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1 Séries entieres 1.7 Opérations sur les séries entiéres
, e Pour tout A = 0, Z/\anzn et Zanzn ont le méme rayon de conver-

1.1 Lemme d’Abel ~ .

Soit (a,) suite de nombres complexes. S’il existe z; € C* tel que la suite gence.

o , L. n
(anzy) soit bornée, alors pour tout z tel que |z] < |zg], la série Zanz e En notant R, = RC Zanzﬂ et R, =RC anzn }
n>0 - -

converge absolument. e
1.2 Rayon de convergence @ si R, =Ry alors RC [Z(an + bn)z”) =min(R,, Ry),

Le rayon de convergence R de la série entiére ) a,z" est: n=0

R=s eR*/(a,p" est bornée} € R* U {+oo} =[0; +oo0]. . - .
) upip /( nP"Jne } oo} =1 ] @ si R, = Ry, alors RC Z(an +b,)z" | = min(R,Ry).

1.3 Disque ouvert et intervalle ouvert de convergence =

Version complexe — eProduit de Cauchy -

Soit Zanz” une série entiére de rayon de convergence R. Alors : ) Qof &

Soit Vn >0,¢, = Zﬂkbn—k-
(i) si |z] < R, alors Zanz” converge absolument, k=0
(ii) si |z| > R, alors Zanz” diverge grossiérement. Alors pour tout z til que |z[ <min(Rg, Ry),
00 +00 +00
Version réelle — chz” = [Zgnz” anz”],
Soit Zanx” une série entiere de rayon de convergence R. Alors : n=0 n=0 n=0
1.8 Régularité de la somme d’une série entiere

1.4

1.5

1.6

(i) si x € |-R; R[, alors Za”x” converge absolument,
(ii) si x <=R ou x >R, alors Zanx” diverge grossierement.
Comparaison asymptotique et rayon de convergence

E a,z" et > b,z" sont deux séries de rayon de convergence respectif
n>0 n>0

R, et Ry.
e Sia, =0(b,), alors R, > R,.
|b,|, alors R, = R.

~

° Si|an|n_++

Deux propriétés bien pratiques
e Pour tout a € R, RC(Znaz”) =1;

. E na,z" a le méme rayon de convergence que E a,z".

n>0 n>0
Critere de Jean le Rond D’Alembert pour les séries entieres
On suppose qu’il existe ny tel que : Vn>ngy, a, =0.

An+1
a?’l

Si [0; +o0], alors RC(ZQHZ”):%E[O; +00].

— (e
n—+oo

. Za”x” converge normalement sur tout segment [a; b] C |-R; R[ de

n>0
son intervalle ouvert de convergence.

e La somme d’une série entiere de rayon R > 0 est C* et on peut dériver
terme a terme :

+00 / +00 +00
Vxe]-R; R[, Zanx”] = Znanx” Y=Y (n+1Da,,x

n=0 n=1 n=

+00 (k) 4oo +00

n! _ (n+k)!
. N _ n—-k _ n

Vxe]-R; R[, Zanx ] = (n—k)!a”X = T ek

n=0 n=k n=0
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1.9 Intégration et primitive 2
eVxe]-1; 1], Arctan(x el
Soit f somme de la série entiere Zanx” de rayon de convergence R > 0. ] [ Z 2n+ 1
b +oo b o ala-1)...(a-n+1) ,
) n eVaeR Vxe]-1; 1], (1+x)*=1+ ' x".
e Pour tout [a; b] C ]-R; R|, j Za t"dt = Zan (L t dt). ; n!
e En particulier, la primitive F de f s annulant en 0 est définie par: = Variable complexe .
+00 +00 1 =
) _ a _\ fn-1 VzeD(0,1)={ze C/|z| < 1} = "
Vxe]-R; R[, F(x)= AR P = e VzeD(0, z 2 , = z".
;)« n+1 ; n z L
1.10 Lien avec le développement de Taylor O g
oo eVzeC, exp(z)= —.
n!
Sif(x)= Zanx” a un rayon de convergence non nul, alors : Yn € N, a,, = n=0
=0 1.13 Propriétés de ’exponentielle complexe
f(”)(o). o V(z1,25) €C?,  exp(z; +2;) = exp(z;)exp(z).
n! e Vz=x+iyavec (x,9) € R?,
1.11 Unicité du developpement en série entiere exp(z) = e = QX HY eX(cosy + isiny)
eSif:xm Za xtetgix Zb x" coincident sur |—-r; r[ avec r > 0
n= n= O e . . ’ . .
(Cest-a-dire Yx € |—r; r[, f(x) = g(x)) alors : Yn € N,a, = by, 2 Espaces prehilbertiens réels, espaces euclidiens
}Corf)llazre qog leg{onc\;zonsﬂzazres, zmpoazres E désigne un R—espace vectoriel, muni d’un produit scalaire a partir de 3.
paire sur |-R; R[=VneN,ay,,1 =0,
f impaire sur ]-R; R[ = Vn € N, a,, = 0. 2.1 Produit scalaire & norme euclidienne associée
1.12 Développements en série entiére de référence Un produit scalaire {.,.) : EXE = R, (4,v) = (u,v) est une forme bilinéaire

