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Exercice 1 Norme et morphisme injectif
Soit (F,N) un espace vectoriel normé. Soit E un R-espace vectoriel.
Soit u ∈ L(E,F). On suppose que u est injective.
Montrer que la fonction N ◦u : x 7→N(u(x)) est une norme sur E.

Solution (Ex.1 – Norme et morphisme injectif )
Vérifions les 4 axiomes d’une norme.
Soit (x,y) ∈ E2 et λ ∈R.
(i) Comme N est positive, N ◦u est positive.
(ii) Si N ◦ u(x) = 0 alors u(x) = 0 car N est une norme, donc x = 0 car
u est injective.
(iii) N ◦ u(λx) = N(λu(x)) = |λ|N ◦ u(x) car u est linéaire et N est une
norme.
(iv) N◦u(x+ y) = N(u(x) +u(y)) ⩽N◦u(x) + N◦u(y) car u est linéaire
et N est une norme.

Exercice 2 Une norme sur R2

Pour tout x = (x1,x2) de R2, on pose M(x) = max(|x1|, |x1 + x2|).

1. Montrer que M est une norme sur R2.

2. Dessiner la boule unité fermée de M.

3. Trouver des constantes λ et µ strictement positives telles que
∀x ∈R2, M(x) ⩽ λ ||x||2 et ||x||2 ⩽ µM(x),

les constantes λ et µ étant aussi petites que possible.

Solution (Ex.2 – Une norme sur R2)

1. On vérifie sans problème les 4 axiomes d’une norme.

2. |x1| ⩽ 1⇐⇒−1 ⩽ x1 ⩽ 1,
|x1 + x2| ⩽ 1⇐⇒−1 ⩽ x1 + x2 ⩽ 1⇐⇒−1− x1 ⩽ x2 ⩽ 1− x1

La boule unité fermée est le parallélogramme suivant :
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3. B(0,1) est incluse dans le cercle de centre (0,0) et de rayon
√

5 et
contient le cercle de centre (0,0) et de rayon 1/

√
2.

• Donc M(x) = 1⇒ ||x||2 ⩽
√

5.
Par homogénéité, pour tout vecteur x non nul,

||x||2 =

∣∣∣∣∣∣
∣∣∣∣∣∣M(x)
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Comme ||(−1,2)||2 =
√

5 =
√

5M((−1,2)) puisque M((−1,2)) = 1, µ =√
5.
• De même, ||x||2 = 1/

√
2⇒ M(x) ⩽ 1 donc ||x||2 = 1⇒ M(x) ⩽

√
2,

donne par un raisonnement analogue, pour tout x , 0, M(x) ⩽√
2 ||x||2, avec égalité pour x = (1/2,1/2), donc λ =

√
2.

Exercice 3 Normes et convergence dans R[X]

Pour tout polynôme réel P, écrit sous la forme P =
+∞∑
k=0

akXk, on note

||P|| = sup
x∈[0 ; 1/2]

|P(x)| et N(P) =

∣∣∣∣∣∣∣
+∞∑
k=0

ak

∣∣∣∣∣∣∣+
+∞∑
k=1

|ak |
k

.

1. Prouver que ||.|| et N sont des normes sur R[X].

2. Montrer que la suite (Xn)n∈N converge vers 0 pour la norme ||.|| et
vers 1 pour la norme N.

3. Construire une norme sur R[X] pour laquelle la suite (Xn)n∈N
converge vers le polynôme X.
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Solution (Ex.3 – Normes et convergence dans R[X])

1. • ||.|| est la norme infinie sur [0 ; 1/2]. Pour la séparation, on notera
que ||P|| = 0 entraîne que P possède une infinité de racines donc est
le polynôme nul.
• Pour N, on notera qu’il n’y a aucun problème de convergence des
séries puisque pour tout polynôme P de coefficients (ak), la suite
(ak) est nulle à partir d’un certain rang. Pour la séparation, on no-

tera que
+∞∑
k=1

|ak |
k

= 0 entraîne ∀k ⩾ 1, ak = 0, et qu’alors

∣∣∣∣∣∣∣
+∞∑
k=0

ak

∣∣∣∣∣∣∣ = 0

entraîne de plus a0 = 0.

