
D.S. n° 4 : Sujet Mines-Ponts PC 2025
Un corrigé

I. Polynômes réciproques

Un polynôme P ∈ C[X] de degré p ∈ N∗ est dit réciproque s’il vérifie l’identité P = XpP

(
1

X

)
.

Q 1. Soit C[X] ∋ P =

p∑
k=0

akX
k de degré p ∈ N∗. Alors,

XpP

(
1

X

)
= Xp

p∑
k=0

ak

(
1

X

)k

=

p∑
k=0

akX
p−k (j=k−p)

=

p∑
j=0

ap−jX
j .

Par unicité de la décomposition sur la base canonique,

P est réciproque ⇐⇒ ∀k ∈ J0,deg(P )K : ak = adeg(P )−k.

Q 2. Pour P = ap

d∏
i=1

(X − λi)
mi , on a

d∑
i=1

mi = deg(P ) = p, d’où

XpP

(
1

X

)
= apX

p
d∏

i=1

(
1

X
− λi

)mi

= ap

d∏
i=1

(1− λiX)mi = (−1)pap

d∏
i=1

λmi
i

d∏
i=1

(
X − 1

λi

)mi

,

la dernière égalité supposant les λi tous non nuls. Si P est réciproque, c’est bien le cas, puisque, d’après la question 1,

a0 = ap ̸= 0 et, pour tout i ∈ J1, dK,
1

λi
est racine de P d’ordre mi.

Q 3. Un polynôme Q ∈ C[X] de degré p ∈ N∗ est dit antiréciproque s’il vérifie l’identité Q = −XpQ

(
1

X

)
.

Soit un tel polynôme Q. Alors, Q(1) = −1p×Q(1) = −Q(1), d’où Q(1) = 0. De manière équivalente, X−1 | Q et
il existe un unique polynôme P tel que Q = (X − 1)P . En reportant dans la définition du caractère antiréciproque,
il vient

(X − 1)P = −Xp

(
1

X
− 1

)
P

(
1

X

)
= (X − 1)×Xp−1P

(
1

X

)
,

d’où P = Xp−1P

(
1

X

)
par identification (on a dit que P était unique). Ainsi, ou bien P et constant, ou bien P est

réciproque.

Dans les deux dernières questions de cette partie, on considère R ∈ C[X] de degré p ⩾ 1, tel que les racines de

R sont non nulles et (X − a)m∥P entraîne
(
X − 1

a

)m

∥P (rappelons que la notation signifie que a est racine de R

d’ordre exactement m).

Q 4. Par hypothèse,

R = ap

d∏
i=1

(X − λi)
mi = ap

d∏
i=1

(
X − 1

λi

)mi

∴ R(0) = (−1)pap

d∏
i=1

λmi
i = (−1)pap

d∏
i=1

1

λi
mi

.

Posons a =

d∏
i=1

λmi
i . Comme R(0) ̸= 0, l’égalité ci-dessus est équivalente à a =

1

a
, soit a2 = 1, ou encore a ∈ {−1, 1}.
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Q 5. Pour R = ap

d∏
i=1

(X − λi)
mi et a =

d∏
i=1

λmi
i , on a

XpR

(
1

X

)
(Q.2)
= (−1)pap

d∏
i=1

λmi
i

d∏
i=1

(
X − 1

λi

)mi

= (−1)paR = ±R,

donc R est réciproque ou antiréciproque. On peut préciser : a est du signe de (−1)m où m est l’ordre de multiplicité
de la racine −1 (éventuellement 0) et R est réciproque si (−1)pa = 1, donc si 1 est racine d’ordre pair de R, les
racines autres que ±1 marchant par paires.

II. Le cas diagonalisable

Dans les deux questions suivantes, on considère A ∈ GLn(C).

Q 6. Soit x ∈ C∗. Alors,

xIn −A = −xA×
(
1

x
In −A−1

)
∴ det(xIn −A) = (−1)nxn det(A) det

(
1

x
In −A−1

)
.

En d’autres termes, χ
A
(x) = (−1)nxn det(A)χ

A−1 (x
−1).

Q 7. Le déterminant est un invariant de similitude. Si A est semblable à son inverse, on a donc det(A) = det
(
A−1

)
.

Or, pour toute matrice inversible, det(A) det
(
A−1

)
= 1, d’où det(A) ∈ {−1, 1} (c’est la remarque de la question 4.)

En reportant dans la formule de la question précédente, il vient

χ
A
(x) = ±xnχ

A−1 (x
−1) = ±xnχ

A
(x−1),

puisque le polynôme caractéristique est un invariant de similitude. Par définition, χ
A

est réciproque ou antiréciproque.