5 Variable réelle

1
o VxR, exp(x) = Z—'x”
£—n!
+0oo 1 +00 1
— 2n _ 2n+1
e VxeR, ch(x) = Z(Zn)' et sh(v)—Z e 1)
n=0 n=0
+00 Too
=" D" o
o VxeR, cos(x) = x" et sin(x) = m
u 1
= (2n) — (2n+1)
1 +00 1 +00
_1- _ n _ _\nn
oVxel-1;1[, 1_X_Zx et 1H_Z( 1)"x
n= n=0
I -1 n+1
eVxe]-1;1], Z—A et1n1+1c):Z( ) X"

n=1

symétrique définie positive, c’est-a-dire vérifiant :

(@) @ estlinéaire a gauche :

V(u,v,w) B3 YAER, p(Au+v,w)=
@ est symétrique :

Y(u,v) € E?, ¢(u,v) = p(v,u);

1. et 2. prouvent que ¢ est bilinéaire symétrique (opératoirement
parlant (.,.) est distributif et commutatif).

Ap(u,w)+ @(v,w);
(b)

@ est positive :

Yuelk, o(u,u)>0;

@ est définie :

Yuelk, (p(u,u)=0=u=0);

3. et 4. prouvent que ¢ est définie positive.
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La norme euclidienne associée est

[l E > R, u +— V{u,u).

2.2 Produits scalaires usuels

1 Canonique sur R" :

<(X],...

de norme associée : [|(x1,...

Pour ce produit scalaire, la base canonique de IR” est orthonormale.
n
Canonique sur M, | (RR) : XY)=xYy = inyi
i=1
(noter que XY € M, () et on identifie M;(R) & R)

[IX]] = VXT.X =

de norme associée :

Pour ce produit scalaire, la base canonique de M, ;(IR) est ortho-

normale.
v Canonique sur M,(R):  (A,B)=Tr(AT.B)= Z a;ibi
1<i,j<n
de norme associée : Al = \/Tr (AT.B) = Z ai]-.
1<i,j<n

Pour ce produit scalaire, la base canonique de M, (IR) est orthonor-
male.

b
Sur C([a; b],R) : (f,g) = J f(t)g(t)dt définit un produit sca-

laire.

2.3 Identités remarquables... le p.s. est commutatif et distributif

V(u,v) € B2 llu + vl = [Jull® + 2 ¢u, v) + [[vll?;

1
V(1,v) € B2, Gu,v) = 5 (I-+ vl = [l = o).

1
V(u,0) € 2 (u,0) = o (Il + vl ~[lu — o]

2.4 Théoreme de Pythagore

2 2 2
eu Ll ve=|lu+v||”=lull”+]lvI°.

2.5

2.6

2.7

(ulv

2.8

2.9

n
Uj
i=1

e Sila famille (u;); <<, est orthogonale, alors

2 n
2
= il
i=1

Inégalité de Cauchy-Schwarz
V(u,v) € E?, K, v) < [lullllll,

avec égalité si, et seulement si, u et v sont colinéaires.
On utilise souvent cette inégalité en 1’élevant au carré (évitant les |.| et
V)

V(u,v) € B2, (u,0)” < |lull*[v]*,
Inégalité triangulaire

Y(u,v) € E% [lu+ vl < |lull+|Iv]l,
avec égalité si, et seulement si, u et v sont colinéaires de méme sens, c’est-
a-dire :

dke€[0; +oo[,v =ku ou u = kv.
Vecteurs, familles, sous-espaces ortogonaux
@ Par définition : u L v & (u,v) = 0.
@ La famille (uy,...,up) est orthogonale si ses vecteurs sont deux a deux
orthogonaux.