2. • ||Xn|| =
1
2n donc ||Xn − 0|| −−−−−−→

n→+∞
0 : Xn ||.||

−→
n→+∞

0

• N(Xn − 1) = 0 +
1
n

donc N(Xn − 1) −−−−−−→
n→+∞

0 : Xn N−→
n→+∞

1

3. Je propose M : P 7→ |a0|+

∣∣∣∣∣∣∣
+∞∑
k=0

ak

∣∣∣∣∣∣∣+
+∞∑
k=2

|ak |
k

... à verifier !

Exercice 4 Trois normes sur un espace de dimension infinie
Dans E = C1([[0 ; 1] ,R), on considère :

N : E→R, f 7→ |f (0)|+
∫ 1

0

∣∣∣f ′(t)∣∣∣dt et

ν : E→R, f 7→ |f (1)|+
∫ 1

0

∣∣∣f ′(t)∣∣∣dt.
1. Montrer que N et ν sont des normes sur E.

2. a) Pour f ∈ E, quelle relation y a-t-il entre f (0), f (1) et
∫ 1

0
f ′(t)dt ?

b) Montre que : ∀f ∈ E,ν(f ) ≤ 2N(f ).
c) Établir une inégalité majorant N(f ) à l’aide de ν(f ).

3. Soit M : f 7→ |f (0)|+ sup
[0 ; 1]

∣∣∣f ′∣∣∣ = |f (0)|+
∣∣∣∣∣∣f ′∣∣∣∣∣∣∞. On admet que M est

une norme sur E.

a) On pose, pour tout n ∈N∗, fn : [0 ; 1]→R,x 7→ xn.
Calculer N(fn) et M(fn).

b) M et N sont-elles des normes équivalentes ?

Solution (Ex.4 – Trois normes sur un espace de dimension infinie)

1. • N et ν sont positives et homogènes par positivité et homogénéité
de la valeur absolue, et positivité de l’intégrale.

•N(f ) = 0 (resp. ν(f ) = 0) entraîne


|f (0)| = 0 (resp. f (1) = 0)∫ 1

0

∣∣∣f ′(t)∣∣∣dt = 0
Or

|f ′ | est continue et positive, d’intégrale nulle sur [0 ; 1], donc f ′ est
nulle sur [0 ; 1], donc f est constante sur [0 ; 1]. Comme f (0) = 0
(resp. f (1) = 0), f est la fonction nulle de E. N et ν vérifient la
séparation.

2. a)
∫ 1

0
f ′(t)dt =

[
f (t)

]1
0

= f (1)− f (0)

b) Soit f ∈ E. De 2.a) je tire : f (1) = f (0) +
∫ 1

0
f ′(t)dt puis |f (1)| ≤

|f (1)|+
∫ 1

0

∣∣∣f ′(t)∣∣∣dt ≤N(f )

ν(f ) = |f (0)|+
∫ 1

0
f ′(t)dt ≤N(f ) + N(f ) ≤ 2N(f )

c) On raisonne de même avec : |f (0)| ≤ |f (1)| +
∫ 1

0

∣∣∣f ′(t)∣∣∣dt ≤ ν(f )

issue de 2.a). On obtient : N(f ) ≤ 2ν(f ).

Commentaire : ∀f ∈ E,
1
2

N(f ) ≤ ν(f ) ≤ 2N(f ), on dit que N et ν

sont équivalentes.

Exercice 5 Limites de puissances d’une matrice
Soit A et B deux matrices deMn(K) telles que : Ak −−−−−−→

k→+∞
B. Montrer
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que B2 = B.

Solution (Ex.5 – Limites de puissances d’une matrice)

1. Ak −−−−−−→
k→+∞

B entraîne (suite extraite) A2k −−−−−−→
k→+∞

B. Mais A2k =

(Ak)2 −−−−−−→
k→+∞

B2 par continuité du produit matriciel. Par unicité de

la limite : B2 = B.

2. Avec A = B, on a par récurrence : ∀k ∈N∗,Ak = B, donc Ak −−−−−−→
k→+∞

B.

3. Une matrice B est limite de la suite des puissances d’une matrice
si, et seulement si, B2 = B.

Exercice 6 Exponentielle de matrices particulières

Soit M ∈Mn(K) et, pour tout k deN, Sk =
k∑

j=0

1
j!

