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Exercice 1 Détermination de rayon de convergence

Déterminer le rayon de convergence de la série entière
∑
n≥0

un(z) dans les cas sui-

vants :

1. un(z) =
n2 + 1

3n zn

2. un(z) = e−n
2
zn

3. un(z) =
lnn

n2 zn

4. un(z) = n!zn

5. un(z) =
nn

n!
z3n

6. un(z) =
lnn

en
z2n+1

Solution (Ex.1 – Détermination de rayon de convergence)
Je note an le coefficient de zn dans un(z).

1.

∣∣∣∣∣∣an+1z
n+1

anzn

∣∣∣∣∣∣ ∼n→+∞
n2

3n2 |z| −−−−−−→n→+∞
1
3
|z| donc R = 3.

2.

∣∣∣∣∣∣an+1z
n+1

anzn

∣∣∣∣∣∣ = e−2n−1 |z| −−−−−−→
n→+∞

0 donc R = +∞.

3.

∣∣∣∣∣∣an+1z
n+1

anzn

∣∣∣∣∣∣ ∼
n→+∞

ln(n+ 1)
ln(n)

|z| −−−−−−→
n→+∞

|z| car
ln(n+ 1)

ln(n)
=

ln(n) + ln(1 + 1/n)
ln(n)

, donc

R = 1.

4.

∣∣∣∣∣∣an+1z
n+1

anzn

∣∣∣∣∣∣ = (n+ 1) |z| −−−−−−→
n→+∞

+∞ donc R = 0 (divergence grossière dès que z , 0).

5.
∣∣∣∣∣un+1(z)
un(z)

∣∣∣∣∣ =
(n+ 1)n+1n!
(n+ 1)!nn

|z|3 =
(
1 +

1
n

)n
|z|3 −−−−−−→

n→+∞
e |z|3 donc R = e−1/3.

6. |un+1(z)un(z)| =
ln(n+ 1)en

ln(n)en+1 |z|
2 −−−−−−→

n→+∞
|z|2

e
donc R =

√
e.

Exercice 2 Rayons de convergence abstraits

On suppose que le rayon de convergence de
+∞∑
n=0

anz
n est R ∈ ]0 ; +∞[.

Quel est le rayon de convergence de
+∞∑
n=0

anz
2n ? Et de

+∞∑
n=0

an
n!

zn ?

Solution (Ex.2 – Rayons de convergence abstraits)

• Si |z| <
√

R, alors
∣∣∣z2

∣∣∣ < R et
+∞∑
n=0

an(z2)n converge.

Si |z| >
√

R, alors
∣∣∣z2

∣∣∣ > R et
+∞∑
n=0

an(z2)n diverge.

Le rayon de
+∞∑
n=0

anz
2n est

√
R.

• Soit z ∈C quelconque. Soit r ∈ ]0 ; R[.
anz

n

n!
= anr

n 1
n!

(z
r

)n
= o (anrn) car

1
n!

(z
r

)n
−−−−−−→
n→+∞

0 par croissance comparée.

Or
+∞∑
n=0

anr
n converge puisque 0 < r < R, donc

+∞∑
n=0

an
n!

zn converge absolument.

Le rayon de
+∞∑
n=0

an
n!

zn est infini.

Exercice 3 Indéfiniment dérivable

Montrer que la fonction f définie par : f (x) =


ex − 1
x

si x , 0

1 si x = 0
est C∞ sur R.

Solution (Ex.3 – Indéfiniment dérivable)

∀x ∈ R∗, f (x) =
1
x

+∞∑
n=1

1
n!
xn =

+∞∑
n=0

1
(n+ 1)!

xn. Cette expression est encore valable

pour x = 0. Donc f est la somme d’une série entière de rayon infini. Donc f est de
classe C∞ sur R.

Exercice 4 Autour de (1 + x)α

1. Déterminer le développement en série entière sur ]−1; 1[ de x 7→ 1
√

1− x2
. On

donnera une expression explicite à l’aide de factorielles de ses coefficients an.

2. En déduire que f : x 7→
√

1 + x

1− x
est développable en série entière en 0 en préci-

sant le rayon de convergence et les coefficients de ce développement en fonction
des an.

Solution (Ex.4 – Autour de (1 + x)α)
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1. En prenant α = −1/2 et −x2→ x dans le DSE de (1 + x)α :

∀x ∈ ]−1; 1[ ,
1

√
1− x2

=
+∞∑
n=0

(2n)!
22n(n!)2 x

2n (Rappel : produit des pairs de 2 à 2n :

2nn!, produit des impairs de 1 à 2n− 1 :
(2n)!
2nn!

