D.S. n° 4 : Sujet Mines-Ponts PC 2025
Un corrigé

I. Polynémes réciproques

1
Un polynéme P € C[X] de degré p € N* est dit réciproque s’il vérifie I'identité P = XPP (X)

P
Q 1. Soit C[X]| > P = Zaka de degré p € N*. Alors,
k=0

pr( > pzp%ak< > Zakka =Y Z%J

Par unicité de la décomposition sur la base canonique,

P est réciproque <= Vk € [0,deg(P)]: ax = ageg(P)—k-

d d
Q 2. Pour P = q, H(X — )™, on a Zmi = deg(P) = p, d’ou
i=1 i=1

XPPp < > = apXPH < -\ ) i: apiljlu — N X)™i = (—1)papi1jA§’“i]f[1 <X — ;)m ,

la derniére égalité supposant les A; tous non nuls. Si P est réciproque, c¢’est bien le cas, puisque, d’aprés la question 1,
1
ap = a, # 0 et, pour tout 7 € [1,d], X est racine de P d’ordre m;.

)

1
Q 3. Un polynéme @ € C[X] de degré p € N* est dit antiréciproque s'il vérifie l'identité Q = —XPQ <X>

Soit un tel polynéme Q. Alors, Q(1) = —1P x Q(1) = —Q(1), d’ott Q(1) = 0. De maniére équivalente, X —1 | Q et
il existe un unique polynéme P tel que @ = (X — 1)P. En reportant dans la définition du caractére antiréciproque,

il vient (X - )P = —x7 <)1( _ 1) P (;) =(X-1)xxPlp ()1() ;

1
don P = XP7'P (X) par identification (on a dit que P était unique). Ainsi, ou bien P et constant, ou bien P est

réciproque.

Dans les deux derniéres questions de cette partie, on considére R € C[X] de degré p > 1, tel que les racines de
1 m
R sont non nulles et (X — a)™||P entraine <X - > ||P (rappelons que la notation signifie que a est racine de R
a

d’ordre exactement m).

Q 4. Par hypothese,

d m; d i
R=a,[[(X-N) r_apH< ) R(O):(—l)pap[[l)\TiZ(—l)pap_l:[l)\m

=1

d
. 1
Posons a = H M. Comme R(0) # 0, I'égalité ci-dessus est équivalente & a = —, soit a’? =1, ou encore a € {-1,1}.
a
i=1
1



d d
Q 5. Pour R = apH(X — X)) eta= H&mi, on a
i=1 i=1

d d m;
1Y Q2 m LA™ _
XPR <X> = (—1)pap£[1% H (X - /\i> = (-1)’aR = R,

i=1
donc R est réciproque ou antiréciproque. On peut préciser : a est du signe de (—1)™ ou m est 'ordre de multiplicité
de la racine —1 (éventuellement 0) et R est réciproque si (—1)Pa = 1, donc si 1 est racine d’ordre pair de R, les
racines autres que +1 marchant par paires.

II. Le cas diagonalisable

Dans les deux questions suivantes, on considére A € GL,,(C).

Q 6. Soit z € C*. Alors,
2l — A= —zAx (1In - A1> o det(al, — A) = (—1)"a" det(A) det <11n - A1> .
e xT

En d’autres termes, x ,(z) = (—=1)"2" det(A)XA—l (z71).

Q 7. Le déterminant est un invariant de similitude. Si A est semblable & son inverse, on a donc det(A) = det (A_l).
Or, pour toute matrice inversible, det(A)det (A™!) = 1, d’ott det(A4) € {—1,1} (c’est la remarque de la question 4.)
En reportant dans la formule de la question précédente, il vient

XA(x) = ianA_l ($_1) = :tl'nXA(x_l)a

puisque le polynoéme caractéristique est un invariant de similitude. Par définition, x , est réciproque ou antiréciproque.

