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Exercice 1 Matrices de projections orthogonales
Dans R2[X] on considère le produit scalaire défini par :

⟨P,Q⟩ =
∫ 1

−1
P(t)Q(t)dt.

1. Montrer que la formule précédente définit bien un produit scalaire.

2. Déterminer une base orthonormale de R2[X].

3. Soit F = Vect(1,X2) et G = Vect(1,X).
Déterminer les matrices dans la base canonique des projections orthogonales sur
F puis sur G.

4. Déterminer le minimum de
∫ 1

−1
t2 + at + bdt lorsque (a,b) ∈R2.

Solution (Ex.1 – Matrices de projections orthogonales)

1. Une base orthonormale de R2[X] est

 1
√

2
;

√
3
2

X;

√
5
8

(3X2 − 1)

.

2. 1 ∈ F, X2 ∈ F et X ∈ F⊥ vue la famille orthonormale précédente, donc M(pF) =
1 0 0

0 0 0

0 0 1

.

 1
√

2
;

√
3
2

X

 est manifestement une base orthonormale de G. On peut s’en servir

pour déterminer pG(X2). Par ailleurs, on a encore 1 ∈G et X ∈G.

DoncM(pG) =


1 0 1/3

0 1 0

0 0 0

.

Exercice 2 Produit scalaire canonique deMn(R)
Soit n ≥ 1 et E =Mn(R).
On pose, pour A et B dans E, ⟨A,B⟩ = Tr

(
tA.B

)
.

1. Montrer que
∀A = (ai,j ),B = (bi,j ) ∈Mn(R), ⟨A,B⟩ =

∑
(i,j)∈⟦1; n⟧2

ai,jbi,j .

2. Vérifier que ⟨., .⟩ est bien un produit scalaire surMn(R).

3. La base canonique deMn(R) est-elle une base orthonormale?

4. Soit ∆ le sous-espace vectoriel deMn(R) constitué des matrices diagonales.
Déterminer ∆⊥.

5. Montrer que le sous-espace des matrices symétriques Sn(R) et celui des matrices
antisymétriques An(R) sont supplémentaires orthogonaux l’un de l’autre.

6. Soit F = Vect(In). Déterminer F⊥.

7. Déterminer la projection orthogonale pF sur F, puis la projection orthogonale pF⊥

sur F⊥.

8. Soit Jn la matrice de E dont tous les coefficients valent 1. Déterminer la distance
de Jn à F, définie par : d(Jn,F) = min

A∈F
||Jn −A||.

Solution (Ex.2 – Produit scalaire canonique deMn(R))

1. Calculons explicitement ⟨A,B⟩ en fonction des coefficients de A et B.

⟨A,B⟩ = Tr(() tAB) =
n∑
i=1

 n∑
j=1

( tA)i,j (B)j,i


=

n∑
i=1

 n∑
j=1

aj,ibj,i

 =
∑

1≤i,j≤n
aj,ibj,i

ce qui est la somme voulue, quitte à permuter le nom des indices muets.
À retenir :
⟨A,B⟩ est la somme des produits coefficient par coefficient des matrices A et B...
exactement comme le produit canonique de Rn.
En particulier, ⟨A,A⟩ =

∑
1≤i,j≤n

a2
i,j est la somme des carrés des coefficients de A.

2. ⟨., .⟩ est bilinéaire car la transposition et la trace le sont.
⟨., .⟩ est symétrique car Tr

((
tAB

))
= Tr

(
t
(

tBA
))

= Tr
(

tBA
)
.

est positif, et ne s’annule que si tous les coefficients de A sont nuls, i.e. si A = 0.
⟨., .⟩ est positif et défini.

3. Comme vu plus haut,
〈
Ei,j ,Ek,ℓ

〉
est la somme des produits coefficient par coeffi-

cient des matrices Ei,j et Ek,ℓ.
Si (i, j) , (k,ℓ), le seul « 1 » des matrices Ei,j et Ek,ℓ n’est pas au même endroit,

donc tous les produits sont nuls, donc
〈
Ei,j ,Ek,ℓ

〉
= 0

De plus,
∣∣∣∣∣∣Ei,j

∣∣∣∣∣∣2 est la somme des carrés de ses coefficients, donc vaut 1.
Ainsi la base canonique deMn(R) est orthonormale.

4. Déterminer ∆⊥ (on pourra commencer par déterminer une base orthonormale de
∆). La famille (Ei,i)i∈⟦1; n⟧ est une base de ∆, orthonormale puisque extraite d’une
base orthonormale deMn(R).
• Première approche -
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Alors, par complétion en une base orthonormale deMn(R), Vect
(
(Ei,j )i,j

)
est le

supplémentaire orthogonal de ∆...
• Seconde approche -
Si A ∈ ∆⊥, alors A⊥ Ei,i pour tout i. Or

〈
A,Ei,i

〉
= ai,i , donc ai,i = 0 pour tout i.

• Bilan, par l’une ou l’autre approche -
∆⊥ est l’ensemble des matrices de Mn(R) dont tous les coefficients diagonaux
sont nuls.

Exercice 3 Deux applications de l’inégalité de Cauchy-Schwarz.

1. Quel est le minimum de
∫ b

a
f (t)dt ×

∫ b

a

1
f (t)

dt pour f continue strictement po-

sitive sur [a ; b] ?

2. Soit a < b. Montrer que, pour toute fonction f continue sur [a ; b],(
1

b − a

∫ b

a
f (t)dt

)2

≤ 1
b − a

∫ 1

0

(
f (t)

)2
dt.