...)

Donc : ∀n ∈N, a2n =
(2n)!

22n(n!)2 et a2n+1 = 0.

2. ∀x ∈ ]−1; 1[ , f (x) =
1 + x
√

1− x2
= (1 + x)

+∞∑
n=0

anx
n =

+∞∑
n=0

anx
n +

+∞∑
n=0

anx
n+1 =

+∞∑
n=0

bnx
n

avec

b0 = a0 et ∀n ≥ 1,bn = an + an−1 =

an si n pair
an−1 si n impair

, cette dernière écriture

étant valable pour n = 0...

Exercice 5 De « n » à « 2n »

1. Déterminer le rayon de convergence R de la série
∑
n≥0

xn

(2n+ 1)!
.

2. Pour x ∈ ]−R; R[, on note S(x) la somme d cette série.
a) Calculer S(0).

b) Pour x ∈ ]0 ; R[, calculer S(x) en observant que xn =
(√

x
)2n

.

c) Pour x ∈ ]−R; 0[, calculer S(x) en observant que xn = (−1)n
(√
−x

)2n
.

Solution (Ex.5 – De « n » à « 2n »)

∀x , 0,

∣∣∣∣∣∣an+1x
n+1

anxn

∣∣∣∣∣∣ =
|x|

(2n+ 3)(2n+ 2)
−−−−−−→
n→+∞

0 donc la série converge pour tout x et

R = +∞.
Pour x = 0, f (x) = 1.

Pour x > 0 : f (x) =
∑
n≥0

√
x

2n

(2n+ 1)!
1
√
x

∑
n≥0

√
x

2n+1

(2n+ 1)!
=

sh
√
x

√
x

Pour x < 0 : f (x) =
∑
n≥0

(−1)n
√
−x2n

(2n+ 1)!
1
√
−x

∑
n≥0

(−1)n
√
−x2n+1

(2n+ 1)!
=

sin
√
−x

√
−x

Exercice 6 Convergence et valeur au bord du domaine

1. Montrer l’existence de S =
+∞∑
n=0

(−1)n

2n+ 1
.

2. On pose : ∀n ∈N,∀x ∈ [0 ; 1] , fn(x) =
(−1)nx2n+1

2n+ 1
.

a) Justifier l’existence, pour x ∈ [0 ; 1], de S(x) =
+∞∑
n=0

fn(x).

b) Que vaut, pour x ∈ [0 ; 1[, S(x) ?
c) Montrer que la série converge uniformément sur [0 ; 1].
d) En déduire la valeur de S.

Solution (Ex.6 – Convergence et valeur au bord du domaine)

1. Théorème de Leibniz :
( 1

2n+ 1

)
n

est décroissante de limite nulle.

2. a) Sur [0 ; 1[, S.E. de Arctan. En 1, voir 1).
b) S.E. de R.C. 1 : ∀x ∈ [0 ; 1[ ,S(x) = Arctan(x).

c) Leibniz : ∀x ∈ [0 ; 1] , |Rn(x)| ≤
x2n+3

2n+ 3
≤ 1

2n+ 3
. Donc ||Rn||∞,[0 ; 1] ≤

1
2n+ 3

.

d) La convergence de
∑
n

fn est uniforme sur [0 ; 1] donc la somme est continue

sur [0 ; 1].

3. Par continuité de S et Arctan en 1, S = S(1) = lim
x→1−

S(x) = lim
x→1−

Arctan(x) =
π

4
.

On peut aussi invoquer le théorème de la double limite sur [0 ; 1[ puisque la
convergence est uniforme.

Exercice 7 Différence de S.E.

Soit f : z 7→ 1
z2 − 3z+ 2

.

1. Déterminer l’ensemble de définition de f .

2. Montrer que f est développable en série entière, en précisant les coefficients et
le rayon de convergence du développement obtenu.

Solution (Ex.7 – Différence de S.E.)