Q 8. Soit B ∈ Mn(C) une matrice diagonalisable dont le polynôme caractéristique est réciproque ou antiréciproque.
Par Q 2, 0 n’est pas racine de χ

B
, donc B est inversible. Par ailleurs, deux matrices diagonalisables sont semblables

si, et seulement si, elles ont le même polynôme caractéristique, puisqu’elles sont alors toutes deux semblables à la
même matrice diagonale, à savoir celle dont les éléments diagonaux sont les racines de leur polynôme caractéristique
commun comptées avec leur multiplicité.

La question 6 montre que si χ
B

est réciproque ou antiréciproque, alors χ
B
= χ

B−1 . Comme B est diagonalisable,
B−1 l’est également (avec les mêmes espaces propres), donc B et B−1 sont semblables.

Dans la suite de ce corrigé, on note Diag(A1, A2, . . . , Am) la matrice diagonale par blocs dont les blocs diagonaux,
supposés carrés, sont, dans l’ordre, A1, A2, . . ., Am.

Q 9. Posons A =
1

2

(
1 2
0 1

)
. La matrice A est inversible et l’on a A−1 = 2

(
1 −2
0 1

)
. On a ici B = Diag(2I2, A), qui

est inversible, puisque 2I2 et A le sont et B−1 = Diag

(
1

2
I2, A

−1

)
. On a bien χ

B
= χ

B−1 = (X − 2)2
(
X − 1

2

)2

,

mais dimE2(B) = 2 ̸= 1 = dimE2(B
−1), donc B et B−1 ne sont pas semblables.

III. Produits de matrices de symétrie

Q 10. Comme les symétries sont inversibles et que GLn(C) est stable par produit, A = S1S2 est inversible.

De plus, la relation S1S2 = S1(S2S1)S
−1
1 montre que S1S2 et S2S1 sont semblables. Notons que cela n’utilise que

l’inversibilité de S1, ce qui est une hypothèse beaucoup plus faible que le fait que S1 et S2 soient des symétries.
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Q 11. Si A = S1S2 et P ∈ GLn(C), alors

P−1AP = P−1(S1S2)P = (P−1S1P )(P−1S2P )

est également un produit de deux symétries, puisque pour i = 1 ou 2, (P−1SiP )2 = (P−1S2
i P ) = (P−1InP ) = In

Q 12. Pour A =

(
B 0n
0n C

)
et S1 =

(
0n P
Q 0n

)
, les règles de calculs par blocs donnent

S2
1 =

(
PQ 0n
0n QP

)
, S2 = S1A =

(
0n PC
QB 0n

)
& S2

2 =

(
PCQB 0n

0n QBPC

)
.

Ainsi, S1 est une matrice de symétrie si, et seulement si, PQ = QP = In, i.e. si Q = P−1. Cela acquis, S2 est une
matrice de symétrie si, et seulement si, PCP−1B = P−1BPC = In, i.e. si PCP−1 = B−1 car les deux égalités sont
équivalentes :

P−1BPC = In ⇐⇒ (PC)(P−1BPC)(PC)−1 = In ⇐⇒ PCP−1B = In.

Q 13. Si C et B−1 sont semblables, il existe P ∈ GLn(C) telle que PCP−1 = B−1. Notons Q = P−1. Alors, les
calculs faits à la question précédents montrent que S1 et S2 sont des matrices de symétries et A = S−1

1 S2 est alors
le produit de deux matrices de symétrie.

IV. Blocs de Jordan

Q 14. Soit g ∈ L (E) un endomorphisme nilpotent d’indice n. Par hypothèse, il existe un vecteur x ∈ E tel que
gn−1(x) ̸= 0E . Montrons que B =

(
gn−1(x), gn−2(x), . . . , g(x), x

)
est une famille libre. Pour (νk)0⩽k<n ∈ Cn, sup-

posons que
n−1∑
k=0

νkg
k(x) = 0E . Si tous les νk ne sont pas nuls, soit j le plus petit indice tel que νj ̸= 0C. On a ainsi

n−1∑
k=j

νkg
k(x) = 0E . En composant par gn−1−j , il vient νjgn−1(x) = 0, d’où νj = 0C et une contradiction. Ainsi, B est

libre et, par cardinalité, c’est une base de E. De manière immédiate, matB(g) = N .