Q 8. Soit B € M,,(C) une matrice diagonalisable dont le polynéme caractéristique est réciproque ou antiréciproque.
Par Q 2, 0 n’est pas racine de x 5, donc B est inversible. Par ailleurs, deux matrices diagonalisables sont semblables
si, et seulement si, elles ont le méme polyndéme caractéristique, puisqu’elles sont alors toutes deux semblables & la
méme matrice diagonale, a savoir celle dont les éléments diagonaux sont les racines de leur polynéme caractéristique
commun comptées avec leur multiplicité.

La question 6 montre que si x ;, est réciproque ou antiréciproque, alors x 5, = x Bt Comme B est diagonalisable,

B~ Dest également (avec les mémes espaces propres), donc B et B! sont semblables.

Dans la suite de ce corrigé, on note Diag(Ay, As, ..., Ay,,) la matrice diagonale par blocs dont les blocs diagonaux,
supposés carrés, sont, dans Iordre, A1, Ao, ..., Ap.

1 -2

1
Q9. Posons A = = (1 2). La matrice A est inversible et on a A™! = 2 (0 1

5l 1 ) On a ici B = Diag(21l2, A), qui

1 1\?
est inversible, puisque 215 et A le sont et B~! = Diag <2IQ,A1). On a bien x, = Xpo1 = (X —2)? <X — 2> ,

mais dim Fy(B) = 2 # 1 = dim Ey(B™'), donc B et B! ne sont pas semblables.

III. Produits de matrices de symétrie
Q 10. Comme les symétries sont inversibles et que GL,,(C) est stable par produit, A = 5152 est inversible.

De plus, la relation S1.55 = Sl(S’gSl)Sfl montre que S1.99 et 5351 sont semblables. Notons que cela n’utilise que
Iinversibilité de S1, ce qui est une hypothése beaucoup plus faible que le fait que S7 et So soient des symétries.
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Q 11. Si A= 515 et P € GL,(C), alors
P71AP = P71(8,8,)P = (P71S, P)(P~'S,P)
est également un produit de deux symétries, puisque pour i = 1 ou 2, (P~'S;P)* = (P~'152P) = (P'I,P) = I,

Q 12. Pour A = <B 0”) et S1 = <0n P), les régles de calculs par blocs donnent

0, C Q 0,
, (PQ 0, . (0. PC , (PCQB 0,
St = <0n QP)  S2=5d= <QB on> b 5= ( 0, QBPC’) :

Ainsi, S; est une matrice de symétrie si, et seulement si, PQ = QP = I,,, i.e. si Q = P~!. Cela acquis, Sy est une
matrice de symétrie si, et seulement si, PCP™'B = P"'BPC = 1I,, i.e. si PCP~! = B! car les deux égalités sont
équivalentes :

P7'BPC =1, < (PC)(P'BPC)(PC)™'=1, <= PCP'B=1,.

Q 13. Si C et B~! sont semblables, il existe P € GL,(C) telle que PCP~! = B™!. Notons Q = P~!. Alors, les
calculs faits a la question précédents montrent que S et Sy sont des matrices de symétries et A = S7 1S, est alors
le produit de deux matrices de symétrie.

IV. Blocs de Jordan

Q 14. Soit g € Z(F) un endomorphisme nilpotent d’indice n. Par hypothése, il existe un vecteur z € E tel que

g" '(z) # 0. Montrons que & = (¢" (), ¢" *(2),...,9(x),x) est une famille libre. Pour (Vk)ochen € C", sup-
n—1

posons que Z ngk(ac) = Op. Si tous les v, ne sont pas nuls, soit j le plus petit indice tel que v; # Oc. On a ainsi
k=0

n—1
Z ngk(a:) = 0p. En composant par ¢" 177, il vient ng"_l(a:) =0, d’ott vj; = Oc et une contradiction. Ainsi, % est
k=j

libre et, par cardinalité, c’est une base de E. De maniére immédiate, matz(g) = N.