1. z2 − 3z+ 2 = (z − 1)(z − 2) = (1− z)(2− z) donc Df =C \ {1,2}.
2. ∀z ∈ Df ,

1
z2 − 3z+ 2

=
1

1− z
− 1

2− z
=

1
1− z

− 1
2
× 1

1− z/2
. Pour z tel que |z/2| < 1 et |z| < 1,

c’est-à-dire |z| < 1, par convergence de la série géométrique,
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∀z ∈ D(0,1), f (z) =
+∞∑
n=0

zn − 1
2

+∞∑
n=0

1
2n z

n =
+∞∑
n=0

(
1− 1

2n+1

)
zn =

+∞∑
n=0

2n+1 − 1
2n+1 zn

f étant la somme de deux séries entières de rayons distincts 1 et 2, le rayon
de convergence de cette somme est min(1,2) = 1. Sinon, on peut réveiller M.
D’Alembert pour s’en convaincre.

Exercice 8 Expression fonctionnelle d’une S.E.

1. Déterminer le rayon de convergence R de la série entière
∑
n≥0

n

(n+ 1)!
xn.

On note f : ]−R; R[→R sa somme.

2. Calculer f

a) en écrivant
n

(n+ 1)!
=

a

n!
− b

(n+ 1)!
où a et b sont deux constantes réelles à

déterminer ;
b) en écrivant f (x) = xg(x) et en explicitant g.

Solution (Ex.8 – Expression fonctionnelle d’une S.E.)

1. ∀z , 0,

∣∣∣∣∣∣an+1z
n+1

anzn

∣∣∣∣∣∣ =
(n+ 1)

(n+ 2)n
|z| −−−−−−→

n→+∞
0 donc la série converge pour tout z et

R = +∞.

2. ∀n ∈N,
n

(n+ 1)!
=
n+ 1− 1
(n+ 1)!

=
1
n!
− 1

(n+ 1)!∑
n≥0

1
n!
zn et

∑
n≥0

1
(n+ 1)!

zn ont un rayon de convergence infini (série exponentielle).

Pour z , 0,

S(z) = ez − 1
z

+∞∑
n=0

zn+1

(n+ 1)!
= ez − 1

z

(
ez − 1

)
.

Pour z = 0, S(z) = 0.

Exercice 9 En commençant par une dérivation
Déterminer le développement en série entière au voisinage de 0 de la fonction f
définie par

f (x) = Arctan
(

1− x2

1 + x2

)
et préciser le rayon de convergence R.
Indication : on pourra commencer par dériver f ...

Solution (Ex.9 – En commençant par une dérivation)
Commençons par dériver f qui est C∞ sur R par les théorèmes classiques.

∀x ∈R, f ′(x) =

−2x(1 + x2)− 2x(1− x2)
(1 + x2)2

1 +
(

1− x2

1 + x2

)2 =
−4x

(1 + x2)2 + (1− x2)2 =
−2x

1 + x4

Or par la série géométrique de rayon 1, et comme
∣∣∣−x4

∣∣∣ < 1 ⇐⇒ |x| < 1, on peut
écrire, toujours avec un rayon 1 :

1
1 + x4 =

+∞∑
n=0

(−x4)n =
+∞∑
n=0

(−1)nx4n.

Donc pour tout x ∈ ]−1; 1[, f ′(x) =
+∞∑
n=0

2(−1)n+1x4n+1.

En primitivant, ce qui conserve le rayon,
∀x ∈ ]−1; 1[,

f (x) = f (0) +
+∞∑
n=0

2(−1)n+1

4n+ 2
x4n+2 =

π

4
+

+∞∑
n=0

(−1)n+1

2n+ 1
x4n+1.

Exercice 10 En commençant par une primitivation
Déterminer le développement en série entière au voisinage de 0 de la fonction f
définie par

f (x) =
1

(2x+ 3)2

et préciser le rayon de convergence R.
Indication : on pourra commencer par primitiver f ...

Solution (Ex.10 – En commençant par une primitivation)
Notons que Df =R \ {−3/2}, donc le rayon ne pourra excéder 3/2.
Commençons par primitiver f (une primitive suffit) : ∀x ∈ Df ,

F(x) =
−1
2
× 1

2x+ 3
=
−1
6
× 1

1 + 2x/3
.

En utilisant la série géométrique, avec |2x/3| < 1⇐⇒ |x| < 3/2,

∀x ∈ ]−3/2; 3/2[, F(x) =
−1
6

+∞∑
n=0

(
−2

3

)n
xn =

+∞∑
n=0

(−1)n+12n−1

3n+1 xn.

Alors, par dérivation terme à terme qui conserve le rayon,
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f (x) =
+∞∑
n=1

(−1)n+12n−1

3n+1 nxn−1 =
+∞∑
n=0

(−1)n2n(n+ 1)
3n+2 xn avec un rayon de convergence

R =
3
2

.

