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Norme et morphisme injectif

Soit (F,N) un espace vectoriel normé. Soit E un R-espace vectoriel.
Soit u € L(E,F). On suppose que u est injective.

Montrer que la fonction No u : x = N(u(x)) est une norme sur E.

Solution (Ex.1 - Norme et morphisme injectif)
Vérifions les 4 axiomes d’une norme.

Soit (x,v) €eE*et A € R.

(i) Comme N est positive, N o u est positive.
(ii) Si No u(x) =
u est injective.

0 alors u(x) = 0 car N est une norme, donc x = 0 car

(iii) No u(Ax) = N(Au(x)) = |A|N o u(x) car u est linéaire et N est une
norme.
(iv) Nou(x+7v) = N(u(x)+u(v)) < Nou(x)+Nou(p) car u est linéaire

et N est une norme.

Exercice 2| Une norme sur R?

Pour tout x = (x1,x,) de IR?, on pose M(x) = max(|x;], |x; + x5]).
1. Montrer que M est une norme sur R”.
2. Dessiner la boule unité fermée de M.

3. Trouver des constantes A et p strictement positives telles que
Yx € R2, M(x) < Al et [lxll, < uM(x),
les constantes A et y étant aussi petites que possible.

Solution (Ex.2 — Une norme sur R?)
1. On vérifie sans probleme les 4 axiomes d’une norme.

2. |X1| <
|x) + x| <

le=-1<x <1,

l &= - 1 X1+ <lesS-1-x<x<1-x

La boule unité fermée est le parallélogramme suivant :
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3. B(0,1) est incluse dans le cercle de centre (0,0) et de rayon V5 et
contient le cercle de centre (0,0) et de rayon 1/V2.
e Donc M(x) =1 = ||x||, < V5.
Par homogénéité, pour tout vecteur x non nul,

1
M(X)(M(x)x) i < M(x)V5

Comme ||(-1,2)||, = V5 = V5M((~1,2)) puisque M((-1,2)) = 1, U
V5.

e De méme, ||x|, = 1/V2 = M(x) < 1 donc |Jx]|, = 1 = M(x) < V2,
donne par un raisonnement analogue, pour tout x = 0, M(x)
V2||x]|,, avec égalité pour x =(1/2,1/2), donc A = V2.

Normes et convergence dans R[X]
+00

Pour tout polynome réel P, écrit sous la forme P = Zaka, on note

Xl = X
Il e

N

k=0
O | |
IIPIl= sup [P(x) (P) = ak|+ ) -
x€[0;1/2] ;)' ; k

1. Prouver que ||.|| et N sont des normes sur R[X].

2. Montrer que la suite (X"),en converge vers 0 pour la norme ||.|| et
vers 1 pour la norme N.

3. Construire une norme sur R[X] pour laquelle la suite (X"),en
converge vers le polynome X.
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Solution (Ex.3 — Normes et convergence dans R[X])

p—

. o ||l est la norme infinie sur [0; 1/2]. Pour la séparation, on notera
que ||P|| = 0 entraine que P possede une infinité de racines donc est
le polyndome nul.

e Pour N, on notera qu’il n’y a aucun probléme de convergence des
séries puisque pour tout polyndome P de coefficients (ay), la suite

(ar) est nulle a partir d’un certain rang. Pour la séparation, on no-
+00

)

k=0

+00
a N )
tera que ZlTkl = 0 entraine Yk > 1,a; = 0, et qu’alors =0
k=1
entraine de plus ay = 0.

1 .
2. ¢ X'l = 5 done X" =0l ——0: X" L1 0

n—-+oo n—+o00

|
e N(X"=1)= 0+~ donc N(X"=1) — 0: X" =5 1
n

n—+o00 n—+oo

+00

S

k=0

Exercice 4 | Trois normes sur un espace de dimension infinie

Dans E=C!([[0; 1],IR), on considére :

+00

Pyl

k=2

3. Je propose M : P — |ag| + a verifier!

N:E—->R,f —|f(0)+ 1

()|dt et

vV:E->R f—|f(1)+

1. Montrer que N et v sont des normes sur E.

)| dt.
1
2. a) Pour f €E, quelle relation y a-t-il entre f(0), f(1) et J f(t)dt?
0
b) Montre que: Vf € E,v(f) < 2N(f).
¢) Etablir une inégalité majorant N(f) a l'aide de v(f).
3. Soit M: f —|f(0 =1[f(0)

‘[l _. On admet que M est
(o)

une norme sur E.
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a) On pose, pour tout n € IN*, f,:[0; 1] > R, x > x™.
Calculer N(f,) et M(f,).

b) M et N sont-elles des normes équivalentes?

Solution (Ex.4 — Trois normes sur un espace de dimension infinie)

1. e N et v sont positives et homogenes par positivité et homogénéité
de la valeur absolue, et positivité de I'intégrale.

|f(10)|=O (resp. f(1) =

Or
H|dt=0

e N(f) =

0 (resp. v(f) = 0) entraine

|f’| est continue et positive, d’intégrale nulle sur [0; 1], donc f” est
nulle sur [0; 1], donc f est constante sur [0; 1]. Comme f(0) =0
(resp. f(1) = 0), f est la fonction nulle de E. N et v vérifient la
séparation.

