (2p − 1)p ∈Z.

Donc P est une solution du problème P et P =
1
2
X2 +

1
2
X n’est pas à coeffi-

cients entiers.

16. a) ②⇐⇒③ puisque les∆i(P)(0) pour ∈ 󰄶0; n󰄷 sont exactement les coordonnées

de P dans la base de Hilbert.

b) ∀z ∈ Z, ∆(P)(z) = P(z + 1) − P(z) ∈ Z car P(z + 1) ∈ Z, P(z) ∈ Z (P vérifiant

①).

Par récurrence immédiate sur la propriété Ai :« ∆i(P) vérifie ① », on a :

∀ ∈ 󰄶0; n󰄷 ,∆i(P)(0) ∈Z, 0 étant un entier, si ! Donc P vérifie ②.

c) • ∀m ∈Z, H0(m) = 1 ∈Z.

• Pour k ∈ 󰄶1; n󰄷, Hk(m) =
m(m− 1)(m− 2)...(m− k +1)

k!
.

Lycée Henri Poincaré 3/6 ●❏



PC Devoir surveillé n°3 󰂇󰂇 novembre 󰂇󰂅󰂇󰂊

Donc si m ∈ 󰄶0; k − 1󰄷, Hk(m) = 0 (m est une racine de Hk).

Et si m 󰃍 k, Hk(m) =
m!

k!(m− k)! =
󰀣
m

k

󰀤
∈N.

Et enfin si m < 0, Hk(m) = (−1)k −m(1−m)(2−m)...(k − 1−m)
k!

=

(−1)k (k − 1−m)!
k!(−m− 1)! = (−1)k

󰀣
k − 1−m

k

󰀤
∈Z

d) ③ siginifie que P =
n󰁛

k=0

αkHk avec αk ∈Z pour tout k de 󰄶0; n󰄷.

Alors par la question précédente, ∀m ∈Z, P(m) =
n󰁛

k=0

αkHk(m) ∈Z.

Donc P vérifie la condition ①.

Solution (Ex.2 – )

17. x 󰀁−→ ln(x +1)
x

est continue sur ]0 ; 1] et prolongeable par continuité en 0 car

ln(x +1)
x

∼
x→0

1, donc J existe (elle est faussement imprope).

18. Les fonctions u : x 󰀁−→ ln(x + 1) et v : x 󰀁−→ ln(x) sont de classe C1 sur ]0 ; 1]

avec u(x)v(x) −−−−→
x→0

0 car u(x)v(x) ∼
x→0

x ln(x) −−−−→
x→0

0.

Par intégration par parties, J = [u(x)v(x)]10 −
󰁝 1

0
u′(x)v(x)dx = −

󰁝 1

0

ln(x)
x +1

dx.

19. a) Par absolue convergence ou par le théorème des séries alternées.

b)
+∞󰁛

k=1

(−1)k

k2
=

󰁛

k pair

1
k2
−

󰁛

k impair

1
k2

=
󰁛

k pair

1
k2
−

󰀳
󰁅󰁅󰁅󰁅󰁅󰁅󰁃
󰁛

k

1
k2
−

󰁛

k pair

1
k2

󰀴
󰁆󰁆󰁆󰁆󰁆󰁆󰁄 = 2

󰁛

k pair

1
k2
−

󰁛

k

1
k2

or
󰁛

k pair

1
k2

=
󰁛

k

1
(2k)2

=
1
4

󰁛

k

1
k2

Donc
+∞󰁛

k=1

(−1)k

k2
=
󰀕2
4
− 1

󰀖 +∞󰁛

k=1

1
k2

= −π
2

12
.

20. gn est continue comme produit de fonctions continues sur ]0 ; 1] et continue

en 0 car gn(x) −−−−→
x→0

0 = gn(0) par croissances comparées usuelles.

gn étant continue sur le segment I, elle est bornée.

21. a) • ∀n ∈N∗, gn(0) = gn(1) = 0 donc gn(0) −−−−−−→n→+∞
0 et gn(1) −−−−−−→n→+∞

0.

• ∀x ∈ ]0 ; 1[ , xn −−−−−−→
n→+∞

0 donc gn(x) −−−−−−→n→+∞
0.