Méthodes alternatives :

– on peut partir du développement de
1

(1 + x)2 = (1 + x)−2 =
+∞∑
n=0

anx
n,

avec α = −2, an =
(−1)n(n+ 1)!

n!
= (−1)n(n+ 1), puis pour |x| < 3/2

1
(2x+ 3)2 =

1
9((2/3)x+ 1)2 =

1
9

+∞∑
n=0

(−1)n(n+ 1)
(2

3
x
)n

=
+∞∑
n=0

(−1)n(n+ 1)2n

3n+2 xn

– on peut envisager le produit de Cauchy
1

2x+ 3
× 1

2x+ 3
...

Exercice 11 En formant une équation différentielle
Soit f la fonction définie sur R par

f (x) = e−x
2
∫ x

0
et

2
dt.

1. Justifier que f est développable en série entière sur R.
2. Déterminer son développement en série entière au voisinage de 0.

Indication : on pourra commencer par former une équation différentielle dont f est
solution...

Solution (Ex.11 – En formant une équation différentielle)

1. x 7→ e−x
2

est développable en série entière de rayon infini en appliquant la série
exponentielle à −x2.
x 7→ ex

2
est développable en série entière de rayon infini en appliquant la série

exponentielle à x2, donc sa primitive nulle en 0 aussi.
Donc f est développable en série entière de rayon infini comme produit de série
qui le sont.

2. f est par conséquent C∞ sur R. Commençons par dériver f .

∀x ∈R, f ′(x) = −2xe−x
2
∫ x

0
et

2
dt + e−x

2
ex

2
= −2xf (x) + 1.

Utilisons cette équation différentielle pour développer f .
J’écris :

∀x ∈R, f (x) =
+∞∑
n=0

anx
n,

∀x ∈R, f ′(x) =
+∞∑
n=0

(n+ 1)an+1x
n.

Alors :

∀x ∈R,
+∞∑
n=0

(n+ 1)an+1x
n = −2x

+∞∑
n=0

anx
n + 1

∀x ∈R,
+∞∑
n=0

(n+ 1)an+1x
n = −2

+∞∑
n=0

anx
n+1 + 1

∀x ∈R,
+∞∑
n=0

(n+ 1)an+1x
n = −2

+∞∑
n=1

an−1x
n + 1

Par unicité des coefficients d’une série entière de rayon de convergence non nul
et, avec la valeur de f en 0,
a0 = f (0) = 0,
a1 = 1,
∀n ≥ 1, (n+ 1)an+1 = −2an−1.

Ceci détermine la suite (an) de façon unique :

a0 = 0, a1 = 1, ∀n ∈N, an+2 =
−2
n+ 2

an.

On a immédiatement :
∀n ∈N, a2n = 0

∀n ∈N, a2n+1 =
−2

2n+ 1
a2n−1 =

(−2)2

(2n+ 1)(2n− 1)
a2n−3 = . . .

a2n+1 =
(−2)n

(2n+ 1)(2n− 1) . . .3.1
a1 =

(−2)n2n(n!)
(2n+ 1)!

Finalement : ∀x ∈R, f (x) =
+∞∑
n=0

(−1)n22nn!
(2n+ 1)!

x2n+1.

Exercice 12 Calcul d’une somme de série
L’objectif de cet exercice est de calculer

S =
+∞∑
n=0

1
(2n+ 1)4n

de deux façons.

1. Justifier l’existence de S.

2. Première méthode
a) Déterminer le rayon de convergence et la somme de la série entière
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∑
n

1
(2n+ 1)

x2n+1.

b) Conclure.

3. Seconde méthode
a) Rappeler le rayon de convergence et la somme de la série entière∑

n

1
n
xn.

b) Déterminer S en séparant les termes de rangs pairs et les termes de rangs im-
pairs de cette somme.

Solution (Ex.12 – Calcul d’une somme de série)

1. Par exemple,
1

(2n+ 1)4n = o
((1

4

)n)
, t.g. d’une série géométrique convergente.

2. RC = 1, ∀x ∈ ]−1; 1[ ,
d

dx

+∞∑
n=0

1
2n+ 1

x2n+1

 =
+∞∑
n=0

x2n =
1

1− x2

Par primitivation de série entière :

∀x ∈ ]−1; 1[ ,
+∞∑
n=0

1
2n+ 1

x2n+1 =
1
2

ln
(1 + x

1− x

)
,

donc f (x) =


1

2x
ln

(1 + x

1− x

)
si x ∈ ]−1; 0[∪ ]0 ; 1[

1 si x = 0

Pris en x =
1
2

, S = ln(3).