1
3 | rae=[rn], = r)- o)

b) Soit f € E. De 2.a) je tire : f(1) =

1

+J01f’(t)dt puis |f (1) <

(1) + H)|dt <N(f)

1
v(f) = |f<0)|+f0 £(Hdt <N(f)+N(f) < 2N(f)

1
¢) On raisonne de méme avec : |f(0

I <If (D) +
issue de 2.a). On obtient : N(f) < 2v(f).

1
Commentaire : Vf € E, EN(f) v(f)<2
sont équivalentes.

Exercice 5| Limites de puissances d'une matrice

Soit A et B deux matrices de M,,(K) telles que : A¥ ——— B. Montrer

k—+o0

Hldt < v(f)

N(f), on dit que N et v
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2 _
que B”=B. a b a’ ab+bc a®> a’b+abc+ bc?
a) M= ,M? = b M3 = , ,
Solution (Ex.5 - Limites de puissances d'une matrice) 0 ¢ 0 b 0 b
1. A¥ — B entraine (suite extraite) A% ——— B. Mais A% = et par récurrence :
k—+o0 k—+c0 ak — Ck
(AK)2 PR B2 par continuité du produit matriciel. Par unicité de k-1 a b -
—+00 k k=1-1 i a—=c¢ S1d#¢,
la limite : B2 = B. Vke N, MFK= 4 bZ(;a c - J10 bk
’ 1=
2. Avec A =B, ona par récurrence: Vk € IN*, Ak =B, donc Ak —— B. k ak  bkak-! .
k—+o00 0 b Sla=_c.
: L : : , . 0o bt
3. Une matrice B est limite de la suite des puissances d’une matrice
si, et seulement si, B2 = B. k. 4 k
———ef Yy — ——e? donc:
— jl joteo — j! joteo
Exponentielle de matrices particuliéres = =
Ky o blef-¢)
_ . € T | déf.
Soit M € M, (K) et, pour tout k de IN, S = Z,—|M]. On appelle expo- e pour a # ¢, Sy —— a—c = eM,
i=0 J: k=t | g e’
nentielle de M, si elle existe, la limite de la suite (Sy)ren, notée eM. . .
. M e’ be|ger
1. Dans les cas suivants, montrer que e existe et la calculer : epoura=c, Sy —— =e".
0 ) k—>+oo | 0 ef
a
M a 0 bl M 0 a M 0 1
a) M= 0 b ’ ) N 4 0 ’ ) =10 0 ¢} b) M? = 4?1, dong, en posant N = , M2k = a2k12 et M2k+1l —
000 10
. . aZk“N
2. On suppose M diagonalisable, et on appelle D € M, (KK) une ma- ']. i1 ‘
trice diagonale semblable a M. Montrer que eP et eM existent, et a® a?i*l
. 82 Z— Iz + N
donner une relation entre elles. ] - (2i)! - (2i +1)!
1= 1=
M 1 -1 i =1 5iq
3. Calculer eV pour M = : o Z as! et +e™? . Z a”'* e’ —e™?
B r: ,et: -
11 L (20)] joreo 2 [ (2i+1)] joteo 2
i=0 =0
Solution (Ex.6 — Exponentielle de matrices particuliéres) 1|e"+e™® ef—e™
donc S;; —— 5
1. Dans les cas suivants, montrer que eM existe et la calculer : Jote e?—e™® efte™
Lycée Henri PoINCARE 3 ol
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i 22 ] 2i+1 3. On a par récurrence : Vne N*,M" = 2”_1M
a ’
Comm682]‘+1: Z ]12"' Z (2i+1) ] , =1 k ol k—1 1 L
p = ZFM =1+ Zﬁz M=12+— 25 M
1le?+e™@ ef—e™@ - -
doncSQjH.—)2 P 1 l+e? 1-¢?
Joteo e?—e™ et+e™ Z —MF ——— 1, + =(e? = 1)M d’ot1 exp(M
k‘ n—+oo 2 1_ 2 1
k=0 e +e?
1le?+e™ e—e™|qsr
Finalement : Sy —— — ="e".
k—+o0 2 el — el ol 4 o=a
0 a b 0 0 ac
)M=|0 0 c[|M>=|0 0 0]etVk=3M=0.
0 0O 0 0 O
La série n’a que trois termes non nuls, donc converge : eM —
ac
1 b+ —
4 2
0 1 c
00 1

2. On suppose M diagonalisable.
Soit P € GL,(K) et D € M,,(KK) diagonale telles que
D =P IMP.
En notant D = diag(Ay,...,A,), on a : Vj € N, D/
diag(A,..., \).

k
1.
Notons pour tout k de IN, Ty = Z—'D]
=0 /"
. déf. p
Donc Ty k—>dzag(exp(Al),...,exp()Ln)) ="e".
—+00
Comme:VjeN, M/ =PD/P~! ona:VkelN,S; =PT,P~\.
Donc : Sy —— PePp-1 4 &M,

k—+o0

Ainsi eP et eM existent, et PePP~! = eM,
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