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Un corrigé du D.S. n° 4 : Sujet E3A PC 2021

Exercice 1

1. On reconnaît une série alternée. La suite
(
1

n

)
n≥1

est positive, décroissante et tend vers 0.

D’après le critère spécial des séries alternées, la série
∑

n≥1

(−1)n+1

n
converge.

2.a) Pour tout n ≥ 0,
∫ 1

0

x2n(1− x) dx =
1

2n+ 1
− 1

2n+ 2
=

1

(2n+ 1)(2n+ 2)
.

Pour x ∈ [0, 1[,
+∞∑
n=0

x2n(1− x) = (1− x)
+∞∑
n=0

x2n =
1− x

1− x2
=

1

1 + x
.

La série
∑
n≥0

1

(2n+ 1)(2n+ 2)
converge, donc on peut appliquer le théorème d’intégration terme à

terme à la série de fonctions continues sur [ 0 ; 1[ fn : x 7→ x2n(1 − x) simplement convergente, de
somme continue : on obtient

+∞∑
n=0

∫ 1

0

x2n(1− x) dx =

∫ 1

0

dx

1 + x
.

2.b Pour tout N ∈ N,
N∑

n=0

(
1

2n+ 1
− 1

2n+ 2

)
=

2N+2∑
k=1

(−1)k+1

k
.

En faisant tendre N vers l’infini,
+∞∑
n=1

(−1)n+1

n
=

∫ 1

0

dx

1 + x
= ln(2).

3. Il s’agit de déterminer l’ensemble des x tels que la série
∑

n≥1

(−1)n+1xn

n
. converge.

— Si |x| > 1, la série diverge grossièrement car
∣∣∣∣(−1)n+1xn

n

∣∣∣∣ −−−−→n→+∞
+∞.

— Si |x| < 1, la série est absolument convergente car
∣∣∣∣(−1)n+1xn

n

∣∣∣∣ ⩽ |x|n.

— Si x = 1, la série converge et vaut ln(2).

— Si x = −1, la série diverge car
(−1)n+1xn

n
=

−1

n
.

Conclusion : la fonction est définie sur ]− 1, 1].

4.a
∫ 1

0

1− x

1 + x2
dx =

∫ 1

0

dx

1 + x2
−
∫ 1

0

x

1 + x2
dx = [Arctan(x)]10 −

[
1

2
ln

1

1 + x2

]
=

π

4
− 1

2
ln(2).

4.b On procède comme pour les questions précédentes, avec gn(x) = (−1)nx2n(1− x).

La série de fonctions continues
∑

gn converge simplement sur [ 0 ; 1] avec pour somme :

S(x) = (1− x)
+∞∑
n=0

(−x2)n =
1− x

1 + x2
, encore valable pour x = 1. S est continue.

∫ 1

0

x2n(1 − x)dx =
1

2n+ 1
− 1

2n+ 2
=

1

(2n+ 1)(2n+ 2)
∼

n→+∞

1

4n2
donc la série de terme général∫ 1

0

|gn(x)| dx converge.
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On peut donc appliquer le théorème d’interversion.

On obtient finalement :
+∞∑
n=0

(−1)n

(2n+ 1)(2n+ 2)
=

π

4
− 1

2
ln(2).

Exercice 2

5. Comme f est continue sur I, le théorème fondamental de l’analyse assure que la fonction F1 :

x 7−→
∫ x

a

f(t) dt est de classe C1 sur I et vérifie F′
1 = f.

6. La fonction F(x) =

∫ x

−∞
f(t) dt est bien définie sur I.

Pour tout x ∈ I, F(x) =
∫ −1

−∞
f(t) dt+

∫ x

−1

f(t) dt. Le premier terme est constant, et le second est de

classe C1 d’après la question précédente. Ainsi, F′ = f, et F est de classe C1 sur I.

7. Pour tout k ∈ N, la fonction fk(t) = tket est continue sur ] −∞,+∞[ et vérifie, par croissances

comparées, |fk(t)| = o

(
1

t2

)
quand t → −∞.

Comme par parité t 7→ 1

t2
est intégrable sur ] −∞,−1], le théorème de comparaison assure que fk

est intégrable sur ]−∞,−1].

8. a) Bien-définition

Toute fonction f ∈ En est combinaison linéaire de e0, . . . , en, donc t 7→ f(t)et est intégrable sur
]−∞, x]. Ainsi L est bien définie.

b) Linéarité

Pour f, g ∈ En et λ ∈ R, L(λf + g) = λL(f) + L(g), par linéarité de l’intégrale. Donc L est linéaire.

9. Pour f ∈ En, la fonction g(x) = L(f)(x) est de classe C1 sur R et vérifie g′(x) = −e−x

∫ x

−∞
f(t)etdt+

e−xf(x)ex = −g(x) + f(x). Autrement dit, g est solution de l’équation différentielle y′ + y = f(x).

10. Si f ∈ ker(L), alors g = L(f) = 0, et donc comme g′+ g = f , on a f = 0. Ainsi, Ker(L) = {0En}.

11.a) Pour tout x ∈ R, L(e0)(x) = e−x

∫ x

−∞
et dt = 1. Donc L(e0) = e0.