3. Pour tout x ∈ ]−1; 1[,
+∞∑
n=0

1
n
xn =

∑
n pair

1
n
xn +

∑
n impair

1
n
xn conduit à

− ln(1− x) = −1
2

ln(1− x2) +
+∞∑
n=0

1
(2n+ 1)

x2n+1 d’où en x = 1/2

1
2

+∞∑
n=0

1
(2n+ 1)4n = − ln

(1
2

)
+

1
2

ln
(3

4

)
, donc

S = 2ln(2) + ln(3)− ln(4) = ln(3).

Exercice 13 Égalité entre une intégrale impropre et une somme de série

Montrer que
∫ 1

0

ln(1− t)
t

dt = −
+∞∑
n=1

1
n2 .

Solution (Ex.13 – Égalité entre une intégrale impropre et une somme de série)

Notons f (t) =


ln(1− t)

t
si t , 0,

−1 si t = 0.

Comme ln(1− t) ∼
t→0
−t, f est continue en 0... et f est intégrable sur [0 ; 1].

∀t ∈ [0 ; 1[ ,
ln(1− t)

t
= −

+∞∑
n=0

1
n+ 1

tn et en primitivant terme à terme :

∀x ∈ [0 ; 1[ ,
∫ x

0

ln(1− t)
t

dt =
+∞∑
n=1

1
n2 x

n.

Quand x→ 1, l’intégrale
∫ x

0

ln(1− t)
t

dt tend vers
∫ 1

0
f (t)dt =

∫ 1

0

ln(1− t)
t

dt.

Reste à établir que lorsque x→ 1, g(x) =
+∞∑
n=1

1
n2 x

n→
+∞∑
n=1

1
n2 = g(1), i.e.g est continue

en 1.

Or
∣∣∣∣∣∣∣∣∣∣x 7→ xn

n2

∣∣∣∣∣∣∣∣∣∣∞,[0 ; 1]
=

1
n2 , donc la série de fonctions définissant g converge nor-

malement donc uniformément, et comme chaque x 7→ xn

n2 est continue, donc g est

continue sur [0 ; 1]. Donc g est continue en 1. Gagné.

Exercice 14 Application à la résolution d’équations différentielles
Pour les équations différentielles suivantes, on demande de déterminer les solu-
tions développables en séries entières au voisinage de 0 en précisant le rayon de
convergence des séries obtenues :

1. (E0) x2y′′ − 2xy′ + 2y = x3 ;

2. (E1) (x2 − 1)y′′ + 4xy′ + 2y = 0 ;

3. (E2) y′ − 2xy = 2x2 − 2x − 1.

Solution (Ex.14 – Application à la résolution d’équations différentielles)

1. L’ensemble des solutions DSE au voisinage de 0 est{
f : ]−∞ ; +∞[→R,x 7→ ax+ bx2 +

1
2
x3, (a,b) ∈R2

}
.
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2. En posant y(x) =
+∞∑
n=0

anx
n pour x ∈ ]−R; R[, y est solution de (E1) ssi

∀n ∈N, [n(n− 1) + 4n+ 2]an − (n+ 1)(n+ 2)an+2 = 0, i.e. an+2 = an, donc

ssi f (x) = a0

+∞∑
n=0

x2n + a1

+∞∑
n=0

x2n+1 =
a0 + a1x

1− x2 .

Le rayon de convergence de cette série est R = 1.
L’ensemble des solutions DSE au voisinage de 0 est{

f : ]−1; 1[→R,x 7→ ax+ b

1− x2 , (a,b) ∈R2
}

.

3. y : x 7→
+∞∑
n=0

anx
n vérifie (E2) sur ]−R; R[ ssi

∀x ∈ ]−R; R[ ,
+∞∑
n=0

(n + 1)an+1x
n +

+∞∑
n=0

(−2an−1)xn = 2x2 − 2x + 1 et par unicité des

coefficients ssi
a1 = −1
a2 = a0 − 1
3a3 = 2a1 + 2

∀n ⩾ 3, an+1 =
2

n+ 1
an−1

ssi
a0 = a2 + 1
a1 = −1
∀p ⩾ 1, a2p+1 = 0

∀p ⩾ 1, a2p =
1
p!
a2

ssi y : x 7→ a2

+∞∑
n=0

1
p!
x2p − x+ 1 = a2ex

2
− x+ 1.