Conclusion : gn
CVS−→ 0.

b) Toutes les fonctions gn sont continues sur ]0 ; 1] ainsi que leur limite simple

0, et

∀n ∈ N∗,∀x ∈ ]0 ; 1] , |gn(x)| 󰃑 |ln(x)| puisque |xn| 󰃑 1, or d’après le cours

ln ∈ L1(]0 ; 1] ,R). Donc le théorème de convergence dominée s’applique et

lim
n→+∞

󰁝 1

0
gn(x)dx =

󰁝 1

0
0dx = 0.

22. Pour tout n deN∗, l’étude de la fonction gn montre que ||gn||∞ =
1
ne

.

Donc par encadrement ||gn − 0||∞ −−−−−−→n→+∞
0. Ainsi gn

CVU−→ 0 sur le segment [0 ; 1].
Comme les fonctions gn sont toutes continues, le théorème d’interversion sur

un segment s’applique : lim
n→+∞

󰁝 1

0
gn(x)dx =

󰁝 1

0
0dx = 0.

23. Comme
xn+1

n+1
ln(x) −−−−→

x→0
0, l’intégration par parties avec les fonctions x 󰀁−→

xn+1

n+1
et ln de classe C1 sur ]0 ; 1] fournit :

󰁝 1

0
gn(x)dx =

󰀥
xn+1

n+1
ln(x)

󰀦1

0
−

󰁝 1

0

xn

n+1
dx = − 1

(n+1)2
, et effectivement

󰁝 1

0
gn(x)dx −−−−−−→n→+∞

0.

Partie B – Calcul de l’intégrale J par une première méthode

24. • Si x = 0 ou x = 1, fn(x) = 0 pour tout n donc fn(0) −−−−−−→n→+∞
0 et fn(1) −−−−−−→n→+∞

0.

• Soit x ∈
intoo01. La suite (|gk(x)|)k󰃍1 =

󰀓
xk |ln(x)|

󰀔
k󰃍1

est décroissante de limite nulle.

Par le théorème de Leibniz, la série de terme général (−1)k+1gk(x) converge.
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25. a) fn(x) − ℓ(x) étant le reste d’ordre n de la série précédente, le théorème de

Leibniz assure, toujours pour x fixé dans ]0 ; 1[, |fn(x)− ℓ(x)| 󰃑 |gn+1(x)|.
Et pour x ∈ {0,1} , fn(x)− ℓ(x) = 0 = gn+1(x).

b) Par la question précédente, ∀x ∈ I, |fn(x)− ℓ(x)| 󰃑 |gn+1(x)|.

Or (cf. 22) de ||gn+1||∞ =
1

(n+1)e
. Donc fn − ℓ est une fonction bornée et

vérifie ||fn − ℓ||∞ 󰃑
1

(n+1)e
. Par encadrement, ||fn − ℓ||∞ −−−−−−→n→+∞

0.

On en déduit la convergence uniforme de la suite de fonctions (fn) ver la

fonction ℓ.

c) Comme les fonctions fn sont continues sur le segment [0,1] et la suite (fn)

converge uniformément vers ℓ, lim
n→+∞

󰁝 1

0
fn(x)dx existe et vaut

󰁝 1

0
ℓ(x)dx.

26. a) Comme somme des termes d’une suite géométrique de raison −x 󲧰 1, pour

tout x de ]0; 1], fn(x) = x ln(x)
n−1󰁛

k=0

(−x)k = x ln(x)
1− (−x)n
1+ x

.

b) • Les fonctions fn sont c.p.m. sur ]0 ; 1] pour tout n deN∗ ;

• fn
CVS−→ ℓ : ]0 ; 1] −→ R,x 󰀁−→ x ln(x)

1 + x
;

• ℓ est c.p.m. sur ]0 ; 1] ;

• Par la question précédente,

∀n ∈N∗,∀x ∈ ]0 ; 1] , |fn(x)| 󰃑 x |ln(x)|
1+ |(−x)n|

1
󰃑 −2ln(x)

or −2ln ∈ L1(]0 ; 1] ,R) d’après le cours et par linéarité.

Le théorème de convergence dominée s’applique : lim
n→+∞

󰁝 1

0
fn(x)dx existe

et vaut
󰁝 1

0
ℓ(x)dx.

27. a) Pour tout n de N∗, par linéarité, l’intégrale de gk ayant été calculé à la fin

de la partie A :
󰁝 1

0
fn(x)dx =

n󰁛

k=1

(−1)k+1
󰁝 1

0
gk(k)dx =

n󰁛

k=1

(−1)k+1 −1
(k +1)2

=

n+1󰁛

k=2

(−1)k+1

k2
.