11.b) Pour k ∈ {0, . . . , n − 1}, on effectue une intégration par parties en dérivant t 7→ tk+1 avec
lim

t→−∞
tk+1et = 0 :

L(ek+1)(x) = e−x

∫ x

−∞
tk+1et dt = xk+1 − (k + 1)L(ek)(x).

Ainsi, L(ek+1) = ek+1 − (k + 1)L(ek).

11.c) Par récurrence sur k, à l’aide de la relation précédente, on montre que L(ek) ∈ En pour tout
k de J 0 ; nK. Ainsi, L est un endomorphisme de En.

12. L est injective et En est de dimension finie, donc L est un automorphisme de En.

13. Étude spectrale

Soit λ une valeur propre de L et f un vecteur propre associé.

13.a) 0 n’est pas valeur propre car L est injective, donc λ ̸= 0.
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13.b) f vérifie L(f) = λf. Comme L(f) = g implique g′+g = f , on obtient λf ′+λf = f ,c’est-à-dire
λf ′ + (λ− 1)f = 0.

13.c) Distinguons deux cas :
— Si λ = 1, alors f ′ = 0 et f est constante.

— Si λ ̸= 1, les solutions sont de la forme f(x) = Ke

(1
λ

−1
)
x
, où K ∈ R.

13.d) Si λ = 1, les solutions sont constantes donc polynomiales.

Si λ ̸= 1, les solutions sont du type x 7→ Keαx avec α ̸= 0 donc ne sont pas polynomiales.

13.e La seule valeur propre de L est donc λ = 1, et E1(L) = Vect(e0). Ainsi, L n’est pas diagonalisable
puisque

∑
λ∈Sp(L)

dim(Eλ) = 1 < n+ 1 = dim(En).

14. Pour f ∈ En et g = L(f), on a g′ + g = f, donc f = (D + Id)(g), d’où L−1 = D+ Id.

15. Dans la base canonique B, la matrice de L−1 est M =



1 1 0 · · · 0

0 1 2 · · · 0
... . . . . . . ...

0 · · · 0 1 n

0 · · · 0 0 1


.

car L−1(ek) = (D + Id)(ek) =

{
e0 si k = 0

kek−1 + ek si k ∈ J 1 ; nK

16. La matrice M est triangulaire supérieure à coefficients diagonaux égaux à 1, donc Sp(L−1) = {1}.

Comme L(f) = λf ⇐⇒ f =
1

λ
L(f) ⇐⇒ L−1(f) =

1

λ
f , Sp(L) =

{
1

λ
, λ ∈ Sp(L−1)

}
= {1}

Exercice 3

17. Soient r1 et r2 les racines de l’équation caractéristique associée. D’après les relations coeffi-

cients–racines, on a :

{
r1r2 = −1,

r1 + r2 = 1.

Le discriminant vaut ∆ = 5 > 0, donc les racines sont réelles et de signes contraires. On peut les

écrire : r1 = γ, r2 = −1

γ
, avec γ =

1 +
√
5

2
> 1.

18.a) Pour n ≥ 1, on a an = bn−1, donc : bn+1 = bn + bn−1.

18.b) Les racines de l’équation caractéristique associée à (bn) sont γ et −1

γ
. Ainsi, (bn) est combi-

naison linéaire des suites (γn) et ((−1/γ)n), donc (2) ne convient pas. Et avec (1), l’expression ne

vaut pas 0 lorsque n = 0. Donc (3) est la bonne réponse et bn =
1√
5
(γn − (−1)nγ−n) .

18.c) Comme an+1 = bn, on obtient : an =
1√
5

(
γn−1 + (−1)nγ−(n−1)

)
.

18.d) Pour tout n ∈ N, an + γbn =
γn−1 + γn+1

√
5

=
γn

√
5

(
γ +

1

γ

)
= γn.
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19. En posant M =

0 1

1 1

 , et Vn =

an

bn

 , on vérifie directement que Vn+1 = MVn.

20. Le polynôme caractéristique de M est χM(µ) = µ2 − µ− 1. Ses racines sont γ et −1

γ
, distinctes.

Ainsi, M est diagonalisable.

Les sous-espaces propres sont : Eγ = Vect

1

γ

 , E−1/γ = Vect

−γ

1

 .

21. On montre par récurrence que, pour tout n ∈ N, Mn = anI2 + bnM.

Initialisation. Pour n = 0, a0 = 1 et b0 = 0, donc M0 = I2.

Hérédité. Supposons la relation vraie au rang n.

Alors : Mn+1 = M(anI2 + bnM) = bnI2 + (an + bn)M = an+1I2 + bn+1M car M2 = I2 +M.

22. On pose Cn =
n∑

k=0

Mk

k!
. D’après la question précédente, Cn =

(
n∑

k=0

ak
k!

)
I2 +

(
n∑

k=0

bk
k!

)
M.

En faisant tendre n vers l’infini et en utilisant les expressions explicites de ak et bk, on obtient :

C =
1√
5

(
γeγ +

1

γ
e−1/γ

)
I2 +

1√
5

(
eγ − e−1/γ

)
M.

23. Comme M est diagonalisable, il existe une matrice inversible P telle que M = PDP−1, où

D =

γ 0

0 −1

γ

 .

Alors C =
+∞∑
k=0

Mk

k!
= P

eγ 0

0 e−1/γ

P−1.

Ainsi, C est semblable à la matrice diagonale

eγ 0

0 e−1/γ

 .
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