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1 Séries entières

1.1 Lemme d’Abel
Soit (an) suite de nombres complexes. S’il existe z0 ∈ C∗ tel que la suite
(anz

n
0) soit bornée, alors pour tout z tel que |z| < |z0|, la série

∑
n≥0

anz
n

converge absolument.

1.2 Rayon de convergence

Le rayon de convergence R de la série entière
∑

anz
n est :

R = sup{ρ ∈R+/(anρn)n∈N est bornée} ∈R+ ∪ {+∞} = [0; +∞].

1.3 Disque ouvert et intervalle ouvert de convergence
Version complexe –

Soit
∑

anz
n une série entière de rayon de convergence R. Alors :

(i) si |z| < R, alors
∑

anz
n converge absolument,

(ii) si |z| > R, alors
∑

anz
n diverge grossièrement.

Version réelle –
Soit

∑
anx

n une série entière de rayon de convergence R. Alors :

(i) si x ∈ ]−R; R[, alors
∑

anx
n converge absolument,

(ii) si x < −R ou x > R, alors
∑

anx
n diverge grossièrement.

1.4 Comparaison asymptotique et rayon de convergence∑
n≥0

anz
n et

∑
n≥0

bnz
n sont deux séries de rayon de convergence respectif

Ra et Rb.
• Si an = O(bn), alors Ra ≥ Rb.
• Si |an| ∼n→+∞

|bn|, alors Ra = Rb.

1.5 Deux propriétés bien pratiques

• Pour tout α ∈R, RC
(∑

nαzn
)

= 1 ;

•
∑
n≥0

nanz
n a le même rayon de convergence que

∑
n≥0

anz
n.

1.6 Critère de Jean le Rond D’Alembert pour les séries entières
On suppose qu’il existe n0 tel que : ∀n ⩾ n0, an , 0.

Si
∣∣∣∣∣an+1

an

∣∣∣∣∣ −−−−−−→n→+∞
ℓ ∈ [0 ; +∞], alors RC

(∑
anz

n
)

=
1
ℓ
∈ [0 ; +∞].

1.7 Opérations sur les séries entières

• Pour tout λ , 0,
∑
n

λanz
n et

∑
n

anz
n ont le même rayon de conver-

gence.

• En notant Ra =RC
∑

n

anz
n

 et Rb =RC
∑

n

bnz
n

,

① si Ra , Rb alors RC

+∞∑
n=0

(an + bn)zn
 = min(Ra,Rb),

② si Ra = Rb alors RC

+∞∑
n=0

(an + bn)zn
 ⩾min(Ra,Rb).

•Produit de Cauchy –

Soit ∀n ≥ 0, cn
déf.=

n∑
k=0

akbn−k .

Alors pour tout z tel que |z| < min(Ra,Rb),
+∞∑
n=0

cnz
n =

+∞∑
n=0

anz
n


+∞∑
n=0

bnz
n

.

1.8 Régularité de la somme d’une série entière

•
∑
n≥0

anx
n converge normalement sur tout segment [a ; b] ⊂ ]−R; R[ de

son intervalle ouvert de convergence.
• La somme d’une série entière de rayon R > 0 est C∞ et on peut dériver
terme à terme :

∀x ∈ ]−R; R[ ,

+∞∑
n=0

anx
n

′ =
+∞∑
n=1

nanx
n−1 =

+∞∑
n=0

(n+ 1)an+1x
n.

∀x ∈ ]−R; R[ ,

+∞∑
n=0

anx
n

(k)

=
+∞∑
n=k

n!
(n− k)!

anx
n−k =

+∞∑
n=0

(n+ k)!
n!

an+kx
n.
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1.9 Intégration et primitive

Soit f somme de la série entière
∑
n

anx
n de rayon de convergence R > 0.

• Pour tout [a ; b] ⊂ ]−R; R[,
∫ b

a

+∞∑
n=0

ant
ndt =

+∞∑
n=0

an

(∫ b

a
tndt

)
.

• En particulier, la primitive F de f s’annulant en 0 est définie par :

∀x ∈ ]−R; R[ , F(x) =
+∞∑
n=0

an
n+ 1

xn+1 =
+∞∑
n=1

an−1

n
xn.