® La famille (ul,...,up) est orthonormale si ses vecteurs sont unitaires

et deux a deux orthogonaux.
Autrement dit :
o ) ) 1 sii=j
.., Up) est orthonormale ssi V(i,j) € [1; n]°, <ul-, ”j> =0;j= Y
0 siiz]

@ Les sous-espaces F et G de E sont orthogonaux si
Y(u,v)eFxG,u Lv=0.
Orthogonal d’un sous-espace

Soit F un sous-espace de E. On appelle orthogonal de F, noté F+, I'en-
semble at
F+ g'{u eEVveF,u J_v}.

FL est toujours un sous-espace vectoriel de E.
Liberté des familles orthogonales et orthonormales

@ Toute famille orthogonale de vecteurs tous non nuls est libre.

@ Toute famille orthonormale de vecteurs est libre.
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2.10 Caractérisation de 'orthogonalité de sous-espaces 2.14 LE supplémentaire orthogonal d’un sous-espace
Soit F = Vect(uy,..., Mp) et G = Vect(yl,,,_,yq), Alors Pour tout sous-espace vectoriel F d’un espace euclidien, Ft, appelé sup-
F L Gsi, et seulementsi, V(i,j) € [1; p x[1; q]l, wu; L vj. plémentaire orthogonal de F, est caractérisé par les propriétés équivalentes
2.11 Procédé d’orthonormalisation de Gram-Schmidt suivantes :
. e O®F@Ft=EetF L F;
Soit (uy,...,u,) une famille libre de vecteurs. On pose : @F | FL et dim(FJ-) = dim(E) - dim(F);
€1 = m; @ pour tout sous-espace Gde E,ona: G L F=GCFt;
1 @ en concaténant une base orthogonale de F et une base orthogonale de
Uy — Z(Ukr e:Ye: FL, j'obtiens une base orthogonale de E.
. -1 2.15 Les supplémentaires orthogonaux vont par paire
@ successivement pour tout k € [2; p], ex = . L
k-1 (FL) =F, ou encore : (G:FL)@(F:GL).
Uk = Z<uk’ &) e 2.16 Projection orthogonale
Alors =1 Soit F sous-espace vectoriel de 'espace euclidien E. La projection ortho-
gonale sur F notée pg est la projection sur F dans la direction de (ou
@ la famille (61,...,€p) est orthonormale, paralléelement &) FL.
@Vke[l; pl, Vect(ul,..., ug) = Vect(el,...,ek). En conséquence des propriétés générales des projecteurs :
2.12 Espace euclidien Im(pp). - ,SEP(pF’ 1) = F et Ker(pg) = SEP(pr, 0) = F--.
On appelle espace euclidien tout R—espace vectoriel de dimension finie 2.17 Ca‘lcul du pr(‘)]et‘e orthogonal d’un vecteur
muni d’un produit scalaire. Soit pg la projection orthogonale sur FCE. On a:
2.13 Existence et intérét des bases orthonormales vek

@ Dans tout espace euclidien, il existe des bases orthonormales.

@ Soit B = (ey,...,
Alors :

ecoordonnées et norme d’ un vecteur :

VxeE, «x= Z(x e;ye; et ||x||° = Z<’C e;).

eproduit scalaire de deux vecteurs

(xy)= ixi%‘ = i(ﬁwzﬂ%@i%

i=1
(x,v) =XTY et ||x|| = VXTX 51X Mp(x)et Y = Mg(v).
ematrice d'un endomorphisme
Soit f € L(E) et M = (m; ;) = Mp(f). Alors :

V(Z,]) S Hl; n]], mi ;= <f(€j!ei>'

e,) une base orthonormale d’un espace euclidien E.

2.18

2.19

2.20

@v= U)
pr(u) {v—ueFL

@ pour toute base orthonormale (ey,...,¢,,) de F, pp(u

Z<u eie;.

Inégalité de Bessel
Vuek, |lpp(u)ll < lul
Meilleure approximation en norme
Soit F un sous-espace vectoriel d'un espace euclidien E. Soit u un vecteur
de E. Alors nyqellpuu —v|| existe et est atteint uniquement pour v = pg(u) :

Vv eF, (v:pp(u) = ||u—v||:min||u—w||)
weF

Distance d’un vecteur a un sous-espace
Soit F un sous-espace vectoriel d'un espace euclidien E. Soit u un vecteur
de E. Alors la distance de u a F, notée d(u,F) est définie par
d(u,F) = min|lu —v|| = [|lu = pp(u)l.
veF
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