En passant à la limite lorsque n tend vers +∞,
+∞󰁛

k=2

(−1)k+1

k2
=
󰁝 1

0
ℓ(x)dx =

󰁝 1

0

x ln(x)
x +1

dx.

b)
󰁝 1

0
ln(x)dx = −1, et par linéarité,

J = −
󰁝 1

0

ln(x)
x +1

dx = −
󰁝 1

0

(x +1− x) ln(x)
x +1

dx = −
󰁝 1

0
ln(x)dx +

󰁝 1

0

x ln(x)
x +1

dx =

1+
+∞󰁛

k=2

(−1)k+1

k2
=

+∞󰁛

k=1

(−1)k+1

k2
et par la question préliminaire

J =
π2

12
.

Partie C – Calcul de l’intégrale J par une seconde méthode

28. a)
n−1󰁛

k=0

(−1)ktk = 1− (−t)n
1+ t

car il s’agit de la somme des n premiers termes d’une

suite géométrique de raison −t 󲧰 1.
b) En intégrant la relation précédente sur le segment [0 ; x], on obtient

n−1󰁛

k=0

(−1)kxk+1
k +1

= ln(x +1) + (−1)n+1
󰁝 x

0

tn

1+ t
dt.

29. Par la question précédente, pour x ∈ ]0 ; 1],

hn(x) =
ln(x +1)

x
+
(−1)n+1

x

󰁝 x

0

tn

1+ t
dt

Or

󰀏󰀏󰀏󰀏󰀏󰀏
(−1)n+1

x

󰁝 x

0

tn

1+ t
dt

󰀏󰀏󰀏󰀏󰀏󰀏 󰃑
1
x

󰁝 x

0
tndt 󰃑

1
x
× xn+1

n+1
󰃑

xn

n+1
󰃑

1
n

Alors par le théorème des gendarmes,

󰀏󰀏󰀏󰀏󰀏󰀏
(−1)n+1

x

󰁝 x

0

tn

1+ t
dt

󰀏󰀏󰀏󰀏󰀏󰀏 −−−−−−→n→+∞
0.

Ainsi hn(x) −−−−−−→n→+∞
ln(x +1)

x
= h(x).

30. a) h est continue sur ]0 ; 1] et prolongeable par continiuité en 0 car h(x) −−−−→
x→0
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1. En notant 󰁨h le prolongement par continuité de h sur le segment I, 󰁨h est

continue sur le segment I, donc bornée, et il existe une constante M telle

que : ∀x ∈ I,
󰀏󰀏󰀏󰁨h(x)

󰀏󰀏󰀏 󰃑M.

Alors : ∀x ∈ ]0 ; 1] , |h(x)| =
󰀏󰀏󰀏󰁨h(x)

󰀏󰀏󰀏 󰃑M. Donc h est bornée sur ]0 ; 1].

b) Pour tout n deN∗ et tout x de ]0; 1],

|hn(x)| =
󰀏󰀏󰀏󰀏󰀏󰀏
ln(x +1)

x
+
(−1)n+1

x

󰁝 x

0

tn

1+ t
dt

󰀏󰀏󰀏󰀏󰀏󰀏 󰃑 |h(x)|+
󰀏󰀏󰀏󰀏󰀏󰀏
(−1)n+1

x

󰁝 x

0

tn

1+ t
dt

󰀏󰀏󰀏󰀏󰀏󰀏

|h(x)| 󰃑M+
󰀏󰀏󰀏󰀏󰀏
1
x

󰁝 x

0
1dt

󰀏󰀏󰀏󰀏󰀏 󰃑M+
1
x
× x 󰃑M+1.

En définissant ϕ par ϕ : ]0 ; 1] −→ R,x 󰀁−→M+1, ϕ est intégrable sur ]0 ; 1]

et majore |hn| pour tout n deN∗.

c) La suite (hn) vérifie toutes les conditions du théorème de convergence do-

minée, avec pour limite simple h.

Donc lim
n→+∞

󰁝 1

0
hn(x)dx =

󰁝 1

0
h(x)dx = J.

Or par linéarité
󰁝 1

0
hn(x)dx =

n󰁛

k=1

(−1)k−1
k

󰁝 1

0
xk−1dx =

n󰁛

k=1

(−1)k−1

k2
.

D’où par la question préliminaire :

J =
+∞󰁛

k=1

(−1)k−1

k2
=
π2

12
.
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