1.10 Lien avec le développement de Taylor

Si f (x) =
+∞∑
n=0

anx
n a un rayon de convergence non nul, alors : ∀n ∈N, an =

f (n)(0)
n!

.

1.11 Unicité du développement en série entière

• Si f : x 7→
+∞∑
n=0

anx
n et g : x 7→

+∞∑
n=0

bnx
n coïncident sur ]−r ; r[ avec r > 0

(c’est-à-dire ∀x ∈ ]−r ; r[ , f (x) = g(x)) alors : ∀n ∈N, an = bn.
•Corollaire pour les fonctions paires, impaires
f paire sur ]−R; R[⇒∀n ∈N, a2n+1 = 0,
f impaire sur ]−R; R[⇒∀n ∈N, a2n = 0.

1.12 Développements en série entière de référence
☞ Variable réelle

• ∀x ∈R, exp(x) =
+∞∑
n=0

1
n!
xn

• ∀x ∈R, ch(x) =
+∞∑
n=0

1
(2n)!

x2n et sh(x) =
+∞∑
n=0

1
(2n+ 1)!

x2n+1

• ∀x ∈R, cos(x) =
+∞∑
n=0

(−1)n

(2n)!
x2n et sin(x) =

+∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

• ∀x ∈ ]−1; 1[ ,
1

1− x
=

+∞∑
n=0

xn et
1

1 + x
=

+∞∑
n=0

(−1)nxn

• ∀x ∈ ]−1; 1[ , ln(1− x) = −
+∞∑
n=1

1
n
xn et ln(1 + x) =

+∞∑
n=1

(−1)n+1

n
xn.

• ∀x ∈ ]−1; 1[ , Arctan(x) =
+∞∑
n=0

(−1)n

2n+ 1
x2n+1.

• ∀α ∈R,∀x ∈ ]−1; 1[ , (1 + x)α = 1 +
+∞∑
n=1

α(α − 1) . . . (α −n+ 1)
n!

xn.

☞ Variable complexe

• ∀z ∈ D(0,1) = {z ∈C/ |z| < 1}, 1
1− z

=
+∞∑
n=0

zn.

• ∀z ∈C, exp(z) =
+∞∑
n=0

zn

n!
.

1.13 Propriétés de l’exponentielle complexe
• ∀(z1, z2) ∈C2, exp(z1 + z2) = exp(z1)exp(z2).
• ∀z = x+ iy avec (x,y) ∈R2,

exp(z) = ez = ex+iy = ex(cosy + i siny)

2 Espaces préhilbertiens réels, espaces euclidiens

E désigne un R−espace vectoriel, muni d’un produit scalaire à partir de 3.

2.1 Produit scalaire & norme euclidienne associée
Un produit scalaire ⟨., .⟩ : E×E→R, (u,v) 7→ ⟨u,v⟩ est une forme bilinéaire
symétrique définie positive, c’est-à-dire vérifiant :

(a) ϕ est linéaire à gauche :
∀(u,v,w) ∈ E3,∀λ ∈R, ϕ(λu + v,w) = λϕ(u,w) +ϕ(v,w) ;

(b) ϕ est symétrique :
∀(u,v) ∈ E2, ϕ(u,v) = ϕ(v,u) ;
1. et 2. prouvent que ϕ est bilinéaire symétrique (opératoirement
parlant ⟨., .⟩ est distributif et commutatif ).

(c) ϕ est positive :
∀u ∈ E, ϕ(u,u) ≥ 0 ;

(d) ϕ est définie :
∀u ∈ E, (ϕ(u,u) = 0 =⇒ u = 0) ;
3. et 4. prouvent que ϕ est définie positive.
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La norme euclidienne associée est
||.|| : E→R,u 7→

√
⟨u,u⟩.

2.2 Produits scalaires usuels

☞ Canonique sur Rn :
〈
(x1, . . . ,xn), (y1, . . . , yn)

〉
=

n∑
i=1

xiyi ,

de norme associée : ||(x1, . . . ,xn)|| =

√√ n∑
i=1

x2
i .