Le rayon de convergence de cette série étant +∞, l’ensemble des solutions DSE
est {

f :R→R,x 7→ aex
2 − x+ 1, a ∈R

}
.

Exercice 15 Étude au bord du domaine
Pour x réel, on pose sous réserve d’existence

f (x) =
+∞∑
n=1

xn
√
n
.

1. Déterminer le rayon de convergence R de la série entière définissant f .

2. a) f est-elle définie en −1 ?
b) Montrer que la série définissant f converge uniformément sur [−1; 0].
c) f est-elle continue sur [−1; 1[ ?

On se propose de déterminer la limite de f en 1 par deux méthodes.
3. Première méthode –

a) Comparer, pour tout x ∈ [0 ; 1[,
xn
√
n

et
xn

n
.

b) En déduire la limite de f en 1.

4. Seconde méthode –
a) Justifier que f est dérivable sur [0 ; −1[. Quelle est sa variation ?
b) En déduire la limite de f en 1.

Solution (Ex.15 – Étude au bord du domaine)
Pour x réel, on pose sous réserve d’existence

f (x) =
+∞∑
n=1

xn
√
n
.

1. R = 1.

2. a)
+∞∑
n=1

(−1)n
√
n

converge en appliquant le théorème de Leibniz car
(

1
√
n

)
est décrois-

sante de limite nulle : f est définie en −1.

b) Soit x ∈ [−1; 0]. RN(x) =
+∞∑

n=N+1

(−1)n(−x)n
√
n

.

• Si x = 0,
( (−x)n
√
n

)
est décroissante, de limite nulle... car c’est la suite nulle.

• Si x ∈ [−1; 0[, (un) =
( (−x)n
√
n

)
est strictement positive, décroissante car

un+1

un
=

(−x)
√
n

√
n+ 1

< 1, de limite nulle car 0 < un ≤ 1/
√
n.

Par le théorème de Leibniz : |Rn(x)| ≤
∣∣∣∣∣∣ (−x)N+1
√

N + 1

∣∣∣∣∣∣ ≤ 1
√

N + 1
.

Ainsi : ∀x ∈ [−1; 0] , |RN(x)| ≤
1

√
N + 1

, donc ||RN||∞,[−1; 0] ≤
1

√
N + 1

, et

||RN||∞,[−1; 0] −−−−−−→N→+∞
0 par encadrement. La convergence est uniforme sur

[−1; 1].
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c) f est somme d’une série entière de domaine de convergence ]−1; 1[ donc est
C∞, donc continue, sur ]−1; 1[.

Par convergence uniforme sur [−1; 0], puisque chaque fn : x 7→ xn
√
n

est conti-

nue, f est continue sur [−1; 1].
Donc f est continue sur [−1; 1[.
On se propose de déterminer la limite de f en 1 par deux méthodes.

3. Première méthode –
a) ∀x ∈ [0 ; 1[,

xn
√
n
≥ xn

n
.

b) On en déduit par sommation : ∀x ∈ [0 ; −1[ , f (x) ≥ − ln(1 − x). Or : − ln(1 −
x) −−−−→

x→1
+∞. Par comparaison : f (x) −−−−→

x→1
+∞.

4. Seconde méthode –
a) f est la somme d’une série entière sur ]−1; 1[ donc f est C∞ donc dérivable

sur cet intervalle, et on peut dériver terme à terme :

∀x ∈ [0 ; 1[ , f ′(x) =
+∞∑
n=1

n
√
n
xn−1 =

+∞∑
n=0

(
√
n+ 1)xn ≥ 0. f est croissante dur [0 ; 1[.

b) Puisque f est croissante, soit elle est majorée et converge en 1, soit elle ne l’est
pas et diverge vers +∞ en 1.
Supposons f majorée par une constante M.

∀N ∈N∗,∀x ∈ [0 ; 1[,
N∑
n=1

xn
√
n
≤

+∞∑
n=1

xn
√
n
≤M.

En passant à la limite lorsque x→ 1− : ∀N ∈N∗,
N∑
n=1

1
√
n
≤M. Ceci est impos-

sible car la série
∑
n≥1

1
√
n

diverge, vers +∞ car son terme général est positif.

Donc f n’est pas majorée, donc diverge vers +∞ en 1.
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