Mj . On appelle expo-

nentielle de M, si elle existe, la limite de la suite (Sk)k∈N, notée eM.

1. Dans les cas suivants, montrer que eM existe et la calculer :

a) M =

a 0

0 b

, b) M =

0 a

a 0

, c) M =


0 a b

0 0 c

0 0 0

.

2. On suppose M diagonalisable, et on appelle D ∈ Mn(K) une ma-
trice diagonale semblable à M. Montrer que eD et eM existent, et
donner une relation entre elles.

3. Calculer eM pour M =

 1 −1

−1 1

.

Solution (Ex.6 – Exponentielle de matrices particulières)

1. Dans les cas suivants, montrer que eM existe et la calculer :

a) M =

a b

0 c

, M2 =

a2 ab+ bc

0 b2

, M3 =

a3 a2b+ abc+ bc2

0 b2

,

et par récurrence :

∀k ∈N, Mk =


ak b

k−1∑
i=0

ak−1−ici

0 bk

 =



ak b
ak − ck

a− c
0 bk

 si a , c,ak bkak−1

0 bk

 si a = c.

k∑
j=0

aj

j!
−−−−−−→
j→+∞

ea,
k∑

j=0

bj

j!
−−−−−−→
j→+∞

eb, donc :

• pour a , c, Sk −−−−−−→
k→+∞

ea
b(ea − ec)
a− c

0 ec

 déf.= eM.

• pour a = c, Sk −−−−−−→
k→+∞

ea bea

0 ec

 déf.= eM.

b) M2 = a2I2 donc, en posant N =

0 1

1 0

, M2k = a2kI2 et M2k+1 =

a2k+1N.

S2j =


j∑

i=0

a2i

(2i)!

 I2 +


j−1∑
i=0

a2i+1

(2i + 1)!

N

Or :
j∑

i=0

a2i

(2i)!
−−−−−−→
j→+∞

ea + e−a

2
, et :

j−1∑
i=0

a2i+1

(2i + 1)!
−−−−−−→
j→+∞

ea − e−a

2

donc S2j −−−−−−→
j→+∞

1
2

ea + e−a ea − e−a

ea − e−a ea + e−a


Lycée Henri Poincaré 3/4 ●❏



PC Ch. 8 : Espaces vectoriels normés (I) 2025–2026

Comme S2j+1 =


j∑

i=0

a2i

(2i)!

 I2 +


j∑

i=0

a2i+1

(2i + 1)!

N,

donc S2j+1 −−−−−−→
j→+∞

1
2

ea + e−a ea − e−a

ea − e−a ea + e−a


Finalement : Sk −−−−−−→

k→+∞

1
2

ea + e−a ea − e−a

ea − e−a ea + e−a

 déf.= eM.

c) M =


0 a b

0 0 c

0 0 0

, M2 =


0 0 ac

0 0 0

0 0 0

 et ∀k ≥ 3,Mk = 0.

La série n’a que trois termes non nuls, donc converge : eM =
1 a b+

ac

2
0 1 c

0 0 1

.

2. On suppose M diagonalisable.
Soit P ∈ GLn(K) et D ∈Mn(K) diagonale telles que

D = P−1MP.
En notant D = diag(λ1, . . . ,λn), on a : ∀j ∈ N, Dj =
diag(λj

1, . . . ,λ
j
n).

Notons pour tout k deN, Tk =
k∑

j=0

1
j!

Dj .

Donc Tk −−−−−−→
k→+∞

diag(exp(λ1), . . . ,exp(λn)) déf.= eD.

Comme : ∀j ∈N, Mj = PDjP−1, on a : ∀k ∈N,Sk = PTkP−1.

Donc : Sk −−−−−−→
k→+∞

PeDP−1 déf.= eM.

Ainsi eD et eM existent, et PeDP−1 = eM.

3. On a par récurrence : ∀n ∈N∗,Mn = 2n−1M.
n∑

k=0

1
k!

Mk = I2 +

 n∑
k=1

1
k!

2k−1

M = I2 +
1
2

 n∑
k=1

1
k!

2k

M

n∑
k=0

1
k!

Mk −−−−−−→
n→+∞

I2 +
1
2

(e2 − 1)M d’où exp(M) =
1
2

1 + e2 1− e2

1− e2 1 + e2


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