1 N> . Alors,

Q 15. On pose J,(\) = A, + N = A <In + 3

n—1 n—1 n—1

1 (=% & (1) & (—DF & (1)t

I,+ =N N N Nl 4+~ "2 NP=],
( e ) > S ns T ,

I
I
NNy
o
>~
ol

ce qui montre que J,(A) est inversible et que

n—1 k n—1 k
-1 (_1) k 1 (_1) k
Jn(N) = Ak+1 N" = A In + Z A+l N
k=0 k=1
N/
n—2 i
—1y+t
Q 16. On peut écrire N' = N Z ()\J)Jr2 N’ = NN" (toutes les puissances de N sont positives) avec N” € C[N].
j=0

Alors, N et N” commutent et 'on a donc N = N"N"™ = O, (C)-

1
De plus, N” = —ﬁIn + N™ est inversible par le méme calcul qu’a la question 15 et N1 = NP7IN"=1 ot

le produit de N"~! = E4 ,,, matrice non nulle de la base canonique de M,,(C), et d’'une matrice inversible, donc
N1 - 0. On peut alors appliquer la question 14, qui montre qu'il existe P € GL,(C) telle que P"'N'P = N,
d’ou

1 1 1
PN '‘P=P ' (2, + N |P=ZI,+N=J,(=).
Jn(N) <A + > SIn+ J, <A>



Q2 17. Pour P € C,,_1[X], on calcule s?(P) = P(—(—=X)) = P et s3(P) = P((1 — (1 — X)) = P, ce qui montre que

s] = s% =1idc,_,[x]- De plus,

s1082(P)=s1(P(1-X))=P(1+X)=g(P)+ P s10s2 =g +idg,_,[x]-

k—1
k .
Q 18. Pour tout k € N, on a g(X*) = (X + 1)F — X* = Z (j)X] est de degré k — 1. Ainsi, si deg(P) = d,
=0
on peut écrire P = aqX? + R avec deg(R) < d, d'on g(P) = aq9(X?%) + g(R) avec degg(R) < d — 1, soit
deg(P) = deg(g(X")) =d ~ 1.

Q 19. D’apres la question 18, g est nilpotent d’indice n. D’aprés la question 14, il existe donc une base de C,,_1[X]
dans laquelle mat(g) = N. D’aprés la question 17, on a, dans cette méme base, mat (g"i‘id(cn_l[x] ) =I,+N = J,(1).
Enfin, la relation sj 0 s2 = g+idc,_,[x] et le fait que s; et s2 soient des symétries indique que I;, + N est un produit
de deux matrices de symétrie.

V. Une caractérisation des matrices semblables & leur inverse

Q 20. La matrice A est inversible, donc n’admet pas 0 comme valeur propre. D’aprés la question 16, qui s’applique

1
donc ici, il existe pour tout i € [1,r] des matrices P; € GL,, (C) telles que Pi_lJm.()\i)PZ- = Jn, <)\> Alors,
i

P :=Diag(P\, Py,...,P,),P~  =Diag (P[ ', Py *,....P7Y) &

r

1 1 1
P~ 1A-1p = Di =) T, (= ),....J. =) =B.
s (o (5) 9 (3) oo ()

Ainsi, A’~1, donc, par transitivité, A~!, est semblable & B.

Q 21. D’aprés la question 11, la propriété d’étre un produit de deux symétries est un invariant de similitude. D’aprés
la question 7 et le théoréme admis sur la réduction de Jordan, A est semblable & une matrice diagonale par blocs
dont les blocs sont des Jp,(A) avec A € {—1,1} ou des paires de blocs (Jp(X), Ji(1/A)) de méme taille.

Quitte & conjuguer par une matrice de permutation, on peut regrouper ces paires. La question 13 montre que les
matrices du type Diag (Jn()), Jm(1/X)) sont des produits de symétries. La question 19 montre que c’est le cas de
Jm(1) et Pon a admis que c’était aussi le cas pour Jp,(—1). Les calculs de matrices diagonales par blocs montrent
enfin que 'on peut ainsi construire deux matrices de symétries dont A soit le produit.

D’apreés la question 10, c’est une équivalence : une matrice de GL,,(C) est semblable a son inverse si, et seulement
si, elle s’écrit comme un produit de deux matrices de symétrie.