Q 15. On pose Jn(λ) = λIn +N = λ

(
In +

1

λ
N

)
. Alors,

(
In +

1

λ
N

) n−1∑
k=0

(−1)k

λk
Nk =

n−1∑
k=0

(−1)k

λk
Nk +

n−1∑
k=0

(−1)k

λk+1
Nk+1 = In +

(−1)n−1

λn
Nn = In,

ce qui montre que Jn(λ) est inversible et que

Jn(λ)
−1 =

n−1∑
k=0

(−1)k

λk+1
Nk =

1

λ
In +

n−1∑
k=1

(−1)k

λk+1
Nk

︸ ︷︷ ︸
N ′

.

Q 16. On peut écrire N ′ = N
n−2∑
j=0

(−1)j+1

λj+2
N j = NN ′′ (toutes les puissances de N sont positives) avec N ′′ ∈ C[N ].

Alors, N et N ′′ commutent et l’on a donc N ′n = NnN ′′n = 0Mn(C).

De plus, N ′′ = − 1

λ2
In + N ′′′ est inversible par le même calcul qu’à la question 15 et N ′n−1 = Nn−1N ′′n−1 est

le produit de Nn−1 = E1,n, matrice non nulle de la base canonique de Mn(C), et d’une matrice inversible, donc
N ′n−1 ̸= 0. On peut alors appliquer la question 14, qui montre qu’il existe P ∈ GLn(C) telle que P−1N ′P = N ,
d’où

P−1Jn(λ)
−1P = P−1

(
1

λ
In +N ′

)
P =

1

λ
In +N = Jn

(
1

λ

)
.
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Q 17. Pour P ∈ Cn−1[X], on calcule s21(P ) = P (−(−X)) = P et s22(P ) = P ((1− (1−X)) = P , ce qui montre que
s21 = s22 = idCn−1[X]. De plus,

s1 ◦ s2(P ) = s1(P (1−X)) = P (1 +X) = g(P ) + P ∴ s1 ◦ s2 = g + idCn−1[X] .

Q 18. Pour tout k ∈ N, on a g(Xk) = (X + 1)k − Xk =

k−1∑
j=0

(
k

j

)
Xj est de degré k − 1. Ainsi, si deg(P ) = d,

on peut écrire P = adX
d + R avec deg(R) < d, d’où g(P ) = adg(X

d) + g(R) avec deg g(R) < d − 1, soit
deg(P ) = deg(g(Xd)) = d− 1.

Q 19. D’après la question 18, g est nilpotent d’indice n. D’après la question 14, il existe donc une base de Cn−1[X]
dans laquelle mat(g) = N . D’après la question 17, on a, dans cette même base, mat

(
g+idCn−1[X]

)
= In+N = Jn(1).

Enfin, la relation s1 ◦ s2 = g+idCn−1[X] et le fait que s1 et s2 soient des symétries indique que In+N est un produit
de deux matrices de symétrie.

V. Une caractérisation des matrices semblables à leur inverse

Q 20. La matrice A est inversible, donc n’admet pas 0 comme valeur propre. D’après la question 16, qui s’applique

donc ici, il existe pour tout i ∈ J1, rK des matrices Pi ∈ GLni(C) telles que P−1
i Jni(λi)Pi = Jni

(
1

λi

)
. Alors,

P := Diag(P1, P2, . . . , Pr), P
−1 = Diag

(
P−1
1 , P−1

2 , . . . , P−1
r

)
&

P−1A′−1P = Diag

(
Jn1

(
1

λ1

)
, Jn2

(
1

λ2

)
, . . . , Jnr

(
1

λr

))
= B.

Ainsi, A′−1, donc, par transitivité, A−1, est semblable à B.

Q 21. D’après la question 11, la propriété d’être un produit de deux symétries est un invariant de similitude. D’après
la question 7 et le théorème admis sur la réduction de Jordan, A est semblable à une matrice diagonale par blocs
dont les blocs sont des Jm(λ) avec λ ∈ {−1, 1} ou des paires de blocs

(
Jm(λ), Jm(1/λ)

)
de même taille.

Quitte à conjuguer par une matrice de permutation, on peut regrouper ces paires. La question 13 montre que les
matrices du type Diag

(
Jm(λ), Jm(1/λ)

)
sont des produits de symétries. La question 19 montre que c’est le cas de

Jm(1) et l’on a admis que c’était aussi le cas pour Jm(−1). Les calculs de matrices diagonales par blocs montrent
enfin que l’on peut ainsi construire deux matrices de symétries dont A soit le produit.

D’après la question 10, c’est une équivalence : une matrice de GLn(C) est semblable à son inverse si, et seulement
si, elle s’écrit comme un produit de deux matrices de symétrie.
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