Pour ce produit scalaire, la base canonique deRn est orthonormale.

☞ Canonique surMn,1(R) : ⟨X,Y⟩ = XT.Y =
n∑
i=1

xiyi

(noter que XTY ∈M1(R) et on identifieM1(R) à R)

de norme associée : ||X|| =
√

XT.X =

√√ n∑
i=1

x2
i .

Pour ce produit scalaire, la base canonique de Mn,1(R) est ortho-
normale.

☞ Canonique surMn(R) : ⟨A,B⟩ = Tr
(
AT.B

)
=

∑
1≤i,j≤n

ai,jbi,j

de norme associée : ||A|| =
√

Tr
(
AT.B

)
=

√ ∑
1≤i,j≤n

a2
i,j .

Pour ce produit scalaire, la base canonique deMn(R) est orthonor-
male.

☞ Sur C([a ; b] ,R) : ⟨f ,g⟩ =
∫ b

a
f (t)g(t)dt définit un produit sca-

laire.

2.3 Identités remarquables... le p.s. est commutatif et distributif
∀(u,v) ∈ E2, ||u + v||2 = ||u||2 + 2⟨u,v⟩+ ||v||2 ;

∀(u,v) ∈ E2,⟨u,v⟩ =
1
2

(
||u + v||2 − ||u||2 − ||v||2

)
.

∀(u,v) ∈ E2,⟨u,v⟩ =
1
4

(
||u + v||2 − ||u − v||2

)
.

2.4 Théorème de Pythagore
• u ⊥ v⇐⇒ ||u + v||2 = ||u||2 + ||v||2.

• Si la famille (ui)1⩽i⩽n est orthogonale, alors

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

n∑
i=1

ui

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

=
n∑
i=1

||ui ||2.

2.5 Inégalité de Cauchy-Schwarz
∀(u,v) ∈ E2, |⟨u,v⟩| ≤ ||u|| ||v||,

avec égalité si, et seulement si, u et v sont colinéaires.

On utilise souvent cette inégalité en l’élevant au carré (évitant les |.| et√
.) :

∀(u,v) ∈ E2, ⟨u,v⟩2 ≤ ||u||2 ||v||2.

2.6 Inégalité triangulaire
∀(u,v) ∈ E2, ||u + v|| ≤ ||u||+ ||v||,

avec égalité si, et seulement si, u et v sont colinéaires de même sens, c’est-
à-dire :

∃k ∈ [0 ; +∞[ ,v = ku ou u = kv.

2.7 Vecteurs, familles, sous-espaces ortogonaux
① Par définition : u ⊥ v⇐⇒ ⟨u,v⟩ = 0.

② La famille (u1, . . . ,up) est orthogonale si ses vecteurs sont deux à deux
orthogonaux.

③ La famille (u1, . . . ,up) est orthonormale si ses vecteurs sont unitaires
et deux à deux orthogonaux.

Autrement dit :

(u1, . . . ,up) est orthonormale ssi ∀(i, j) ∈ ⟦1; n⟧2 ,
〈
ui ,uj

〉
= δi,j =

1 si i = j

0 si i , j

④ Les sous-espaces F et G de E sont orthogonaux si
∀(u,v) ∈ F×G,u ⊥ v = 0.

2.8 Orthogonal d’un sous-espace
Soit F un sous-espace de E. On appelle orthogonal de F, noté F⊥, l’en-
semble

F⊥ déf.=
{
u ∈ E|∀v ∈ F,u ⊥ v

}
.

F⊥ est toujours un sous-espace vectoriel de E.

2.9 Liberté des familles orthogonales et orthonormales
① Toute famille orthogonale de vecteurs tous non nuls est libre.

② Toute famille orthonormale de vecteurs est libre.
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2.10 Caractérisation de l’orthogonalité de sous-espaces
Soit F = Vect(u1, . . . ,up) et G = Vect(v1, . . . , vq). Alors

F⊥G si, et seulement si, ∀(i, j) ∈ ⟦1; p⟧× ⟦1; q⟧ , ui ⊥ vj .