Solution (Ex.3 – Deux applications de l’inégalité de Cauchy-Schwarz.)

1. Soit a1, . . . , an n nombres réels.
On munit Rn du produit scalaire canonique. On pose : x = (ai , . . . , an) ∈ Rn, y =
1
n

(1, . . . ,1) ∈Rn.

Alors
(〈
x,y

〉)2
=

 n∑
i=1

ai
n

2

=

1
n

n∑
i=1

ai

2

est le carré de la moyenne des (ai)i .

Et ||x||2
∣∣∣∣∣∣y∣∣∣∣∣∣2 =

 n∑
i=1

a2
i

(n× 1
n2

)
=

1
n

n∑
i=1

a2
i est la moyenne des carrés des (ai)i .

L’inégalité de Cauchy-Schwarz assure l’inégalité voulue... avec égalité si, et seule-
ment si, tous les ai sont égaux entre eux.

2. On munit Rn du produit scalaire canonique. On pose : x =
(

1
√
ai

)
1≤i≤n

, y =

(
√
ai)1≤i≤n.

 n∑
i=1

1
ai


 n∑
i=1

ai

 = ||x||2
∣∣∣∣∣∣y∣∣∣∣∣∣2 ≥ 〈

x,y
〉2 = n2.

Ce minorant est atteint pour a1 = · · · = an = 1 par exemple.

3. On munit l’espace vectoriel des fonctions continues sur [a ; b] du produit scalaire〈
f ,g

〉
=

∫ b

a
f (t)g(t)dt. Soit f continue strictement positive.

On pose x =
√
f et y = 1/

√
f .

∫ b

a
f (t)dt ×

∫ b

a

1
f (t)

dt = ||x||2
∣∣∣∣∣∣y∣∣∣∣∣∣2 ≥ 〈

x,y
〉2 =

(∫ b

a
1dt

)2

= (b − a)2

Ce minorant est atteint pour f = 1 par exemple, donc c’est un minimum.
4. On munit l’espace vectoriel des fonctions continues sur [a ; b] du produit scalaire〈

f ,g
〉

=
∫ b

a
f (t)g(t)dt. Soit f continue. Alors(

1
b − a

∫ 1

0
f (t)dt

)2

=
〈
f , t 7→ 1

b − a

〉2

||f ||2
∣∣∣∣∣∣∣∣∣∣t 7→ 1

b − a

∣∣∣∣∣∣∣∣∣∣2 =
1

(b − a)2

∫ 1

0

(
f (t)

)2
dt

d’où l’inégalité par Cauchy-Schwarz.

Exercice 4 Matrice de projection symétrique
Soit A ∈Mn(R) vérifiant A2 = AT = A.
1. Soit π l’endomorphisme deMn,1(R) canoniquement associé à A :

π :Mn,1(R) −→Mn,1(R),X 7−→ AX.

DansMn,1(R), on utilise le produit scalaire canonique

⟨., .⟩ :Mn,1(R) −→R, (X,Y) 7−→ ⟨X,Y⟩ = XTY.

Justifier que π est une projection orthogonale.
2. Justifier que A est diagonalisable avec rg(A) = Tr(A).

3. Montrer que rg(A) =
∑

1≤i,j≤n
a2
i,j .

4. Montrer que
∑

1≤i,j≤n

∣∣∣ai,j ∣∣∣ ≤ n
√

rg(A).

Solution (Ex.4 – Matrice de projection symétrique)
1. A2 = A donc A est une matrice de projecteur, donc diagonalisable et semblable à

D =

 Ir 0

0 0n−r

. En particulier, rg(A) = Tr(()A).

2. Tr(A) = Tr(D) D2=D= Tr
(
D2

)
= Tr

(
A2

)
= Tr

(
tAA

)
=

∑
1≤i,j≤n

a2
i,j .

3. En appliquant l’inégalité de Cauchy-Schwarz pour le produit scalaire canonique
de Rn2

aux vecteurs :
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x = (
∣∣∣a1,1

∣∣∣ , . . . , ∣∣∣an,n∣∣∣) et y = (1, . . . ,1),∑
1≤i,j≤n

∣∣∣ai,j ∣∣∣ =
∣∣∣〈x,y〉∣∣∣ ≤ ∣∣∣∣∣∣y∣∣∣∣∣∣ ||x|| ≤ √n2 ×

√ ∑
1≤i,j≤n

a2
i,j ≤ n

√
rg(A).

Exercice 5 Retour de la base de Lagrange d’après E3A 2021 PC
Soit n ⩾ 2, E = Rn[X] et (ai)0⩽i⩽n une famille de n+ 1 réels deux à deux distincts. On
note P0 le polynôme constant égal à 1.
On pose

∀(P,Q) ∈ E2,
(
P |Q

)
=

n∑
i=0

P(ai)Q(ai).

1. Vérifier que
(
. | .

)
est un produit scalaire sur E.

2. Que vaut, pour P dans E,
(
P | P0

)
?

3. On note L = (Li)0⩽i⩽n la base de Lagrange liée aux points (ai)0⩽i⩽n.
a) Justifier que L est une base orthonormale.
b) En déduire, pour P ∈ E, les coordonnées de P dans L.

c) Que vaut
n∑
i=0

Li ?

4. Soit H =

P ∈ E|
n∑
i=0

P(ai) = 0

.

a) Justifier que H = Vect(P0)⊥.
b) Soit Q ∈ E. Déterminer le projeté orthogonal de Q sur H⊥.
c) Soit Q ∈ E. Déterminer la distance de Q à H.
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