2.11 Procédé d’orthonormalisation de Gram-Schmidt
Soit (u1, . . . ,up) une famille libre de vecteurs. On pose :

① e1 =
u1

||u1||
;

② successivement pour tout k ∈ ⟦2; p⟧, ek =

uk −
k−1∑
i=1

⟨uk , ei⟩ei∣∣∣∣∣∣∣
∣∣∣∣∣∣∣uk −

k−1∑
i=1

⟨uk , ei⟩ei

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
.

Alors

① la famille (e1, . . . , ep) est orthonormale,

② ∀k ∈ ⟦1; p⟧ , Vect
(
u1, . . . ,uk) = Vect

(
e1, . . . , ek).

2.12 Espace euclidien
On appelle espace euclidien tout R−espace vectoriel de dimension finie
muni d’un produit scalaire.

2.13 Existence et intérêt des bases orthonormales
① Dans tout espace euclidien, il existe des bases orthonormales.

② Soit B = (e1, . . . , en) une base orthonormale d’un espace euclidien E.
Alors :

•coordonnées et norme d’un vecteur :

∀x ∈ E, x =
n∑
i=1

⟨x,ei⟩ei et ||x||2 =
n∑
i=1

⟨x,ei⟩2.

•produit scalaire de deux vecteurs〈
x,y

〉
=

n∑
i=1

xiyi =
n∑
i=1

⟨x,ei⟩
〈
y,ei

〉
,〈

x,y
〉

= XTY et ||x|| =
√

XTX si X =MB(x) et Y =MB(y).

•matrice d’un endomorphisme
Soit f ∈ L(E) et M = (mi,j ) =MB(f ). Alors :

∀(i, j) ∈ ⟦1; n⟧ , mi,j =
〈
f (ej , ei

〉
.

2.14 LE supplémentaire orthogonal d’un sous-espace
Pour tout sous-espace vectoriel F d’un espace euclidien, F⊥, appelé sup-
plémentaire orthogonal de F, est caractérisé par les propriétés équivalentes
suivantes :
① F⊕F⊥ = E et F⊥ F⊥ ;
② F⊥ F⊥ et dim

(
F⊥

)
= dim(E)−dim(F) ;

③ pour tout sous-espace G de E, on a : G⊥ F⇒G ⊂ F⊥ ;
④ en concaténant une base orthogonale de F et une base orthogonale de
F⊥, j’obtiens une base orthogonale de E.

2.15 Les supplémentaires orthogonaux vont par paire(
F⊥

)⊥
= F, ou encore :

(
G = F⊥

)
⇐⇒

(
F = G⊥

)
.

2.16 Projection orthogonale
Soit F sous-espace vectoriel de l’espace euclidien E. La projection ortho-
gonale sur F notée pF est la projection sur F dans la direction de (ou
parallèlement à) F⊥.
En conséquence des propriétés générales des projecteurs :

Im(pF) = SEP(pF,1) = F et Ker(pF) = SEP(pF,0) = F⊥.
2.17 Calcul du projeté orthogonal d’un vecteur

Soit pF la projection orthogonale sur F ⊂ E. On a :

① v = pF(u)⇐⇒

v ∈ F

v −u ∈ F⊥

② pour toute base orthonormale (e1, . . . , em) de F, pF(u) =
m∑
i=1

⟨u,ei⟩ei .

2.18 Inégalité de Bessel
∀u ∈ E, ||pF(u)|| ≤ ||u||.

2.19 Meilleure approximation en norme
Soit F un sous-espace vectoriel d’un espace euclidien E. Soit u un vecteur
de E. Alors min

v∈F
||u − v|| existe et est atteint uniquement pour v = pF(u) :

∀v ∈ F,
(
v = pF(u) ⇐⇒ ||u − v|| = min

w∈F
||u −w||

)
2.20 Distance d’un vecteur à un sous-espace

Soit F un sous-espace vectoriel d’un espace euclidien E. Soit u un vecteur
de E. Alors la distance de u à F, notée d(u,F) est définie par

d(u,F) = min
v∈F
||u − v|| = ||u − pF(u)||.
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